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The challenge of injury to the articular cartilage of the joints is the 
inability of the tissue to effectively self-regenerate. Accordingly, most 
clinical cartilage repair strategies have focused on use of exogenous 
cells and/or materials to fill in localized acute defects. Problems still 
to be overcome using these approaches include attaining seamless 
integration of repair and host tissue, as well as faithful reproduction of 
true hyaline cartilage, without which permanent and durable repair is 
not achieved. A critical consideration in cartilage repair is the nature 
of the cells expected to do the job. Alternatives to the clinical paradigm 
of exogenous adult chondrocytes as repair cells need to be developed 
in order to achieve fully functional articular cartilage repair. Moreover, 
strategies must be devised to treat the widespread and chronic damage 
found in osteoarthritis, in which surgical intervention to achieve focal 
repair is not feasible.

Accumulating evidence demonstrates the existence of stem-like 
cells, possessing chondrogenic potential, residing within or adjacent to 
the articular cartilage. For example, a localized population of highly 
proliferative cells expressing progenitor markers is present in the 
perichondrium at the border of the growth plate and has been suggested 
to represent a stem cell- like niche for articular cartilage renewal [1]. 
Several studies have identified the superficial and/or middle layers 
of the articular cartilage as regions enriched in a mesenchymal stem 
cell- like population consisting of proliferating cells which express 
mesenchymal progenitor markers [2-5]. FACS sorting has been 
used to isolate mesenchymal progenitor cells from normal and/or 
osteoarthritic articular cartilage [4,6,7] and in in vitro differentiation 
assays have demonstrated chondrogenic, adipogenic and osteogenic 
potential by isolated progenitors [3,4,6,7]. Superficial zone progenitors 
may have an inherent and desirable bias towards differentiation into 
permanent articular cartilage, as isolated superficial zone progenitors 
underwent chondrogenic differentiation in vitro without concomitant 
expression of collagen type X, a marker of growth plate cartilage and 
hypertrophic maturation diagnostic of osteoarthritic disease [3]. 
Progenitor cells expressing mesenchymal stem cell markers have also 
been identified deep in the articular cartilage, as highly migratory 
cells associated with capillary invasion into the calcified zone past the 
tidemark [8], a characteristic of severe osteoarthritis. These cells were 
not observed in normal cartilage [8]. The migratory progenitor cells 
were found to possess enhanced in vitro chondrogenic potential relative 
to osteogenic or adipogenic lineages [8]. Mesenchymal progenitor cells 
have also been isolated from non-cartilage tissue in the joint including 
the synovium and fatpad [9], with the synovium-derived cells having 
greater chondrogenic differentiation potential than the adipose-
derived cells [9]. 

The existence of multiple endogenous chondrogenic progenitor 
cell populations in the joint and articular cartilage is exciting in terms 
of offering potential endogenous cell sources for cartilage repair. 
However, it is apparent that none of these endogenous progenitor 
populations are sufficient by themselves in halting osteoarthritic 
progression. The relative content and distribution of superficial and 
middle zone progenitors has been found to be similar in normal and 
osteoarthritic cartilage [4], although the profile of progenitor markers 
expressed by the cells differed [10]. This suggests that the presence of 

disease may alter endogenous progenitor populations and compromise 
their ability to accomplish self-repair. Consistent with this possibility, 
mesenchymal progenitors isolated from osteoarthritic cartilage 
underwent spontaneous osteogenic differentiation in vitro which was 
not observed in normal adult cartilage [11]. It is also possible that 
endogenous progenitors, and particularly the highly migratory cells 
associated with vascular invasion in osteoarthritis, may be part of 
a response to cartilage damage aimed to provide a temporary rather 
than permanent repair. For instance, surgical procedures such as micro 
fracture, which allow progenitors from the subchondral bone marrow 
to enter the articular cartilage, result in formation of fibro cartilage 
rather than hyaline cartilage [12]. The chondrogenic potential of bone 
marrow mesenchymal stem cells is further compromised by donor age 
[13]. Alterations in the local environment of the joint may also reduce 
the chondrogenic potential of endogenous progenitors. High levels of 
inflammatory cytokines are present in osteoarthritic or acutely injured 
joints, and treatment of mesenchymal progenitors with diseased 
synovial fluid reduces their in vitro chondrogenic differentiation 
potential [14,15]. 

Novel approaches for articular cartilage repair may lie in strategies 
to enhance the effectiveness of resident chondrogenic progenitors 
by promoting progenitor recruitment, expansion or chondrogenic 
differentiation. Endogenous progenitors may be recruited to regions 
of damage via signals which induce cell homing. Remarkably, TGFβ-
3 released by a bioscaffold is sufficient, in the absence of exogenous 
cells, to induce cartilaginous resurfacing of the joint in vivo [16], and 
also induces recruitment of adipose-, synovium- and mesenchymal-
derived progenitors into scaffolds in vitro while promoting cartilage 
characteristic gene expression [17]. Exogenous factors may be 
introduced into the joint with the goal of promoting chondrogenic 
differentiation by endogenous progenitor cells in the superficial zones. 
Intra-articular injection of BMP [18] or hyaluronan (reviewed in [19]) 
may be particularly promising in this regard as both agents possess 
well-established pro-chondrogenic activities, and both also promote 
formation of hyaline cartilage, instead of fibrocartilage, by progenitor 
cells from bone marrow in joints subjected to microfracture [20-22]. 

Modification of the extracellular matrix and increased chondrocyte 
proliferation are characteristics of osteoarthritis typically considered 
to be part of the disease pathology. Paradoxically, stimulation of 
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these processes may be useful in promoting targeted migration of 
progenitors to damaged sites [23], or may promote expansion or prime 
subsequent chondrogenic differentiation by resident progenitor pools 
[5]. For example, transient treatment of mixed host/donor cartilage 
explants with the pro-inflammatory cytokine IL1-β caused matrix 
remodeling via induction of matrix catabolic activity, but ultimately 
enhanced integration between the two tissues [24]. Moreover, 
surprisingly, blocking matrix metallo protease activity has been found 
to suppress chondrogenic differentiation of mesenchymal stem cells 
in vitro [25]. Further, transient stimulation of β-catenin signaling, a 
signal typically associated with osteoarthritic progression [26], instead 
caused thickening of the articular cartilage in vivo [27] and increased 
proliferation of isolated superficial zone progenitors in vitro while 
promoting subsequent differentiation of the cells towards permanent 
articular cartilage in vivo [5]. 

Strategies to augment the response of endogenous progenitor 
populations to cartilage injury may involve not only exogenous factors, 
but also exogenous progenitor cells. In particular the potential use of 
mesenchymal stem cells for treatment of articular cartilage damage 
has been intensely investigated (reviewed in [28-30]). Outcomes from 
studies in which progenitor cells including mesenchymal stem cells 
were implanted or injected into damaged joints in animal models 
[31-36] or humans [37,38] have been encouraging, however, the 
mechanisms by which the exogenous progenitor cells restore cartilage 
integrity and/or function are poorly understood. Intriguingly, a recent 
study examining articular cartilage repair by human embryonic stem 
cell-derived chondrocytes, which were implanted into full thickness 
focal defects in rat articular cartilage in vivo and monitored using 
a human-specific antibody, revealed gradual replacement of the 
human cells with rat cells during repair of the defect region [39]. This 
suggests the exogenous chondrocytes provide paracrine signals which 
can enable the endogenous host tissue accomplish cartilage repair. 
Signals from the host tissue may in turn influence differentiation by 
exogenous progenitors introduced into the damaged cartilage or joint. 
The injured or osteoarthritic joint is classically considered hostile due 
to the presence of inflammatory cytokines in the joint fluid. However, 
the local microenvironment adjacent to the damaged cartilage may 
provide access to chondrocyte-produced pro-chondrogenic factors 
that may positively influence chondrogenic potential of engrafted 
exogenous cells. Indeed, while intra-articular injection of human 
embryonic stem cells leads to teratomas which ultimately destroy 
the joint, when introduced as implants directly into a focal defect 
the cells instead form cartilage [40]. Mutually beneficial interactions 
between progenitors and chondrocytes have also been shown. For 
instance, chondrogenesis in co-cultures of mesenchymal stem cells 
and articular chondrocytes is mediated by progenitor-stimulated 
chondrocyte proliferation, in conjunction with chondrocyte-
stimulated progenitor cell differentiation into the chondrocyte lineage 
[41]. In addition, participation of mesenchymal progenitors in repair 
of articular cartilage was accompanied by strong induction of collagen 
type II staining around both host and transplanted cells [36]. Thus, 
exogenous progenitor cells may function in promoting cartilage repair 
through interaction with endogenous chondrocytes or chondrogenic 
progenitors, in addition to themselves serving as a supplemental source 
of cells for reconstruction of damaged cartilage. 

In order to exploit the potential of exogenous signals and cells in 
cartilage repair strategies, means for efficient delivery and retention of 
the factors or cells at the region of damage will need to be devised. This 
may be achieved for localized defects via direct surgical implantation 
of bioscaffolds, with or without incorporated factors or cells. Alternate 

approaches such as direct injection into the joint will be required for 
treatment of non-focal osteoarthritic lesions [42]. A non-invasive 
approach would be preferable for the patient and convenient for the 
health care provider even for local damage due to acute injury. Clinical 
trials are underway to evaluate the safety and efficacy for osteoarthritis 
treatment of direct intra-articular injection of recombinant BMP 
[43], or of genetically-modified chondrocytes expressing TGF-β1 
[44]. Encapsulation of growth factors or genetically-transduced cells 
releasing such factors, in biomaterial microspheres is also being 
investigated as a way to achieve sustained delivery into the joint [45-
47]. Several studies in which mesenchymal progenitor cells were labeled 
and tracked following direct intra-articular injection in damaged or 
osteoarthritic joints have demonstrated presence of labeled cells within 
the tissues of the joint including the surface and interior regions of the 
articular cartilage [32,33,48,49]. In one study injected mesenchymal 
stem cells were found to repopulate fibro cartilage and synovium but 
not articular cartilage [31]. However, the cells were found to attach 
and populate deep fissures of human osteoarthritic cartilage explants, 
and subsequently formed a regenerated cartilage surface in vitro [50]. 
Thus physical as well as molecular cues may promote graft-host tissue 
integration. Incorporation of exogenous progenitors into the articular 
cartilage may be enhanced by increasing the number of injected 
cells [51], or by co-injecting them with hyaluronan [36]. One novel 
approach for targeting injected cells to damaged articular cartilage 
utilized iron-labeled synovial-derived progenitors which were injected 
into the joint and homed to the damaged region via implantation of an 
intra-articular magnet [52].

This issue of Rheumatology: Current Research is focused on 
chondrogenic progenitor responses to cartilage injury. These 
encouraging studies suggest the field can expect exciting progress in 
utilization of exogenous signals or progenitor cells for cartilage repair, 
as well as development of strategies to enhance repair by endogenous 
chondrogenic progenitors already present in articular cartilage. 
Importantly, these approaches may offer new promise for treatment of 
cartilage injury and osteoarthritis. 
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