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Abstract

The field of adoptive cellular therapy, using autologous T-cells modified ex vivo to specifically target tumor cells
prior to being reintroduced to the patient, has become a new focus of research endeavors searching for a novel and
efficacious treatment for oncologic disease, including glioblastoma. Chimeric Antigen Receptor (CAR)-T-cells consist
of a single chain variable fragment of a monoclonal antibody coupled with extant T-cell intracellular signaling
cascade systems using a viral vector ex vivo. This provides the advantage of targeting tumor specific surface
markers, while minimizing off-target effects and potential toxicity. Additionally, the CAR T-cells bypass the need for
MHC-restricted presentation, a system which is frequently down-regulated in tumor cells. Among the surface
antigens described as targets for CAR T-cell therapy for GBMs, Epidermal growth factor variant III (EGFRvIII), HER2
(HER2/neu, ERBB2), interleukin-13 receptor α2 subunit (IL-13Rα2), and erythropoietin-producing hepatocellular
carcinoma A2 (EphA2) are the leading options for tumor specific surface antigens to target with CAR-T cells. This
article reviews history and advantages of CAR-T cell therapies, and discuss future directions.
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Introduction
Glioblastoma (GBM) remains the most common primary brain

tumor, with a universally poor prognosis. Advances in chemotherapy
and radiation treatment protocols have improved survival, but the
overall 5-year survival rate remains less than 10%. The use of
immunomodulating therapies for the treatment of GBM has been of
long interest to researchers and clinicians. The field of adoptive cellular
therapy (ACT), using autologous immune cells modified ex vivo to
target tumor cells prior to being reintroduced to the patient, has
become a new focus of research endeavors searching for a novel and
efficacious treatment for oncologic disease, including GBM [1]. These
therapeutic strategies include a variety of non-specific immune cells,
including lymphokine-activated killer (LAK) cells, tumor infiltrating
lymphocytes (TILs), γδT cells, antigen-specific cytotoxic T
lymphocytes (CTLs), and natural killer (NK) cells. However, the results
of these research endeavors have been mixed, and concern remains
regarding toxicity in non-tumor tissues. In an attempt to provide more
tumor-specific immunomodulatory options, and minimize off-target
effects, T-cells have been modified with chimeric antigen receptors
allowing for specific targeting of tumor cells in a variety of solid and
hematologic malignancies [2-6]

Chimeric Antigen Receptor (CAR) Therapy Overview
The construction of CAR-modified T-cells has been extensively

described; briefly, a single chain variable fragment (scFv) of a
monoclonal antibody is coupled with extant T-cell intracellular
signaling cascade systems using a viral vector ex vivo. This provides the
advantage of targeting tumor specific surface markers, while
minimizing off-target effects and potential toxicity. Additionally, the

CAR T-cells bypass the need for MHC-restricted presentation, a
system which is frequently down-regulated in tumor cells [7-9].

Potential limitations of CAR-modified T-cells include the need to
target tumor surface markers, unlike other ACT therapies such as TCR
therapy which can target extra- or intra-cellular tumor antigens. The
activation of T-cells through CAR therapy may lead to cytokine release
syndrome (CRS), which has been reported in a number of studies, and
may range from a mild to a serious complication [10-14].

History of CAR therapies
The initial development of CAR therapies in the late 1980s

demonstrated cytotoxicity, which was supported by multiple clinical
trials in a range of solid and hematologic malignancies [15]. These
early attempts were further refined, creating single costimulatory
domain (CD28 or 4-1BB) and double costimulatory domain (CD28 +
OX40 or 4-1BB) constructs. These second and third generation CAR
avoided a major pitfall of first generation CAR, namely the limited
functional lifespan of CAR-T cells and the occurrence of quiescence in
the absence of costimulatory signals. Clinical trials have demonstrated
significant long-term disease free survival in patients with hematologic
malignancies using second generation CAR-T cells [2,16], and both
second and third generation CAR-T cells have been shown to be
efficacious against murine glioma models [17-22].

CAR therapies for gliomas
There remains great interest in using CAR-T cell therapies to

provide a novel adjuvant therapy for management of gliomas that may
minimize the significant toxicity to non-tumor tissue that is a
significant side effect of standard of care chemotherapy and radiation
regimens. However, the microenvironment of GBMs is challenging for
successful immune-modulating therapies, as tumor cells suppress the
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endogenous immune response systems, including T cell proliferation,
CD8+ costimulatory signals, and MHC expansion. These factors have
produced obstacles for adaptive cellular therapy to overcome; the
MHC-independent nature of CAR-T cells provides an added benefit in
the success of this therapy against GBMs (Figure 1).

Figure 1: Differences between conventional T cells and CAR-T cells.
CAR-modified T-cells consist of a single chain variable fragment
(scFv) of a monoclonal antibody coupled with extant T-cell
intracellular signaling cascade systems. CAR T-cells bypass the need
for MHC-restricted presentation. These early attempts were further
refined, creating single costimulatory domain (CD28 or 4-1BB) and
double costimulatory domain (CD28 + OX40 or 4-1BB) constructs
overcoming the limited functional lifespan of CAR-T cells and the
occurrence of quiescence in the absence of costimulatory signals.

Target Surface Markers for CAR-Therapies

EGFRvIII (epidermal growth factor variant III)
EGFRvIII is the most frequently occurring EGFR variant, found in a

variety of malignancies, including GBM [23-25]. A deletion of exons
3-6 of the extracellular domain results in a constitutively active
tyrosine kinase, producing tumorigenic signals through the RTK/RAS/
PI3K pathway; notably, the type III variant is frequently expressed in
GBM cells but absent from non-tumor cells, providing an attractive
CAR-T cell target that minimizes the risk of off-target cytotoxicity. Our
group has previously developed a mouse mAb, 3C10 [26], and its scFv
antibody that specifically recognizes the glycine residue of EGFRvIII
[27]. We successfully generated human T cells expressing CAR
targeting the EGFRvIII antigen using 3C10-scFv (3C10-CAR) [22].
Several CAR constructs targeting EGFRvIII, including 3C10-CAR,
showed induction of IFN-γ production when added to EGFRvIII-
expressing target cells [21], and stimulated tumor lysis in vitro and in
vivo [22,20]. Humanized 3C10-CAR was subsequently generated to
avoid a human anti-mouse antibody response, which restricts the
persistence of 3C10-CAR-T cells and may cause anaphylaxis [28].
Phase I clinical trials of EGFRvIII-targeting CAR-T cell therapy for
recurrent GBMs are currently underway (NCT01454596,
NCT02209376).

Additionally, groups have explored the use of CAR-modified natural
killer (NK) cells for treatment of GBM [29].

There are concerns, however, that the administration of CAR-T cells
specific only for EGFRvIII may lead to surface antigen loss in the GBM
cell population, thereby creating a tumor strain resistant to further
therapy. This was seen in patients receiving EGFRvIII peptide vaccines,
where 82% of patients had EGFRvIII null tumor cells at the time of
recurrence [30].

HER2 (HER2/neu, ERBB2)
HER2 encodes a 185-kDa transmembrane glycoprotein with

tyrosine-specific kinase activity, and is overexpressed in approximately
30% of breast cancer patients as well as in several other malignancies
including GBM [31]. HER2 overexpression is associated with more
aggressive disease and poor prognosis [32]. HER2 overexpression
results in increased HER2 heterodimerization with EGFR and HER3;
these heterodimers drive proliferation and invasion of cancer cells [33].
In addition, GBMs with low HER2 expression are postulated to arise
through anaplastic transformation of low grade gliomas, making HER2
CAR-T cells a potential treatment specifically directed at patients with
primary GBM [34].

Additionally, success of these cells in treating medulloblastoma has
been demonstrated [6], making HER2-CAR-T cells a putative therapy
for multiple CNS malignancies in both adult and pediatric
populations.

Concerns remain regarding the safety of HER2-targeted CAR-T
cells, as HER2 is expressed at low levels in some normal tissues,
notably the lungs. Mortality was reported in a single patient who
developed acute respiratory failure immediately following
administration of HER2-CAR-T cells [35], which was postulated to be
caused by localization of the CAR-T cells to the lungs with a
subsequent massive cytokine release.

IL-13Rα2 (interleukin-13 receptor α2 subunit)
IL-13 binds to two receptors: IL-13Rα1 and IL-13Rα2. IL-13Rα1

forms a heterodimer with IL-4R and binds IL-13 ligand, triggering
downstream signaling pathways. IL-13Rα2 is a monomer that lacks the
signaling chain necessary to trigger IL-13 mediated pathways, and
given the high affinity of IL-13 for IL-13Rα2, upregulation of this
receptor serves to interfere with appropriate signal regulation, leading
to more aggressive and invasive tumors [36,37]; IL-13Rα2
overexpression correlates with poor prognosis [38]. IL-13Rα2 is
expressed specifically by tumor cells, although some expression in
normal testis tissue has been documented. This makes it an attractive
target for immunomodulating therapy, although off-target effects seen
with other surface antigens must be anticipated and carefully
monitored for in murine models [39-41].

IL-13-zetakine is a chimeric immunoreceptor using membrane-
tethered IL-13 E13Y mutein for selective binding to IL-13Rα2. IL-13-
zetakine T cells induced T cell proliferation and secretion of IFN-γ and
TNF-α, and demonstrated antitumor activity when co-cultured with
IL-13Rα2-expressing GBM cells in vitro. IL-13-zetakine CAR-T cells
have also demonstrated effective targeting or IL-13Rα2 tumor cells in a
murine model of human glioma, with regression of tumors and no
neurotoxicity in the study [42].

A pilot study of IL-13 zetakine CAR-T cells in patients with
recurrent GBMs demonstrated a reduction in IL-13Ra2 expression,
with some indications of increased tumor necrosis [43]. Recently,
second-generation CAR targeting IL-13Rα2 (IL-13Rα2-CAR)-
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transduced T cells were shown higher anti-tumor effect than IL-13-
zetakine [44].

However, while issues of off-target effects and toxicity have been
minimal in murine models and small clinical trials, questions and
concerns remain. One group found that the recognized antigen for a
commercially available IL-13Rα2 mAb recognized VCAM-1 not
IL-13Rα2, and that the antibody used in many analyses, B-D13, is di-
clonal, recognizing both IL-13Rα2 and VCAM-1 [45]. Although the
successful results of the IL-13Rα2 CAR-T cell studies remain valid,
questions about the immunologic mechanisms and pathways
underlying the results may require further investigation

EphA2 (Erythropoietin-producing hepatocellular carcinoma
A2)

EphA2 is a member of the Eph family of receptor tyrosine kinases,
and binds to the glycosylphosphatidylinositol-anchored ephrin-A
ligand. Nearly 90% of GBMs overexpress ephrin, and EphA2 is
commonly overexpressed in a variety of malignancies [46,47]. EphA2
exhibits ligand-dependent inhibition and ligand-independent
promotion of cell migration and invasion; Akt kinase phosphorylation
of EphA2 promotes ligand-independent cell migration, while ERK-
RSK signal pathways also regulate this phosphorylation, altering
migration and invasion dynamics of tumor cells [48,49], suggesting
EphA2 as a target for CAR-T cell therapy.

EphA2 specific CAR-T cells have been developed, and shown to be
effective in targeting tumor cells, reducing tumor burden, and
minimizing the development of antigen loss in GBM cells [50].
Additionally, this group demonstrated targeting of neurospheres, an in
vitro surrogate for putative glioma-initiating cells, indicating that
EphA2 CAR-T cells may be effective both against the main tumor
burden and microinfiltrating cell nests that evade traditional
chemotherapy and radiation, and are proposed as the source for
recurrence and spread of GBM. A phase I/II clinical trial of EphA2-
CAR-T cell therapy for EphA2-positive MGs was initiated in China in
2015 (NCT02575261).

Future Directions
Although limited studies have evaluated the efficacy of CAR-T cell

therapies in conjunction with standard of care chemotherapy and
radiation [18], this remains an incompletely explored area. The
synergistic effect of immune checkpoint inhibitors and CAR-T cells is a
promising method for augmenting ACT, making a more efficient and
effective oncologic treatment modality [51]. The first trial of this
method is ongoing and will evaluate the efficacy of ipilimumab
combined with CD19-CAR-T cells against B cell non-Hodgkin
lymphoma, acute lymphocytic leukemia, and chronic lymphocytic
leukemia (NCT00586391). CAR-T cells engineered to secrete anti-
PD-1 antibodies have recently been developed, and were shown to
induce regression of renal cell carcinoma in vivo [52]. These
innovations provide renewed potential for CAR-T cell immunotherapy
to successfully treat solid cancers.

Given the propensity of GBM cells to develop treatment resistance
through a variety of mutations, the use of multiple CAR-T cell targets
simultaneously may be an attractive proposition to ensure efficacy,
particularly in patients with recurrent GBMs. Bispecific CAR-T cells
targeting HER2 and IL-13Rα2 have enhanced functionality against
GBM cells, and provide increased tumor control in vivo [53]. While
some research exists on CAR-T cells co-expressing receptors for

multiple GBM markers, additional work is needed to determine the
most efficacious combination of markers (23939024, 27427982).

Additionally, CAR-T cells have been engineered with dual-antigen
expression designed to increase specificity [54] and to provide dynamic
self-regulation as a safety mechanism [55], however these cells have
proved challenging to produce, which may limit large-scale clinical
applications.

Another novel variant, synthetic Notch (synNotch) AND-gated
CAR has recently been reported [56]. In this system, the synNotch
receptor recognizes a tumor-specific antigen, and drives expression of
a CAR for a second tumor-specific antigen. This dual-specificity helps
minimize toxicity to non-tumor tissue. The synNotch mechanism is
independent of CAR/TCR signaling, and rather than triggering T-cell
activation, serves to prime the expression of CAR. The AND-gated T
cells demonstrated robust therapeutic discrimination in vivo, and
overcame the problem off-tumor/on-target cross reaction in normal
tissue.

It is important to find new tumor-specific antigens to expand the
repertoire of CAR-T cell therapies while minimizing toxicity. Tumor-
specific carbohydrates and glycolipids are potential novel candidate
targets, because CARs (unlike classical TCRs) can recognize structures
other than protein epitopes [57]. New approaches to antigen discovery
have also focused on the recognition of somatic mutations present in
tumor antigens, as mutant peptides may serve as T cell epitopes [58].
Tumor epitopes identified by using whole-exome sequencing analysis
with mass spectrometry have revealed immunogenic mutant peptides
[59].

Finally, another possible strategy is to create universal donor CAR-T
cells. Human T cells in which HLA class I has been genetically deleted
in order to evade the immune response provides a source of cells from
a single donor can be administered to multiple recipients [60].
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