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Chemotaxis is referred as directional cell migration guided by 
chemoattractant gradients and plays critical roles in many physiological 
processes, including neuron patterning [1], the recruitment of 
neutrophils to sites of inflammation [2], metastasis of cancer cells 
[3], and development of model organism Dictyostelium discoideum 
[4]. All eukaryotic cells detect chemoattractants by G protein-
coupled receptors (GPCRs) and share remarkable similarities in the 
signaling pathways which control chemotaxis [5]. D. discoideum has 
been proven as a powerful model system to identify new components 
essential for chemotaxis. During postdoc training, I developed 
and applied the state-of-the-art live cell/single molecule imaging 
techniques to visualize spatiotemporal dynamics of GPCR-mediated 
signaling network that leads to the chemotaxis in D. discoideum [6,7]. 
The interplay between computational simulation and experimental 
verification, my studies have revealed a locally-controlled inhibitory 
mechanism in the GPCR signaling network upstream of PI3K [8]. 
Ras is a key component of the chemosensing machinery upstream 
of PI3K. My long-term research interests is to investigate molecular 
mechanisms underlining chemotaxis in multiple systems: first, 
identify novel components and signaling pathways essential for 
chemotaxis using model organism D. discoideum; next, understand 
the roles of their mammalian counter partners in mammalian systems 
to identify new therapeutic strategies for inflammatory diseases and 
metastasis of breast cancer. 

Introduction
All eukaryotic cells detect chemo attractants by G protein-coupled 

receptors (GPCRs) and share remarkable similarities in the signaling 
pathways which control chemotaxis. In mammals, chemoattractants 
bind to their receptors (GPCRs) to trigger the dissociation and 
activation of heterotrimeric G-proteins consisting of Gαi and Gβγ, 
which, in turn, regulate a variety of signaling pathways involved in 
chemotaxis. GPCR-mediated pathways leading to chemotaxis are 
best known in D. discodieum. Binding of chemoattractant cAMP 
to its receptor cAR1 induces the dissociation of hetro-trimeric 
G-proteins into Gα2 and Gβγ subunits [9]. Free Gβγ activates the
small G-protein Ras, leading to the activation of PI3K by which
phosphorylates membrane phospholipid PIP2 to PIP3 [10]. Once
generated, PIP3 mediates intracellular polarization by recruiting
proteins with Pleckstrin Homology (PH) domains to the plasma
membrane [11]. Among these proteins are cytosolic regulator of
adenylyl (CRAC), protein kinase B (PKB) and myosin I proteins (actin 
motors), which play roles in the regulation of actin polymerization
during chemotaxis. PIP3-indepdedent pathways involving PLA2 and
cGC have also been implicated in chemotaxis in D. discoideum [12].
Active Ras proteins control the TorC2-PKB pathway, which signals to
the actin cytoskeleton [13]. Reverently, we revealed an evolutionary
conserved pathway in which G-protein subunits directly associate
with an Elmo/dock complex, which serves as GEF (guanine exchange
factor) to activate Rac, thereby promoting actin polymerization first
in chemotaxis of D. discoideum [14,15] and then in chemokine-
mediated metastasis of breast cancer cells [16] (Figure 1).

Recent Major Findings 
Interplay of computation simulation and experimental 
verification reveals novel components and new signaling 
events in GPCR-mediated chemotaxis in D. discoideum

During postdoc training in NIH, I have developed and applied 
the state-of-art live cell imaging techniques to monitor spatiotemporal 
dynamics of many steps of signaling events in live single cells in real 
time. I measured cAMP binding to the cAR1 receptor, cAR1-induced 
G-protein dissociation using Fluorescence Resonance Energy Transfer
(FRET) imaging, dynamic translocation of GFP tagged PI3K and PTEN 
and their net enzyme activity by monitoring the dynamic membrane
production of PIP3 [17]. These spatiotemporal dynamics of signaling
components has provided perimeters for computational modeling.
Combining these dynamics with computational simulation led to
a better understanding of GPCR-signaling network at a system level
[18,19]. My research suggests that inhibitory mechanisms that shut-
down signaling from free Gβγ, Ras and then PI3K are essential for our
observed dynamics [8]. Two major inhibitory signaling pathways for
gradient sensing are adaptation of Ras signaling and redistribution of
PTEN on the plasma membrane. Recently, I focus on understanding the 
molecular mechanism of Ras adaption in combining with computation 
simulation Ras signaling (Figure 2).

A computational simulation of GPCR-mediated Ras signaling 
during chemosensing: It is not clear how GPCR/G-protein 
machinery regulates spatiotemporal dynamics of Ras activation to 
achieve these cellular responses. We first measured spatiotemporal 
dynamics of Ras activation in D. discoideum cells in response 
to various cAMP stimuli using live cell imaging methods. Our 
quantitative measurements demonstrate that different signaling 
events downstream of GPCR have distinct kinetic patterns, and 
provide a foundation for modeling to understand how these events 
are linked to each other to produce chemotactic responses. We then 
constructed a spatiotemporally resolved model of cAR1-mediated 
Ras signaling network based on detailed molecular interactions, 
using the computer interfaces of SIMMUNE, a software package that 
allows biologists to construct computational models of a signaling 
network without dealing with mathematical equations. We then 
carried out computer simulations that test performance of a model 
in response to various stimuli, using SIMMUNE. These analyses 
allowed us to evaluate molecular mechanisms of Ras regulators, 
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RasGEF and RasGAP, by incorporating different molecular 
mechanisms into the models. We examined dynamic behaviors of 
potential RasGAP regulatory mechanisms in a GPCR-mediated 
Ras signaling network in different models in silico. Our detailed 
computational models allow us to reveal how a GPCR-mediated 
signaling network organizes at a molecular level, dynamically 
encodes information at each signaling steps, and systematically 
produces outputs to achieve temporal adaptation and spatial 
amplification in chemo-attractant gradient sensing (Figure 3).

GPCR-Mediated PLC/PKC/PKD Signaling Pathway 
Regulates the Cofilin Phosphatase Slingshot2 in 
Neutrophils Chemotaxis

Directional cell migration requires precisely coordinated 
polymerization and de-polymerization of the actin cytoskeleton 
at leading fronts of cells. Cofilin is one well-known F-actin 
depolymerization factor (ADF). The activity of cofilin is regulated 
mainly through phosphorylation and dephosphorylation: 
phosphorylation at Ser‑3 by LIM kinases and testicular protein kinases 

Figure 1: GPCR-mediated signaling pathways leading to chemotaxis. 

Figure 2: Two major inhibitory signaling pathways for gradient sensing. 
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(TESKs) inhibits its actin binding, severing, and depolymerizing, and 
dephosphorylation at Ser‑3 by slingshot proteins (SSHs) and chronopin 
(CNP) reactivates cofilin. In neutrophils, chemoattractants induce 
rapid dephosphorylation of cofilin. However, how chemokine GPCR 
controls F-actin de-polymerization remains largely elusive [20,21]. We 
revealed a novel signaling pathway, consisting of Gαi, PLC, PKCβ, PKD 
and SSH2, in control of cofilin phosphorylation and actin cytoskeletal 
reorganization, which is essential for neutrophils chemotaxis [22]. 
We showed that PKD is required for neutrophil chemotaxis and the 
chemokine GPCR-mediated PKD activation depends on PLC/PKC 
singling. We discover that activation of chemokine GPCRs recruits and 
activates PLCγ2 in a PI3K-dependent manner. We verify that PKCβ 
interacts with PKD1 and is requires for chemotaxis. Furthermore, we 
identify slingshot 2 (SSH2) as a target of PKD1 that regulates cofilin 
phosphorylation and remodeling of the actin cytoskeleton during 
neutrophil chemotaxis. Taken together, we discover a new pathway 
that transduces signals from chemokine GPCRs to control de-
polymerization of the actin cytoskeleton for neutrophil chemotaxis 
(Figure 4).
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