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Abstract

In cancers, there exists a subpopulation of cells which are referred to as cancer stem cells (CSCs) or tumor
initiating cells that have enhanced tumor-initiating capacity and metastatic potential, and drive tumor progression.
Since the initial identification of acute myeloid leukemia CSCs in 1997, CSCs have been found in many types of
cancer and have intrinsic resistance to the current chemotherapeutic strategies. With increased levels of detoxifying
enzymes, enhanced DNA repair abilities, impressive efflux capacity, and a slower cell-cycle; CSCs present a
formidable obstacle against effective chemotherapy. Several methods of specifically targeting CSCs have been
developed in recent years, and these compounds have potential as adjuvant therapies. The following is a review of
the mechanisms responsible for chemoresistance in CSCs, with an emphasis on potential strategies to overcome
this resistance.
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Introduction to Cancer Stem Cells
For many years, tumors had been thought of as monoclonal

populations of rapidly dividing cells, and that all cells had equivalent
cancer-initiating abilities. Over time, it has become evident that
tumors are heterogeneous in nature and that certain cells have
increased tumor-initiating abilities. These tumor-initiating cells are
also referred to as cancer stem cells (CSCs) and are hypothesized to
self-renew (maintaining a population of CSCs) and to differentiate
into less tumorigenic Non-CSCs [1]. First identified by Bonnet & Dick
as the tumor-initiating cells of acute myeloid leukemia, CSCs were
later isolated from solid tumors by Al-hajj et al. in breast cancer, as
well as in brain tumours by Singh et al. [2-4]. Since these seminal
publications, CSCs have been isolated from many cancers, including
colon, pancreatic, liver, and prostate, lung, head and neck, ovarian,
and stomach cancers [5-12].

CSCs are functionally defined by their ability to initiate new tumors
in severely immunocompromised mice [1]. A number of biomarkers
are associated with more tumorigenic cells and can be used in
combination to identify or isolate CSCs. These biomarkers are cancer-
type specific and are often cell surface markers or based on increased
aldehyde dehydrogenase (ALDH) activity as measured by the
Aldefluor assay. For example, in breast cancer, cells sorted based on
CD44+CD24- are enriched for CSCs, and high ALDH activity is also
found in this CSC-enriched population [3,13]. Throughout this paper,
CSC biomarkers will be referred to these biomarkers are either well-
established identifiers for the cancer type discussed, or were verified by
the authors to be prevalent in the population of cells that initiated
tumors in immunocompromised mice.

As research on CSCs gained notoriety [14-16], it became clear that
these seemingly ubiquitous tumor-initiating cells were resistant to
radiation and chemotherapy. The presence of these cells in tumors
contributes to a patient’s likelihood of recurrence post-treatment, and
may be the cause of resistance in tumors that do not respond to anti-
cancer therapies. Herein, we will review the literature with regards to
chemotherapeutics that CSCs are resistant to, mechanisms of CSC
chemotherapeutic resistance and finally we discuss novel targeted
therapies that are being developed which show efficacy towards killing
CSCs.

Drug Resistance in Cancer Stem Cells
The success of most chemotherapeutics is judged on the drug’s

ability to decrease tumor size or induce short-term remission. While
this measure of success is intuitive and many drugs evaluated by these
criteria are used in effective chemotherapeutic regimens, it is
becoming increasingly evident that in some cases, eliminating the bulk
of cancer cells may effectively select for resistant cells. As we discuss
below, CSCs have a higher intrinsic resistance to chemotherapy than
do normal cancer cells, and may be the source of post-therapy relapse
[17] (Figure 1).

Cancer cells may acquire resistance to chemotherapy, or may have a
high basal level of resistance through a variety of mechanisms (Table
1). These mechanisms have been well studied in cancer cells, and the
same concept is being applied to CSCs. As discussed in detail later,
there is evidence of increased drug inactivation through increased
expression of detoxifying ALDH enzymes, enhanced DNA repair
activity which thwarts platinum and alkylating agents, reduced drug
activation via quiescence, and increased drug efflux by upregulation of
ABC transporters.
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Figure 1: Treatment of tumors with conventional therapies fails to effectively target CSCs, potentially leading to increased chance of
recurrence. (A) Conventional chemotherapies and radiation induce tumor regression; however, there is a long-term risk of relapse as the
surviving resistant CSCs can initiate a new tumor. (B) Conventional therapies with the addition of CSC targeted therapy lead to both tumor
regression and elimination of CSCs, resulting in a decreased chance of recurrence.

Mechanisms of Chemoresistance

Increases drug export

Increased drug inactivation

Reduced drug uptake

Reduced drug activation

Changes in Drug Target interaction

Enhanced EGFR and MAPK/ERK signalling

Enhanced DNA repair

Inhibition of apoptosis

Table 1: General mechanisms of chemoresistance in cancer cells
Footnote: Mechanisms of chemoresistance that are more prevalent in
CSCs are in bold.

Chemoresistance of Cancer Stem Cells Due to
Aldehyde Dehydrogenase Activity

The Aldefluor assay (Stem Cell Technologies, Inc.) was originally
designed to isolate viable hematopoietic stem cells in human umbilical
cord blood by identifying cells with high ALDH enzymatic activity
[18]. The population of Aldefluor+ cells is often referred to as ALDH+
or ALDH bright. Highly tumorigenic cells isolated based on high
Aldefluor activity were first identified in breast carcinomas and
leukemia [19,20] and since then, Aldefluor+ cells have efficiently
initiated xenograft tumors of liver, head and neck, stomach, lung,
pancreatic, cervical, thyroid, prostate, colon, bladder, and ovarian
cancers [7,21-29].

ALDHs are a super-family of enzymes involved in oxidizing
aldehydes to carboxylic acids, and increased activity of some isoforms
is associated with detoxification capabilities [30]. Due to the general
function of ALDH enzymes in detoxification, it has been hypothesized

that Aldefluor activity associated with CSCs would confer resistance to
chemotherapeutics as well. Indeed, in a breast cancer study, tumor
samples with high ALDH protein levels were associated with patient
resistance to paclitaxel and epirubicin [31]. Additionally, Aldefluor+
cells from lung cancer cells lines demonstrated a high resistance to
multiple chemotherapeutic agents (cisplatin, gemcitabine, vinorelbine,
docetaxel, doxorubicin and daunorubicin) when compared to
Aldefluor- cells [22]. Though none of the aforementioned drugs seem
to be metabolized directly by ALDH; other chemotherapeutics, such as
the alkylating agent cyclophosphamide, are detoxified by the enzyme.

Abundant in the environment, and unavoidable in living cells,
alkylating agents are a family of compounds defined by their ability to
add alkyl groups to a variety of molecules [32]. This process damages
DNA by generating covalent adducts that lead to mutations in the
sequence. These mutations may result in apoptosis or replication
failure. The DNA damaging effects of alkylating agents are utilized in
chemotherapy for a variety of cancers; examples of alkylating agents
include cyclophosphamide, melphalan, ifosfamide, carmustine,
procarbazine, and temzolomide. While these agents are usually
effective against most non-CSCs, it seems that CSCs are resistant to
these drugs via ALDH detoxification and through increased DNA
repair.

Cyclophosphamide is used to treat breast, lung and ovarian cancers,
as well as acute myeloid leukemia, chronic myeloid leukemia,
neuroblastoma, and lymphoma [33-38]. Cyclophosphamide is an
inactive prodrug that is converted to 4-hydroxycyclophosphamide and
aldophosphamide once inside of the cell, and eventually results in
phosphoramide mustard which forms the DNA crosslinks [39].
Despite widespread effectiveness in many cancer types [40],
cyclophosphamide is less effective in the presence of ALDH which
interferes with the drug’s decomposition to aldophosphamide[39].
Metabolism of cyclophosphamide by ALDH has been suspected for
decades [41], and the enzyme’s role in chemotherapy resistance was
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first elucidated for leukemia. Studies using the murine leukemia cell
line L1210 found that 4-hydroxycyclophosphamide was detoxified by
ALDH and that cell line resistance could be attributed to ALDH
activity [42-44].

There are 19 isoforms of ALDH present in the human genome [30],
and the specific isoforms responsible for cyclophosphamide
detoxification in cancer cells is not fully known, however some studies
indicate the involvement of at least two isoforms. Induced expression
of ALDH1A1 in L1210 cells led to increased resistance to
cyclophosphamide [45]. Moreb et al. determined that siRNA
knockdown of isoforms ALDH1A1 and ALDH3A1 resulted in an 84%
increase in cyclophosphamide toxicity in lung adenocarcinoma cell
line A549 [46]. In breast cancer patient tumors, immunohistological
staining determined that increased expression of ALDH1A1 and
ALDH3A1 was found in tumors that did not respond to
cyclophosphamide therapy, and in tumors that had undergone
cyclophosphamide therapy [47]. These results implicate ALDH1A1
and ALDH3A1 in resistance to cyclophosphamide. Notably,
expression of the ALDH1A1 isoform is associated with the Aldefluor
activity of the CSCs of many cancers [48-51]. Therefore, there is a
direct link with ALDH1A1 expression, CSCs and cyclophosphamide-
resistance in cancer.

Chemoresistance of Cancers Stem Cells by Enhanced
DNA Repair Mechanisms

The platinum group of chemotherapeutic agents (including the
common analogues cisplatin, carboplatin, and oxaliplatin) induce
tumor regression by causing DNA damage. Cancer cells often have
defective DNA repair pathways, and due to rapid proliferation, these
cells are often in S-phase which is a vulnerable phase for DNA damage
[52]. Thus, these DNA-damaging chemotherapeutics are selectively
deleterious to cancer cells in S-phase, which due to impaired repair
mechanisms, are not able to recover from the damage. When the DNA
repair cascades are unable to adequately fix the damage, cell-cycle
checkpoint components are activated which can recruit additional
DNA repair components or activate apoptosis. Data from many
studies imply that CSCs have elevated levels of DNA repair [53-61],
these provide one explanation for the resistance of some tumor types
to platinum agents.

In vitro evidence suggests that CSCs in lung, ovarian and breast
cancer cell lines are resistant to DNA-damaging agent cisplatin, since
these cells were enriched post-treatment [62]. Similar CSC enrichment
was observed in mice bearing breast tumor xenografts post-cisplatin
treatment [63]. Perhaps more importantly, primary clinical samples
support the hypothesis that CSCs are more resistant to treatment with
platinum analogues. Patients with advanced ovarian cancer showed an
elevated percentage of CSCs in sampled ascites when they had been
treated with cisplatin compared to chemotherapy-naïve patients [64].
In glioblastoma, resistance of CD133+ CSCs to chemotherapeutics was
attributed to increased expression of DNA repair and anti-apoptosis
proteins [65]. Furthermore, the authors also showed that patients with
recurrent glioblastoma had higher expression of CD133 in their
tumors post-treatment with chemotherapeutics.

Chemoresistance of Cancer Stem Cells Due to
Quiescence

Anti-mitotic drugs target the reorganization of microtubules
essential for proper cell division and proliferation (Gascoigne &

Taylor, 2011 for review of mechanism)[66]. The two classes of
antimitotics currently approved for cancer therapy are vinca alkaloids
(vincristine, vinblastine, vindesine and vinorelbine) which prevent the
polymerization of microtubules, and taxanes (paclitaxel, docetaxel)
that stabilize existing microtubules. Both classes effectively inhibit the
formation of the mitotic spindle, inhibiting the mitotic phase of the
cell cycle. Many other antimitotic agents are in development; however,
they have not yet been approved for clinical use [67]. The relation of
CSCs to progression through the cell cycle is inconclusive; however,
there is evidence to suggest that CSCs may be more quiescent or
slower-cycling than their associated non-CSCs. Quiescence and a
slower progression through the cell cycle in CSCs would likely render
these cells less susceptible to cell-cycle targeted therapies such as the
antimitotic class of chemotherapeutics [68].

In glioblastoma, CD133+- identified CSCs were resistant to a variety
of chemotherapeutic agents, including paclitaxel [65]. A later study,
using CD133+ cells derived from patients with treatment-refractory
recurrent gliomas, demonstrated that these CSCs had gene expression
profiles consistent with quiescent cells [69]. Similarly, Pece et al.
determined that the gene expression profiles of high-grade breast
tumors matched the profiles generated from quiescent mammary stem
cells [70]. Additionally, mammospheres formed from higher-grade
cells retained high levels of the quiescence marker, PKH26.
Mammospheres are an in vitro measure of CSC tumorigenicity; thus,
this data suggests that the CSCs are quiescent when compared to non-
CSCs. The authors suggest that tumor progression can be associated
with an increase in the number of quiescent cells, which maintain their
stem-like tumorigenicity. Inducing cell-cycle entry in these cells may
be an interesting option for CSC-targeted therapy, and data from a
leukemia model [71], demonstrates that stimulating quiescent CSCs to
divide improves the efficacy of cell-cycle dependent chemotherapy.

Chemoresistance of Cancer Stem Cells by Enhanced
Drug Efflux Mechanisms

CSCs are enriched in the side population (SP) of tumor cells which
have high efflux of Hoescht dye [72-77]. The efflux capacity of the SP
is attributed to increased expressed of ATP-binding cassette (ABC)
transport proteins ABCB1, ABCC1, and ABCG2 [76,78-81]. These
ABC transporters are able to efflux a wide array of chemotherapeutic
drugs (e.g. colchicine, doxorubicin, etoposide, vinblastine, and
paclitaxel) and their expression is a major cause of multi drug
resistance in cancers [82]. Upregulation of these three ABC
transporters is often seen in CSCs, and contributes to chemoresistance.
For example, increased expression of ABCB1 was shown in the
CD44+CD24- identified breast CSCs, which were also comparatively
resistant to doxorubicin [83].

Targeting Cancer Stem Cells to Overcome
Chemoresistance

CSCs exhibit dysfunctional signalling via three key embryonic
pathways: the Wnt/β-catenin, Notch, and Hedgehog (Hh) pathways.
The reliance of CSCs on these dysregulated signalling paradigms have
generated potential targets for anti-CSC-directed therapies. Here we
review several strategies for CSC focused therapy: targeting the Wnt,
Notch, and Hh signaling pathways; inhibition of ALDH; and
inhibition of ABC transport proteins.
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Targeting Wnt Signalling
Wnt signaling is essential for controlled cell proliferation, cell fate

decisions during development, and adult stem cell maintenance.
Briefly, the binding of extracellular Wnt ligands to membrane-bound
frizzled receptors results in the recruitment of disheveled proteins that
block glycogen synthase kinase 3 from interacting with its substrates,
which include β-catenin [84].

Enhanced Wnt signaling has been observed in the CSCs of many
different cancer types. In chronic myeloid leukemia, deletion of β-
catenin in combination with imatinib depleted leukemic CSCs;
however, deletion of β-catenin alone did not prolong survival in mice
[85]. In a breast cancer model with spontaneous lung metastasis,
Malanchi et al. determined that periostin, a key regulator of metastatic
colonization, recruits Wnt ligands and likely promotes the
maintenance of CSCs in their niche [86]. Additional evidence supports
aberrant Wnt signaling in lung, colon, and gastric CSCs [87-89].
Strikingly, Teng et al. observed increased β-catenin and OCT-4 (a
marker of stemness, see Pesce, 2001) [90] expression in cisplatin-
selected A549 lung adenocarcinoma cells.

Resveratrol, a natural polyphenol, has anti-oxidant properties, may
have a role in somatic cell reprogramming and can be used in
reprogramming mouse embryonic fibroblasts into induced pluripotent
stem cells [91]. Furthermore, is hypothesized to exhibit anti-CSC
properties via inhibition of Wnt signaling. Resveratrol inhibits fatty
acid synthase (FASN) in breast cancer cell-line-derived CSCs, thus
suppressing their proliferation [92]. Overexpression of FASN has been
associated with increased stability of β-catenin [93] thus, inhibition of
FASN likely results in decreased Wnt signaling. More recent findings
suggest that resveratrol may be able to inhibit CSC migration and
invasion in pancreatic cancer [94]. However, a phase 1 trial of
resveratrol treatment in colon cancer inhibited the Wnt pathway in
normal colonic mucosa, but not in cancerous colon tissue [95],
suggesting toxicity may be a concern with using reservatrol as anti-
cancer therapeutic, despite its potential anti-CSC activity.

An isoflavone, genistein, primarily acts as a specific tyrosine-kinase
inhibitor [96] and has been demonstrated to inhibit the tumorigenicity
of CSCs in prostate, gastric and breast cancers [97-100]. However, it is
unclear whether this is due to attenuation of Wnt signaling [101,102]
or of the Hedgehog pathway [98,100]. A phase 2 study of genistein on
localized prostate cancer patients revealed a decrease in serum PSA in
patients treated with genistein [103], as more focal cancer was
observed among genistein-treated patients, although effects on CSCs is
unclear at this time.

OncoMed Pharmaceuticals, Inc. (OncoMed) and Bayer have
initiated a Phase 1b dose-escalating clinical trial of a decoy receptor for
Wnt ligand, Fzd8-Fc. This trial, using Fzd8-Fc (OMP-54F28) in
combination with paclitaxel and gemcitabine for patients with first-
line Stage 4 pancreatic cancer, follows a Phase 1 trial in patients with
solid tumors (NCT01608867). In addition, OncoMed has developed an
anti-frizzled monoclonal antibody, vantictumab. Results from a Phase
1a study were presented at the European Cancer Congress (2013),
suggesting that vantictumab is well tolerated. As well, prolonged stable
disease was observed in 3 patients with neuroendocrine tumors. Phase
1b trials of vantictumab in combination with standard
chemotherapeutic regimens are ongoing in untreated stage 4
pancreatic cancer (NCT02005315), previously-treated NSCLC
(NCT01957007), and locally recurrent or metastatic breast cancer
(NCT01973309).

Prism Pharma Co., Ltd. and iNVentiv Health Clinical are
investigating PRI-724 in clinical trials. PRI-724 blocks the recruitment
of β-catenin to Wnt-responsive elements in the genome, thus
preventing activated transcription. Ongoing trials include those in
patients with advanced solid tumors, pancreatic cancer, or myeloid
malignancies (NCT01606579, NCT01764477, NCT01302405).
Therefore, Wnt targeted treatment has potential as an adjuvant
therapy in a wide range of cancer types, and presents a very promising
avenue for future anti-CSC targeted therapy research.

Targeting Notch Signalling
The Notch signalling pathway is essential for cell-fate

determination and pattern formation throughout vertebrate
development; its absence results in lethal hyperplasia of the nervous
system [104,105]. Notch signalling is initiated by ligand binding of
transmembrane receptors Notch1, Notch2, Notch3, and Notch4,
which induce proteolytic cleavage of the receptors’ intracellular
domains by the presenillin-γ–secretase complex [106,107]. The
intracellular domains enter the nucleus, and regulate transcription of
target genes. Aberrant Notch pathway signalling has been
demonstrated in the CSCs of a number of cancers. Notch pathway
inhibition depleted CD133+ glioblastoma cells and inhibited tumor
growth neurosphere formation [108]. Activating Notch1 mutations are
seen in ~50% of T cell acute lymphoblastic leukemia (T-ALL) cases
[109] and Notch signalling appears to be of greater importance in
CD43+ CD7+ T-ALL leukemia stem cells [110]. Other work has
specifically identified Notch4 as contributing to Notch activity in
breast CSCs [111].

A phase 1 study of γ-secretase inhibitor (GSI) RO4929097
(Hoffman-La Roche) in refractory metastatic disease or patients with
locally advanced solid tumors had mostly favourable results and
spawned a number of subsequent clinical studies (e.g. NCT01238133,
NCT01154452, NCT01196416) [112]. Another GSI in clinical trials is
MK-0752 (Merck), which was shown to decrease CD44+CD24- and
Aldefluor+ CSC populations in breast tumor xenografts [113]. In
addition, a phase 1 clinical trial of MK0752 in combination with
docetaxel decreased breast CSCs over the course of treatment.
Unfortunately, due to the involvement of γ-secretase throughout the
gastrointestinal tract, dose-limiting gastrointestinal side-effects are of
concern in using this particular mode of therapy. Additional toxicity
may be observed due to goblet cell metaplasia [114,115]. A third GSI,
GSI-18 been shown to deplete the Aldefluor+ CSCs and decrease
colony formation and xenograft engraftment in pancreatic cancer
models [116]. Similar results were seen in DAOY medulloblastoma
cells [117]. We have yet to see if GSI-18 has clinical effects.

OncoMed has also targeted the Notch pathway with demcizumab
(OMP-21M18), which is a monoclonal antibody against Delta-like
ligand 4 (DLL4) which binds the Notch receptor. Phase 1b trials of
demcizmab in combination with gemcitabine and Abraxane in
pancreatic cancer (NCT01189929) demonstrated a high clinical benefit
rate (Market watch report). Additional clinical trials are ongoing in
non-small cell lung carcinoma (NCT01189968) and ovarian cancer
(NCT01952249).

Despite a multitude of evidence suggesting reliance of CSCs on
aberrant Notch signalling, recent findings indicate that not all CSCs
may be reliant [118]. Thus, while targeting Notch signalling may
effectively eliminate a significant proportion of CSCs, there may be
some CSCs which are not susceptible to this therapy. It remains to be
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seen if anti-Notch therapies have long-term benefits in cancer patients
over standard therapeutics alone.

Targeting Hedgehog Signalling
The Hedgehog (Hh) signalling pathway is involved in the regulation

of cell differentiation and proliferation in embryonic development and
in the maintenance of adult stem cells. Hh ligands sonic hedgehog
(Shh), indian hedgehog (Ihh) and desert hedgehog (Dhh) bind to the
cell-surface receptor Patched (PTCH). The binding of ligands to
PTCH triggers an accumulation of Smoothened (SMO) within the cell
membrane and activates GLI transcriptional regulators. Activated GLI
proteins (activators Gli1 and Gli2, and repressor Gli3) accumulate in
the nucleus and control transcription of Hh target genes. Targets of
Hh signalling include JAG2 and Wnt proteins, resulting in significant
cross-talk between the Hh, Wnt, and Notch pathways [119].

There is a fair amount of evidence to suggest that CSCs have higher
levels of Hh signalling than their non-CSC counterparts. Hh
components are more highly expressed in CD44+CD24- breast CSCs
and likely contribute to maintenance of self-renewal potential in these
cells [120]. Inhibition of Hh signalling decreased spherogenicity in
CD133+ glioma CSCs, decreased self-renewal in Aldefluor+ B-ALL
cells, and inhibited clonogenicity of multiple myeloma CSCs
[121,122]. In addition to depleting Aldefluor+ cells, Hh inhibition also
decreased metastatic spread in a xenograft model of pancreatic cancer
and inhibited the growth of human serous ovarian tumor xenografts
[123,124].

Several inhibitors of Hh signalling are in various pre-clinical and
clinical stages of testing. The inhibitors of Hh ligand-PTCH
interactions are perhaps the least advanced in the drug development
pipeline. 5E1 is an anti-Shh antibody, and has been shown to inhibit
the growth of colon cancer xenografts [125]. Robotnikinin also blocks
the Shh-PTCH interaction, but it remains to be seen if it is able to
exert anti-cancer effects [126].

Cyclopamine inhibits Hh signalling by binding to SMO [127].
Treatment of mice with cyclopamine or its analogues inhibited the
growth of medullablatoma xenografts [128]. In a phase 1 trial in
patients with refractory solid tumors, the cyclopamine-derived SMO
inhibitor IPI-926 (saridegib, Infinity Pharmaceuticals), contributed to
a response in eight of 28 patients [129]. Additionally, there was
substantial evidence for the use of IPI-926 in patients with pancreatic
cancer [130] however, the phase 2 study (NCT01130142) was stopped
after an interim analysis revealed that patients on the saridegib +
gemcitabine arm had a median survival of less than 6 months, which is
less than the historical gemcitabine-treatment mean of 6 months.
There have been a number of other trials of IPI-926 in other
malignancies (NCT01310816, NCT01371617), and we await the
findings of these studies to properly evaluate the promise of saridegib.

Another inhibitor of SMO, GDC-0449 (vismodegib, Genentech),
reduced growth of several lung cancer cell lines via inhibition of the
Hoescht-excluding side populations [131]. A phase I trial of
GDC-0449 resulted in a number of partial and complete responses
among patients with basal-cell carcinoma [132]. Similarly, a case study
of GDC-0449 treatment in one patient with refractory metastatic
medulloblastoma resulted in rapid regression of the tumor; however,
this response was incomplete and transient [133].

With targets further down the Hh pathway, GANT58 and GANT61
inhibit Gli-mediated transcription and blocked xenograft growth of

prostate cancer cells [134]. In particular, GANT58 decreased viability
of T-ALL cells and functioned synergistically with the AKT inhibitor
GSK690693 to induce cell death [135]. Targeting Gli-mediated
transcription may be able to reduce cell migration [136] and may also
attenuate drug resistance in some cancer types [137] ; however, clinical
data is required to definitively answer these questions.

Aldehyde Dehydrogenase Inhibitors
As discussed earlier, increased ALDH activity is a common

biomarker of CSCs and is involved in detoxifying certain
chemotherapeutics, making ALDH inhibitors a promising avenue for
anti-CSC targeted therapy development. Known inhibitors of ALDHs
include chloral hydrate, cyanamide, DEAB, gossypol, molinate,
pargyline, and disulfiram [138]. Disulfiram has been used for decades
to treat alcohol abuse, and recently its potential in cancer treatment
has been investigated [139]. The anti-cancer mechanisms of disulfiram
are not limited to ALDH inhibition; principally, disulfiram is used to
inhibit the proteasome and E3 ligases, and may also be a DNA-
demethylating compound [140-143]. Disulfiram inhibits both
ALDH1A1 and ALDH2 isoforms [138,144], and has shown anti-CSC
effects in breast cancer and GBM [145,146]. Though the anti-CSC
effects in the breast cancer studies have been mostly attributed to
disulfiram’s proteasome inhibition [146-148] in glioblastoma, ALDH
inhibition by disulfiram re-sensitized Aldefluor+ cells to gemcitabine
cytotoxicity [149]. After showing potential as a chemotherapy-
enhancing drug, disulfiram was approved for a phase II clinical trial as
a treatment for GBM (NCT0177919).

ABC Transporter Inhibitors
The upregulation of ABC transporters in CSCs and the increased

efflux capacity that accompanies that upregulation has prompted
investigation of ABC inhibitors as adjuvant therapy. ABC inhibitors
have already been tested in various clinical trials; however, they were
originally positioned as a broad strategy to increase the efficacy of
chemotherapeutics on all cells within a tumor. ABC transporter
inhibition should instead be conceptualized as a way to re-sensitize the
small population of CSCs with pre-existing intrinsic resistance [150].
ABCB1 inhibitors such as verapamil and cyclosporine A were among
the first to be investigated and were effective in treating acute myeloid
leukemia, non-small cell lung carcinoma, and breast cancer [151-153].
More recently, ABCG2 inhibition by axitinib has been investigated,
and in cell lines from many cancer types, it effectively re-sensitized the
side population of CSCs to topotecan and mitoxantrone [154]. The
current approach is to inhibit a single ABC transporter; however there
are three efflux proteins that are important to chemoresistance in
CSCs (ABCB1, ABCC1, and ABCG2). Several compound have been
found to inhibit the three key ABC transporters: cyclosporine A,
biricodar, PK11195, and curcumin [155]. While not all of these drugs
have undergone clinical trials, inhibiting the key ABC transporters in
CSCs is an avenue for future research.

Conclusions
The bulk of a tumor is composed of non-CSCs; however, the

presence of CSCs represents an important hurdle to effective cancer
therapy. These tumor-initiating cells are more resistant to
conventional chemotherapeutics than the majority of cancer cells, and
survival of CSCs likely contributes to tumor recurrence. Mechanisms
by which CSCs are resistant to chemotherapy include enhanced DNA
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repair, increased detoxification capacity, and quiescence. Though
CSCs are a great challenge to chemotherapy, they may be surmounted
by the use of ABC transporter inhibitors, ALDH inhibitors, and
through targeting CSC-specific Wnt, Hh, and Notch pathways.
Theoretically, eliminating CSCs through targeted therapies would
increase the efficacy of our existing treatments and lead to more
favourable long-term prognoses for many cancer types.
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