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Abstract
Marine plants and algae represent a prolific source of new bioactive metabolites with multiple pharmacological 

applications. The hydroethanolic extract of marine angiosperm Thalassia testudinum is enriched in polyphenols and 
glucopyranosides and it has demonstrated cytoprotective and antioxidant properties in different models, however, 
the non-polar components of this extract have not been fully characterized and their cytotoxic capacity has not been 
evaluated. In this work, it was obtained and characterized a chloroform fraction from T. testudinum hydroethanolic 
extract. By GC-MS analysis 69 compounds were identified, where palmitic acid was the main component. Our 
study also revealed a cytotoxic potential of this organic fraction in the cell lines A549 (human lung carcinoma) and 
EA.hy926 (human immortalized endothelial cells).

Keywords: T. testudinum; Chloroform fraction; Palmitic acid; 
Cytotoxicity; Human cancer cells; Human endothelial cells

Abbreviations: HIF-1: Hypoxia inducible factor 1; GC-MS: 
Gas chromatography-Mass spectrometry; ChFT: Chloroform 
fraction from T. testudinum; MSTFA: N-methyl-N-(trimethylsilyl) 
trifluoroacetamide; NIST: National Institute of Standards 
and Technology; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide; DMSO: Dimethyl Sulfoxide; SD: 
Standard Deviation; ROS: Reactive Oxygen Species.

Introduction
Natural products are getting attention as an attractive alternative 

in the therapeutics of multiple chronic diseases, due to their variety 
of pharmacological effects and their relatively low toxicity [1,2]. 
Marine flora, represents a promising source of new anti-inflammatory 
and anticancer agents [1,3]. Due to the extreme conditions of pH, 
salinity, temperature, sunlight exposure and pathogen threat in 
which these organisms grow, they produce secondary metabolites 
with a huge chemical variety [4-11]. These substances have been 
demonstrating a wider spectrum of pharmacological action, including 
anti-inflammatory, immunomodulatory, neuroprotective antitumor, 
antioxidant, photoprotective and antimicrobial activities [9-15].

The chemical composition and the biological properties of polar 
extracts from marine plants and algae have been extensively studied, 
but less is known about non-polar extracts and lipophilic fractions 
derived from these organisms. Methanolic and hydroethanolic extracts 
of different macroalgae such as Plocamium telfairiae, Gracilaria 
tenuistipitata, Ulva lactuca and marine plants such as Thalassodendron 
ciliatum have demonstrated cytotoxic and anti-proliferative activity in 
cancer cells with induction of apoptosis and oxidative stress-dependent 
cell death [16-20]. Other studies have revealed the cytotoxic potential 
of organic fractions and fatty acids isolated from various algal species 
[19,21,22]. The hydroethanolic extract obtained from the leaves of 
marine angiosperm Thalassia testudinum has demonstrated antioxidant, 
regenerative, photoprotective, antinociception, hepatoprotective and 
neuroprotective properties in vitro and in vivo [23-26]. A chemical 
characterization of this polar extract showed the presence of phenolic 
acids, flavonoids and glucopyranosyl compounds [27]. However, 

the lipophilic components of this extract have not been completely 
elucidated and their antitumor potential has not been explored either. 
In a previous analysis of n-hexane fraction, obtained from a chloroform 
extract of T. testudinum leaves, 43 compounds were identified, mainly 
hydrocarbons [28]. This fraction only exhibited strong antioxidant 
and photoprotective effects [28]. Based on this previous background, 
we decided to obtain and characterize a chloroform fraction from the 
hydroethanolic extract of T. testudinum to study its cytotoxic potential 
in human lung cancer cells and human immortalized endothelial cells.

Materials and Methods
Chemicals

Analytical-grade reagents and reference patterns for Gas 
chromatography-Mass spectrometry were obtained from Sigma, USA. 
Culture media and supplements were purchased from GIBCO (Gibco 
BRL, Paisley, UK).

Plant material

Thalassia testudinum (Banks and Soland ex. Koenig) was collected 
on September 2016 in “Guanabo” beach (22° 05’ 45’’ N, 82° 27’ 15’’ W). 
The specimen was identified by Dr. Areces J.A. (Institute of Oceanology, 
Havana, Cuba). A voucher sample (No. IdO40) was deposited in the 
herbarium of the Cuban National Aquarium, Havana, Cuba. Whole dry 
and ground T. testudinum leaves (500 g) were continuously extracted 
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The statistical analysis was carried out using the GraphPad Prism 
software. The values are expressed as the mean ± standard deviation 
(SD), of at least three independent experiments. For multiple mean 
comparisons was used a one-way ANOVA with a Tukey post-test 
(p<0.05).

Results
Chemical characterization of ChFT

The GC-MS analysis of ChFT revealed the presence of saturated 
and unsaturated fatty acids (ω-3 and ω -6), phenolic acids, sterols 
and glycerides (Figure 1 and Table 1). The chromatogram of the 
chloroformic fraction after chemical derivatization showed 11 
chromatographic peaks between 10 and 30 min of retention time, 
corresponding with the main components of the organic fraction, 
as well as other secondary peaks which represent other constituents 
(Figure 1). The subsequent analysis of these chromatographic products 
by MS allowed the identification of the chemical structures present in 
ChFT. For retention times from 10 to 60 min, a total of 69 compounds 
were detected, where palmitic acid (C16:0) was the most abundant 
(48.4%), followed by oleic (C18:1), linolenic (C18:3), linoleic (C18:2) 
and stearic acids (C18:0) (Table 1). The identification of palmitic acid 
by comparison of its mass spectra with a commercial pattern is shown 
in Figure 2.

Cytotoxic activity of ChFT in A549 and EA.hy926 cells

The presence of long-chain fatty acids as well glycerides and 
phenolic acids, suggests possible cytotoxic and antitumor properties for 
ChFT. According to this, the cytotoxic potential of the organic fraction 
was evaluated in the human lung carcinoma A549 and in the human 
immortalized endothelial cell line EA. hy926. As we expected ChFT was 
able to significantly reduce the viability of treated cells in comparison 
to control cells (Figure 3). ChFT exhibited a concentration-dependent 

by mechanical stirring at 800 rpm with EtOH-H2O (50:50, v/v) during 
1 h at 60°C. The extract was filtered and concentrated under reduced 
pressure and low temperature (40 °C) to total dryness. Then, 3 g of 
crude extract were macerated with 300 mL of CHCl3 with mechanical 
stirring at room temperature for 1 h. The obtained fraction was filtered 
and dried under reduced pressure, yielding 1.2%.

Cell culture

A549 cells (human lung carcinoma) and EA. hy926 cells 
(immortalized human umbilical endothelial cells) were obtained from 
ATCC collection. They were cultured in Dulbecco's Modified Eagle 
Medium (DMEM), supplemented with glutamine 2 mmol/L, antibiotic 
and 10% fetal bovine serum, according to the recommendations of the 
supplier. Cells were maintained in a 5% CO2 atmosphere at 37°C in 
incubator.

Gas Chromatography-Mass Spectrometry (GC-MS) analysis

Samples of chloroform fraction (5.0 mg) from T. testudinum 
(ChFT) were accurately weighed into a 2 mL vial, then 0.15 mL of 
N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) were added, 
the vial was tightly capped, heated at 80°C for 1 h and 0.5 µL were 
analyzed by gas chromatography-mass spectrometry (GC-MS). 

The analysis was performed using an Agilent GC 6890N equipped 
with a mass selective detector 5975 B inert and a split-splitless injector, 
in splitless mode, was used (Agilent, Palo Alto, CA, USA). Separations 
were made on a HP-5Ms fused-silica capillary column (30 m × 0.25 
mm), with a film thickness of 0.25 µm Df (Agilent, Avondale, PA).

The GC oven temperature was kept at 60°C for 2 min and 
programmed to 200°C at a rate of 20°C/min, then from 200°C to 
300°C at a rate of 8°C/min and kept constant at 300°C for 5 min. The 
temperature of the injector was fixed at 320°C and that of the source 
at 280°C, while MS interface temperature was 250°C. Helium (purity, 
99.9995%) was the carrier gas; its flow rate was fixed at 1 mL/min. 
Ionization of the sample components was performed in electron impact 
mode (EI, 70 eV). The mass range from 40 to 1000 m/z was scanned at 
a rate of 3.0 scans/s. One microliter of the organic extract was manually 
injected into the GC-MS system by using a Hamilton syringe, for total 
ion chromatographic analysis by splitless injection. The total running 
time of the GC-MS system was 70 min. The relative percentage of each 
extract constituent was expressed as percentage with respect to peak 
area normalization. Peak identification was achieved by computer 
matching mass spectra against commercial libraries (National Institute 
of Standards and Technology (NIST) 2011 GC/MS), as well as MS 
literature data [22,28-30].

Cytotoxic evaluation by MTT reduction assay

Cell viability of A549 and EA. hy926 cells in presence of different 
concentrations of ChFT (0.01-1000 µg/mL) was evaluated through the 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 
assay following a previously described method [31]. The organic fraction 
was dissolved in culture media with dimethyl sulfoxide (DMSO) 1%. 
The concentration causing reductions of 50% in cell viability (IC50) was 
calculated using the GraphPad Prism software. Untreated cells and 
cells treated with DMSO 1% were used as controls. Cell viability was 
determined from three independent experiments with three replicas 
each.

Statistical analysis
Figure 1: Chromatogram of the chloroform fraction obtained from T. testudinum 
showing its main components. The sample was derivatized with MSTFA and 
analyzed by GC-MS.
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been identified in different algae and marine plants of Caribbean Sea 
[36] and Australia [35].

In a previous chemical characterization, the n-hexane fraction 
obtained from a chloroform extract of T. testudinum leaves was 
analyzed by GC-MS, but only 43 compounds were identified (a 50% of 
the total) [28]. Among these constituents (mainly hydrocarbons) the 
1,1-bis(p-tolyl) ethane was the most abundant but non-fatty acids were 
detected. Is important to point out, that T. testudinum plant studied by 
Regalado et al. was collected in other region and time, and the fraction 
was analyzed without derivatization. Despite that, some of the minor 
saturated hydrocarbons reported in this paper were also identified by 
us in ChFT. In addition, the n-hexane fraction obtained by Regalado 
et al. demonstrated potent antioxidant and photoprotecting capacities; 
however, the cytotoxic or antitumor potential of this organic fraction 
was not evaluated.

In our study, palmitic acid was identified as the main component of 
ChFT. This is in accordance with the chemical characterization of other 
non-polar extracts and chloroform fractions from different macroalgae 
such as Digenia simplex, Colpomenia sinuosa, Halimeda discoidae, 
Galaxaura oblongata and Ulva lactuca, in which palmitic acid was 
also the most abundant metabolite and exhibited chemoprotective 
and antitumor effects [21,22,29]. In one of these studies, Huang et 
al. revealed that the cytotoxic activity of three organic extracts from 
marine algae was related with their capacity to induce apoptosis in 
an oxidative stress-dependent manner. Palmitic acid has also showed 
cytotoxic effects in the human lung cancer cell line A549 through a 
mechanism that involves endoplasmic reticulum stress, hypercalcaemia 
and generation of reactive oxygen species (ROS) [37]. Furthermore, 
this fatty acid displays a particular mechanism of cell death in EA. 
hy926 cells, which include mitochondria-dependent necroptosis and 
autophagy [38]. Interestingly, as occurs in A549 cells, the palmitic acid-
induced cytotoxicity in this human transformed endothelial cell line 
seems to be triggered by intracellular accumulation of Ca2+ [38].

Oleic acid has also demonstrated antitumor activity in vitro, against 
murine cancer cells such as TA3 (breast carcinoma) and 6C3HED 
(lymphosarcoma) [39] as well as in a variety of human tumor cell lines 
[40]. Likewise, different mixtures of fatty acids showed antileukemic 
activity in Jurkat cells [41] and increase the cytotoxicity of paclitaxel 
in human breast carcinoma cell lines such as MDA-MB-231, SK-Br3, 
T47D and MCF-7 [42]. In addition, other mixtures of polyunsaturated 
long-chain fatty acids potentiate the antitumor effects of cisplatin in 
A549 cells, via induction of apoptosis and autophagic cell death [43].

In line with this, ChFT displayed a strong cytotoxicity in A549 

Figure 2: Identification of palmitic acid present in the chloroform fraction of T. 
testudinum by mass spectrometry. The mass spectrum of the main component 
from the organic fraction with a retention time of 14.71 min, showing identical 
correspondence with the mass spectrum of the trimethylsilyl derivate of 
hexadecanoic acid of library NIST. Consequently, this component is identified 
as hexadecanoic (palmitic) acid.

cytotoxicity in A549 and EA. hy926 cells with an IC50 of 20.4 and 248.4 
µg/mL, respectively (Figure 3; Table 2).

Discussion
Through GC-MS analysis we have identified around 69 compounds 

in ChFT, a chloroform fraction derived from the hydroethanolic 
extract of marine angiosperm Thalassia testudinum. Most of these 
compounds were identified for the first time in this specie, representing 
an important contribution to the chemo-taxonomical characterization 
of T. testudinum. Fatty acids are the main constituents of ChFT, 
representing around 80% of this organic fraction. These compounds 
are preferentially extracted due to the polarity of chloroform and they 
have been reported in other chloroformic extracts from marine plants 
and algae [29,32,33]. Such compounds were also found as majors in 
the other specie of the same genus Thalassia hemprichii (Ehrenberg) 
Ascherson and other seagrasses collected in India [34] and Australia 
[35]. Among detected sterols, β-sitosterol, stigmasterol, cholesterol, 
hydro cholesterol and 3-methoxy(3B,24S)-stigmastan-4-one, have 

Figure 3: Cytotoxicity of the chloroform fraction of T. testudinum in A549 and EA.hy926 cells. Cell viability was evaluated by MTT reduction assay after 48 h of treatment 
with different concentrations of the fraction (0.01-1000 µg/mL). The values are shown as mean percentages of control ± SD from three independent experiments. 
*p<0.05, ***p<0.001 vs control (untreated cells).
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aggressive phenotype of A459 cells.

Other compound isolated from natural sources, the quinone 
methide triterpene Celasterol can inhibit the proliferation and 
migration of A549 and EA. hy926 cells, decreasing the expression and 
activity of the hypoxia inducible factor 1 (HIF-1) [45]. Deeper molecular 
studies will reveal the mechanisms responsible for the cytotoxic and 
antiproliferative effects of ChFT, but our results indicate an inhibitory 
effect of this organic fraction on both tumor and endothelial cells, two 
important targets in cancer therapy.

On the other hand, the presence of glycerides was also detected in 
ChFT. This kind of compounds has also demonstrated antitumor and 

Compound Rt (min) % Compound Rt (min) %

2-pyrrolidone 8.13 0.64 3,7,11,15-tetramethyl-2-hexadecanol 15.82 0.49

Hydroxybutanoic acid 8.28 0.05 Linoleic acid (C18:2) 16.16 3.15
Heptanoic acid (C7:0) 8.32 0.18 Oleic + Linolenic acid (C18:1+C18:3) 16.21 7.73

Diethylene glycol 8.98 0.42 Stearic acid (C18:0) 16.42 3.14
Benzoic acid 9.01 0.14 Unsaturated fatty acid 16.89 0.89

Caprylic acid (C8:0) 9.12 0.18 Sterol 17.79 0.91
Phosphoric acid 9.25 0.71 Unsaturated fatty acid 17.84 1.44

Glyceric acid 9.67 0.04 mono glyceride 17.94 1.32
Nonanoic acid (C9:0) 9.83 0.22 Arachidonic acid (C20:4) 18.04 1.34

4-hydroxybenzaldehyde 9.99 1.55 1-heneicosanol (C21OH) 18.10 0.92
Capric acid (C10:0) 10.48 0.10 Arachidic acid (C20:0) 18.19 0.50

2-2-phenylcyclopropyl-thiophene 10.61 0.15 monopalmitin 19.61 1.31
p-hydroxybenzoic acid methyl ester 10.78 0.58 Behenic acid (C22:0) 19.95 0.38

Unsaturated fatty acid 11.06 0.36 2-hidroxysebasic acid 20.14 0.30
Dihydroactinidiolide 11.14 0.07 Monooleine 21.15 0.12

p-hydroxybenzoic acid 11.64 0.55 Lignoceric acid (C24:0) 21.65 0.25
3-hydroxycapric acid 11.76 0.16 Cerotic acid (C26:0) 23.26 0.04
Lauric acid (C12:0) 11.78 0.72 1-octacosanol (C28OH) 24.08 0.08

p-hydroxybenzoic acid propyl ester 11.82 0.11 α-hydroxycholesterol 24.14 0.09
Salicylic acid 12.19 0.51 Cholesterol 24.39 0.44

p-hydroxy-3-methoxybenzoic acid 12.50 0.05 3-methoxi(3B,24S)-stigmastan-4-one 24.92 0.04
Azelaic acid 12.73 0.96 Campesterol 25.20 0.06

Unsaturated fatty acid 12.85 0.85 Stigmasterol 25.44 0.72
cis-9-Tetradecenoic acid (C14:1) 13.04 0.97 β-sitosterol 25.86 0.83

Myristic acid (C14:0) 13.09 2.62 Lacceroic acid (C32:0) 26.25 0.19
Sebasic acid 13.45 0.07 Lanostan-3-one-18-epoxy 26.40 0.35

Methyltetradecanoate (C14:0met) 13.56 0.27 Sterol 27.65 0.22
Pentadecanoic acid 13.85 1.34 Sterol 27.75 0.25

Ethylhexadecanoate (C16:0et) 14.23 1.19 Sterol 28.22 0.22
Palmitoleic acid (C16:1) 14.53 2.81 Lanosterol (D) 28.37 0.23

Palmitic acid (C16:0) 14.76 50.21 Glyceride 31.04 0.25
Margaric acid (C17:0) 15.52 0.63 Glyceride 34.32 0.59

1-octadecanol (C18OH) 15.62 0.16 Stearinlinolein Glyceride 38.85 0.25
Ethyllinoleate (C18:2et) 15.69 0.07 Glycoside 48.91 0.46
Ethyllinoleate (C18:3et) 15.76 0.26 Glycoside 51.57 0.40

Rt: Retention time; (D): Derivative

Table 1: Chemical composition of the chloroform fraction from T. testudinum hydroethanolic extract.

ChFT IC50 (µg/mL)a

A549
(ATCC CCL-185)

EA.hy926
(ACTCC CRL-2922)

20.4 ± 10.6 248.4 ± 4.8

aIC50: Inhibitory concentration causing reductions in 50% of cell viability

Table 2: Cytotoxic index of the chloroform fraction from T. testudinum in A549 and EA.hy926 cells.

cells, in a concentration-dependent manner, suggesting that some of 
these mechanisms could be involved in a synergistic effect between 
the fatty acids present in this chloroform fraction. ChFT also inhibited 
the proliferation of immortalized human endothelial cells EA. hy926, 
a fact that can be partially attributed to the high content of palmitic 
acid in the organic fraction. Despite that, ChFT shows lower activity in 
EA. hy926 cells in comparison to A549 cells. Is important to point out 
that EA. hy926 cell line is obtained by the fusion of human umbilical 
vein endothelial cells with the human lung carcinoma A549, and this 
macro-vascular cell line retains several phenotypic characteristics of 
umbilical endothelial cells [44]. Thus, the differential cytotoxicity of 
ChFT in these cell lines could be a result of selectivity toward the more 
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anti-proliferative capacities. For example, the 1(3)-O-hexadecanoil-
2-O-β-D-glucopyranosyl-glycerol and 1(3)-O-oleolil-2-O-β-D-
glucopyranosyl-glycerol have been studied in deep, due to their 
capacity to inhibit the proliferation of malignant cells transformed with 
Epstein-Barr virus [46].

On the other hand, the glycerol molecule has demonstrated 
antiproliferative effects, interfering with microtubule assembly and 
dissociation. In the same way, the 1(3)-O-hexadecanoil-glycerol and 
1(3)-O-oleolil-glycerol were identified in the antimitotic fraction 
isolated from the macroalgae D. simplex [22]. These evidences 
suggest that glycerides could contribute with the cytotoxic activity 
demonstrated by ChFT. Further research on bio guided fractioning and 
cytotoxicity is required to define if the observed effects are mediated 
by an active ingredient or are a result of the synergy between all the 
compounds present in this chloroform fraction.

Conclusions
It was obtained and characterized by GC-MS a chloroform fraction 

from the polar extract of marine plant Thalassia testudinum grown 
in Cuban coastal zones. This organic fraction shows, for the first 
time, a potent cytotoxicity in the human lung carcinoma A549 and 
antiproliferative effects in the human immortalized endothelial cell line 
EA. hy926 as well as a new chemical composition for this specie. Thus, 
our study reveals, at this time, this chloroform extract as a potential 
source of natural antitumor agents that should be explored deeply in 
the future.
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