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Editorial
Cancer genome is usually unstable and, therefore, constantly

acquires changes at both the nucleotide sequence as well as
chromosomal levels [1-3]. Ongoing genomic changes, which confer
new characteristics to the recipient cells, underlie their progression to
advanced disease states including acquisition of drug resistance and
treatment failure. Data from our laboratory have shown that increased
number of mutations correlates with poor survival of myeloma
patients [2]. One of the consequences of genomic instability and
increased mutational burden can also be the formation of more neo-
antigens which help recognition of cancer cells as non-self by immune
system. However, continued acquisition of genomic changes can also
give new characteristics to cancer cells which may help them escape
immune surveillance [4]. Consistent with unstable genome, cancer
cells display a number of genomic aberrations including increased
levels of spontaneous DNA breaks. Using esophageal adenocarcinoma
and multiple myeloma as model systems, we have shown that
homologous recombination, the most precise DNA repair mechanism,
is dysregulated (or spontaneously elevated) in cancer cells and
contributes to ongoing genomic evolution [3,5], drug resistance [3]
and growth of cancer cells in subcutaneous tumor model [6]. We have
recently also shown that apurinic/apyrimidinic nucleases (APEX1 and
APEX2) contribute to increased DNA breaks and homologous
recombination activity in myeloma cells [7]. Cancer drugs which are
genotoxic or induce DNA damage or breaks, either directly or
indirectly, kill cancer cells by increasing the damage to their DNA.
However, following such treatments the subsets of cancer cells which
survive (and not killed by) as well as normal cells of the patient now
have increased levels of DNA damage and breaks. This aspect of
chemotherapy poses a risk of development of resistance to treatment in
cancer cells and transformation of normal cells. Consistent with this
view, we have shown that melphalan, a chemotherapeutic agent,
induces homologous recombination activity and genomic instability in
myeloma cells in vitro [7]. Similarly, certain chemotherapeutic agents
have been linked to development of secondary cancers [8,9]. There are
also reports which suggest that chemotherapy has higher likelihood of
contributing to development of leukemia as compared to radiation. It
is, therefore, necessary to develop drugs which target mechanisms
underlying increased genomic damage and instability in cancer cells.
Such drugs have potential to inhibit/delay progression by reducing

genomic instability and evolution. There is also evidence that such
drugs may have ability to increase cytotoxicity while minimizing/
reducing genomic toxicity caused by chemotherapeutic agents [7].
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