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Abstract
Chemerin is a chemoattractant protein and moreover has a role in adipogenesis, angiogenesis and glucose 

homeostasis. Chemerin is primarily synthesized and secreted by adipocytes and hepatocytes. Chemerin receptors 
chemokine-like receptor 1 (CMKLR1), G-protein coupled receptor 1 (GPR1) and CC-motif chemokine receptor-
like 2 (CCRL2) are all expressed in the liver suggesting that chemerin may be relevant in liver physiology and 
pathophysiology. Non-alcoholic fatty liver disease (NAFLD) is associated with obesity and is the most common cause 
of chronic liver injury. NAFLD and chronic hepatitis C virus infection are risk factors for hepatocellular carcinoma. 
Hepatic and serum chemerin have been analyzed in human and rodent NAFLD, in patients with chronic hepatitis C 
and patients with hepatocellular carcinoma. Chemerin, GPR1 and CMKLR1 deficient mice have been used to elucidate 
the role of these proteins in body weight gain and glucose homeostasis. The regulation of chemerin and CMKLR1 by 
adipokines, hormones and cytokines relevant in liver diseases has been studied in hepatocytes. The data published so 
far are briefly summarized herein. Current experimental findings do not provide evidence for a crucial role of chemerin 
in chronic liver diseases and further research is needed to evaluate a possible protective function of this protein in 
hepatocellular carcinoma.
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Introduction
Chemerin has been initially identified as a retinoid (tazarotene)-

responsive gene in the skin named tazarotene-induced gene 2 (TIG2) 
[1]. Chemerin is well known for its chemotactic activity. Plasmacytoid 
dendritic cells, macrophages and natural killer cells express the 
chemerin receptor chemokine-like receptor 1 (CMKLR1) and respond 
to chemerin [2]. Subsequently chemerin has been shown to be produced 
by adipocytes [3,4]. Inflammatory mediators like lipopolysaccharide 
(LPS) and tumor necrosis factor α (TNFα ) strongly induce adipocyte 
chemerin synthesis [5,6]. Circulating chemerin levels are elevated 
in overweight/obese humans and rodents and this may be related to 
higher synthesis in fat tissues [3,5,7]. In healthy controls, a cohort 
of patients with stable chest pain and type 2 diabetic patients serum 
chemerin is positively associated with markers of inflammation. Levels 
correlate with body mass index (BMI), triglycerides, HDL-cholesterol 
and hypertension [3,7,8]. Most of the human studies identify positive 
correlations of serum chemerin with body weight, fat mass and insulin 
resistance [9].

Chemerin is synthesized as an inactive 163 amino acid precursor, 
the main form found in serum. Proteolytic cleavage of the carboxyl-
terminus by serine proteases, cysteine proteases and carboxypeptidases 
generates proteins lacking 6 (Chem157), 8 (Chem155) or 9 (Chem154) 
amino acids. Among these isoforms Chem157 is most effective in 
attracting immune cells [2]. 

CMKLR1, G-protein coupled receptor 1 (GPR1) and CC-motif 
chemokine receptor-like 2 (CCRL2) function as chemerin receptors 
and bind to chemerin with similar affinities [2]. Chemerin activates 
GPR1 with a higher potency than CMKLR1 showing that GPR1 is a 
highly sensitive chemerin receptor [10,11]. GPR1 and CCRL2 receptors 
do not seem to have a role in cell migration [2]. Function of CCRL2 
is to concentrate prochemerin and/or active chemerin at specific sites 
and present it to neighboring cells expressing CMKLR1 [2]. Chemerin 
is elevated in serum of CCRL2 deficient mice in accordance with the 
postulated role of this receptor [1]. 

Chemerin is well known to be expressed in the liver [10,12]. 
Hepatocytes secrete relatively high concentrations of chemerin 
which are similar to levels produced by adipocytes. Chemerin is 
also synthesized in hepatic stellate cells which release about 95% less 

chemerin than human hepatocytes [13]. Importantly, it has been shown 
that at least rodent hepatocytes produce bioactive chemerin [12]. 
Whether chemerin released from the liver significantly contributes to 
circulating levels of total and active chemerin has not been clarified 
so far. In patients with liver cirrhosis hepatic vein chemerin is higher 
compared to portal vein levels [7]. Albeit this shows that chemerin is 
released from the liver at least in these patients this does not prove that 
higher hepatic chemerin synthesis translates to increased serum levels. 

CMKLR1 is expressed by primary human hepatocytes, bile duct 
cells, hepatic stellate cells, endothelial cells and Kupffer cells [14]. 
Compared to white adipose tissue and skeletal muscle, expression of the 
chemerin receptors CMKLR1, GPR1 and CCRL2 is low in the rodent 
liver [10,15]. Chemerin may nevertheless influence the properties of all 
liver resident cells. 

In this review article data on the regulation of hepatocyte chemerin/
CMKLR1 levels and on hepatic and systemic chemerin in liver diseases 
of different etiologies are being summarized. 

Regulating of hepatocyte chemerin and CMKLR1

Inflammatory cytokines, LPS and adipokines regulate liver cell 
function and are involved in liver disease pathology [16-20]. TNFα, 
interleukin-6 (IL-6) and LPS which are elevated in obesity induce 
adipocyte chemerin expression [5,6,12] but do not upregulate its 
expression in hepatocytes [12,13,21]. Leptin does neither affect bovine 
adipocyte nor human hepatocyte chemerin levels [13,22]. Adiponectin 
ameliorates insulin resistance and liver injury and is reduced in obesity 
and NAFLD [16]. Adiponectin induces chemerin expression in bovine 
adipocytes [22] while cellular concentrations are not changed in 
human adipocytes and human hepatocytes [6,13]. Chemerin in the 
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supernatants of cultured hepatocytes is reduced by adiponectin [13]. 
The profibrotic cytokine transforming growth factor beta increases 
chemerin in hepatocyte supernatants [13]. 

Prolonged food restriction decreases chemerin mRNA in rat white 
adipose tissue and its level increases upon refeeding. Hepatic chemerin 
expression is not affected by food restriction and food restriction-
refeeding [23]. Adipocyte chemerin synthesis is upregulated by insulin 
but whether this contributes to higher serum chemerin levels is still 
a matter of debate [23-25]. Glucagon and insulin have no effect on 
hepatocyte chemerin expression [21].

Cultivation of hepatocytes in the presence of fatty acids is used 
as an in-vitro model for steatotic parenchymal cells. Regarding 
hepatocytes exposed to fatty acids contradictory results have been 
published. While palmitate and oleate do not alter chemerin in primary 
human hepatocytes, palmitate lowers chemerin production in HepG2 
cells [13,21,26]. The antidiabetic drug metformin lowers hepatocyte 
chemerin levels [13]. Aspirin reduces serum chemerin does not 
influence adipocyte and hepatocyte chemerin expression directly [27].

The nuclear hormone receptors peroxisome proliferator-activated 
receptor (PPAR) α  and γ, liver X receptor (LXR) and farnesoid X 
receptor (FXR) regulate glucose and lipid metabolism [28]. FXR 
agonists but not ligands of the other receptors reduce hepatocyte 
chemerin expression [26]. 

CMKLR1 in hepatocytes is not regulated by insulin, glucagon, 
palmitate, oleate, leptin, LPS, TNF α or cholesterol accumulation 

[14,21]. TGFbeta shows a trend to reduce CMKLR1 protein. IL-6 
induces CMKLR1 mRNA but not protein [14,21]. Adiponectin 
upregulates CMKLR1 in hepatocytes in line with low hepatic CMKLR1 
protein in adiponectin deficient mice [14]. Data summarized in this 
paragraph are listed in Table 1. In summary, current experimental 
evidence reveals discordant results regarding chemerin / CMKLR1 
regulation in hepatocytes. Whether this is related to different 
experimental conditions and / or the use of primary and tumor cells 
has to be clarified. 

Non-alcoholic fatty liver disease (NAFLD) 

NAFLD is a common cause for chronic liver diseases with a 
higher incidence in obesity. Dyslipidemia and insulin resistance are 
associated with NAFLD pathophysiology. Liver steatosis and non-
alcoholic steatohepatitis (NASH) are the two entities of NAFLD. Fatty 
liver is a relatively benign condition and refers to the accumulation 
of triglycerides in liver parenchymal cells. NASH is characterized by 
inflammation and eventually liver fibrosis [16,20,29]. Diagnosis of 
NASH depends on liver biopsy and non-invasive markers have not 
been identified. Current treatment options are weight loss, resistance 
training and high dose vitamin E therapy [16,30]. NAFLD is closely 
associated with metabolic syndrome, which includes central obesity, 
hypertension, elevated blood glucose and dyslipidemia [16,31,32]. 

Serum chemerin and metabolic syndrome 

Metabolic syndrome increases the risk of developing type 2 
diabetes, cardiovascular diseases and NAFLD [33]. Adipose tissue 

Substance Cell Chemerin Ref Substance CMKLR1 Ref
IL-6  

50 ng/ml PHH mRNA ↔ [21] IL-6  
50 ng/ml mRNA ↑ [21]

IL-6  
5, 20 ng/ml PHH CP, SN ↔ [13] IL-6  

5 ng/ml CP ↔ [14]

IL-6 Hep3B mRNA ↔ [27]
IL-1beta 10 ng/ml Hep3B mRNA ↔, SN ↓ [27]
Glucagon 100 nM PHH mRNA ↔ [21] Glucagon 100 nM mRNA ↔ [21]

Insulin 100 nM PHH mRNA ↔ [21] Insulin 100 nM mRNA ↔ [21]

Palmitate 0.3 mM PHH mRNA ↔ [21] Palmitate 
0.3 mM mRNA ↔ [21]

Palmitate 0.3 mM PHH CP ↔, SN (↓) [12] Palmitate 0.3 mM mRNA, CP ↔ [14]
Oleate 0.3 mM PHH CP, SN ↔ [12] Oleate 0.3 mM mRNA, CP ↔ [14]

Palmitate 0.1, 0.2, 0.5 mM HepG2 mRNA, SN ↓ [26]
FXR agonist 1, 2, 5 µM HepG2 mRNA ↑ [26]
FXR agonist 1, 2, 5 µM PMH mRNA ↑ [26]

LXR agonist HepG2 mRNA ↔ [26]
PPARγ agonist HepG2 mRNA ↔ [26]
PPARα agonist HepG2 mRNA ↔ [26]
Leptin 20 ng/ml PHH CP ↔, SN ↑ [13] Leptin 10, 20 ng/ml CP ↔ [14]
TNFα 2 ng/ml PHH CP ↔, SN ↓ [13] TNFα 0.5, 2 ng/ml CP ↔ [14]
TNFα 25 ng/ml Hep3B mRNA, SN ↔ [27]
TNFα 20 ng/ml PMH CP ↔ [12]
TGFβ 5 ng/ml PHH CP ↔, SN ↑ [13] TGFβ 5 ng/ml CP (↓) [14]
APN 10 µg/ml PHH CP ↔, SN ↓ [13] APN 10 µg/ml mRNA, CP ↑ [14]
LPS 10 µg/ml PHH CP, SN ↔ [13] LPS 1, 10 µg/ml CP ↔ [14]

PHH ACAT Inh + AcLDL CP ↔ [14]
Metformin 0.5, 1 mM PHH CP, SN ↓ [13]

Aspirin 2, 20 mg/l Hep3B mRNA, SN ↔ [27]

Acetylated LDL, AcLDL; adiponectin, APN; cellular protein, CP; farnesoid X receptor, FXR; liver X receptor, LXR; primary human hepatocytes, PHH; primary mouse 
hepatocytes, PMA; Inhibitor, Inh; peroxisome proliferator-activated receptor, PPAR; reference, Ref; supernatant, SN; not regulated, ↔; upregulated, ↑; downregulated, ↓; 
when arrows are given in brackets this indicates a trend.

Table 1: Regulation of chemerin and CMKLR1 in hepatocytes.
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insulin resistance is increased in the metabolic syndrome and correlates 
with systemic chemerin [34]. A recent study analyzed chemerin in first-
degree relatives of type 2 diabetic patients and found that triglycerides 
and homeostatic model assessment insulin resistance (HOMA-IR) 
are independent risk factors that influence systemic chemerin [35]. 
In hypertension patients HOMA-IR, TNFα and triglycerides are 
independently related to chemerin level after multiple regression 
analysis. Chemerin is independently associated with hypertension after 
adjustment for age, gender and metabolic risk factors [36]. In overweight 
and obese type 2 diabetes patients chemerin levels are positively 
correlated with HOMA-IR and fasting insulin and negatively with 
insulin sensitivity index (ISI). Changes in the chemerin concentration 
during 12 weeks intensive lifestyle modification are independently and 
negatively correlated with changes in ISI and positively with changes in 
fasting plasma glucose and total cholesterol [37]. Weight-loss is mostly 
found to reduce chemerin and to improve insulin sensitivity [38]. The 
majority of studies have identified positive correlations of chemerin and 
serum triglycerides, LDL cholesterol and blood pressure and negative 
correlations with HDL cholesterol [39]. Therefore, chemerin appears 
to be related to features of the metabolic syndrome which is closely 
associated with the pathogenesis of NAFLD. 

Chemerin and CMKLR1 in fatty liver

Liver steatosis is commonly observed in obesity. In the fatty liver of 
leptin deficient ob/ob mice chemerin, CCRL2, GPR1 and CMKLR1 are 
normally expressed. In the db/db mice with mutated leptin receptors 
liver chemerin mRNA but not protein is induced while GPR1 is strongly 
decreased [15]. In mice fed a high fat diet for 24 weeks hepatic chemerin 
and CMKLR1 are similar to mice fed a control chow [10]. Krautbauer 
et al. show that chemerin mRNA is induced in the liver of mice fed 
a high fat diet while protein is not upregulated. Leptin deficient ob/
ob mice develop markedly steatotic liver without an effect on hepatic 
chemerin protein [13]. In patients with liver steatosis chemerin mRNA 
tends to be higher while protein is not induced [13]. Doecke et al. 
analyzed chemerin and CMKLR1 in human NAFLD. In this cohort 
hepatic expression of chemerin and CMKLR1 are increased in patients 
with higher BMI. While CMKLR1 is not associated with liver steatosis 
chemerin is elevated in patients with a higher degree of liver fat [21]. 
Wanninger et al. studied CMKLR1 in human healthy and fatty liver and 
mRNA as well as protein is reduced in the latter. Of note, CMKLR1 is 
diminished in the liver of adiponectin deficient mice and adiponectin 
induces CMKLR1 in hepatocytes (Table 1) suggesting that low 
adiponectin in NAFLD may contribute to reduced hepatic CMKLR1 
expression [14]. Deng et al. demonstrate that liver chemerin is reduced 
in db/db mice and mice fed a high fat diet. Similarly, human fatty livers 
express less chemerin mRNA than normal livers. FXR but not LXR, 
PPARα  or PPARγ agonists induce chemerin in hepatocytes (Table 1) 
and low FXR activity in rodent NAFLD is suggested to contribute to 
reduced hepatic chemerin expression [26]. 

The data regarding chemerin and CMKLR1 levels in fatty liver are 
not concordant (Table 2). Further studies have to address the expression 
of chemerin and CMKLR1 in steatotic liver. 

Chemerin and CMKLR1 in NASH liver 

The Paigen diet is supplemented with cholesterol and cholate and 
causes body weight gain, liver steatosis, mild inflammation and fibrosis 
in the liver of mice [40]. Liver chemerin protein tends to be higher 
in mice fed this chow. Methionine choline deficient diet (MCD) fed 
animals display increased chemerin protein and reduced CMKLR1 
protein in the liver [13,14]. In contrast Deng et al. demonstrate lower 
chemerin in the liver of MCD fed rats [26]. 

In human NASH liver chemerin mRNA tends to be increased 
compared to controls [13]. Chemerin in the liver of NAFLD patients is 
positively associated with hepatic lobular inflammation and ballooning 
degeneration. In subjects suffering from significant liver fibrosis 
chemerin is higher than in those with absent or mild fibrosis. Patients 
with NASH have about 3 fold elevated chemerin mRNA expression and 
about 2 fold increased CMKLR1 mRNA than subjects not suffering 
from NASH. CMKLR1 is upregulated by IL-6 in hepatocytes (Table 1) 
and this may contribute to increased CMKLR1 in NASH [21]. 

Most of the findings summarized above show increased chemerin 
in NASH liver (Table 2). Future studies have to examine the expression 
of CMKLR1, GPR1 and CCRL2 in NASH. 

Serum chemerin in NAFLD 
Serum chemerin is diminished in MCD fed mice and rats [26]. 

MCD diet strongly lowers body weight and when adjusted to body 
weight serum chemerin is even increased [13]. Yilmaz et al. analyzed 
serum of 54 patients with biopsy-proven NAFLD and 56 age- and 
sex-matched controls and found increased chemerin in NAFLD [41]. 
This group also analyzed serum of 99 patients with biopsy-proven 
NAFLD and 75 control subjects and found elevated serum chemerin 
in the first cohort [42]. BMI of the NAFLD patients was significantly 
higher compared to controls and this may partly contribute to elevated 
serum chemerin. These findings are nevertheless in accordance with 
the study by Kukla et al. where chemerin in serum is found increased 
in patients with liver steatosis and NASH [43]. Serum chemerin is 
associated with hepatocyte ballooning degeneration, total cholesterol 
and diastolic blood pressure but not HOMA-IR [43]. Sell et al. 
identified elevated circulating chemerin in morbidly obese patients 
with hepatic portal- and fibroinflammation. Chemerin concentrations 
correlated positively with HOMA-IR and negatively with HDL. The 
strong decrease of chemerin in the serum of patients three months after 
surgery is associated with the decrease in HOMA-IR and blood glucose 
[44]. Ye et al. measured serum chemerin levels in 467 controls and 436 
patients with B-mode ultrasound-proven NAFLD. Chemerin correlates 
positively with insulin resistance and inflammation in the whole cohort 
but is not induced in NAFLD [45]. In line with this study Docke et al 
published that systemic chemerin is not different in patients with a high 
and a low NAFLD activity score. Further, liver chemerin mRNA levels 
do not correlate with circulating chemerin [21]. 

In all of these studies total chemerin has been analyzed and data 
on the ratios of active chemerin are not available. Total and bioactive 
chemerin in serum of mice increase in parallel suggesting that levels of 
active chemerin may be partly related to total circulating chemerin [15]. 

Hepatic chemerin Serum chemerin Hepatic CMKLR1 References
Steatotic Liver in obesity ↔, ↑, ↓ ↔, ↑ ↑, ↓ [13-15,21,26,43-45] 

NASH ↑, ↓ ↔, ↑ ↑, ↓ [13,14,21,26,43-45]
Hepatitis C ↔ ↑ ↔ [17,54,56,57] 

Hepatocellular carcinoma ↓ n.d. n.d. [59,61]

Table 2: Hepatic and serum chemerin and liver CMKLR1 expression in patients with chronic liver diseases. normal ↔; higher than controls ↑; lower than controls ↓; not 
defined to our knowledge so far n.d.
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In conclusion, inflammation, BMI, blood pressure and insulin 
resistance are associated with NAFLD and serum chemerin levels 
[3,7,8]. Variations in these parameters most likely explain inconsistent 
results regarding systemic chemerin in NAFLD (Table 2). 

Role of chemerin / CMKLR1 in NAFLD pathophysiology
A few studies analyzed whether CMKLR1 and chemerin are 

involved in the pathogenesis of obesity, insulin resistance and NAFLD 
in mice. Ernst et al. describe that injection of recombinant, human 
chemerin exacerbates glucose intolerance, reduces serum insulin and 
tissue glucose uptake in ob/ob and db/db mice. There is no effect on 
glucose homeostasis of normoglycemic animals [15]. In mice with 
whole-body chemerin deficiency and mice where human chemerin is 
overexpressed in the liver body weight is not affected. Chemerin knock-
out mice have impaired glucose uptake in skeletal muscle, increased 
hepatic glucose production and reduced insulin secretion. Chemerin 
transgenic mice subsequently display improved glucose tolerance [46]. 
Becker et al. expressed human chemerin in LDL-receptor knock-out 
mice using adenovirus associated virus 8. Human chemerin in serum 
reaches the level of endogenous murine chemerin. There is no effect 
on body weight during the 16 weeks of follow up. Skeletal muscle but 
not the liver shows impaired insulin sensitivity. The animals expressing 
human chemerin do not display altered total cholesterol, triglycerides, 
HDL cholesterol and non-HDL cholesterol levels [47].

CMKLR1 deficiency does not markedly affect body weight, 
inflammation, glucose tolerance and dyslipidemia in mice when fed a 
standard chow or a high fat diet [48]. A second study reports reduced 
food uptake, body weight and body fat in CMKLR1-/- mice regardless of 
feeding a low or high fat diet. Hepatic and adipose tissue inflammation 
is reduced.

CMKLR1-/- mice are glucose intolerant and this is associated with 
decreased glucose stimulated insulin secretion, lower skeletal muscle 
and white adipose tissue glucose uptake [49]. A high fat, high cholesterol 
diet does not affect body weight, food intake, insulin resistance, hepatic 
inflammation and hepatic expression of fibrotic genes in CMKLR1-/- 
mice [50]. 

Resolvin E1 is an omega-3-polyunsaturated fatty acid derived 
lipid and a ligand of CMKLR1 [51]. This lipid exerts anti-steatotic and 
insulin-sensitizing effects in ob/ob mice. Whether these effects depend 
on CMKLR1 or are explained by the induction of adiponectin has not 
been clarified [52]. 

Heterozygous and homozygous Gpr1 knockout mice on a high-fat 
diet display more severe glucose intolerance than wild type animals 
partly because of low insulin levels. Body weight, adiposity and energy 
expenditure are, however, normal [10]. Studies on the role of GPR1 in 
NAFLD have not been published to our knowledge so far. 

In summary, chemerin / CMKLR1 do not grossly affect body weight 
but seem to have a role in glucose homeostasis. There is no evidence that 
chemerin and / or CMKLR1 have a major function in liver physiology, 
lipid metabolism and NAFLD pathophysiology. 

Chemerin and CMKLR1 expression and serum levels in 
chronic hepatitis C 

Kukla et al. found strongly increased serum chemerin levels in 
patients chronically infected with the hepatitis C virus genotype 1b. 
Chemerin is not related to HOMA index. Surprisingly, serum levels 
decline with increasing hepatic necroinflammatory activity. Therefore, 
chemerin is suggested to bind to its receptors at sites of inflammation 
and attract further immune cells including natural killer cells which 

help to eradicate the virus [17]. Chemerin may be also proteolyzed to 
generate small peptides shown to exert anti-inflammatory activities 
[53]. 

Serum chemerin tends to be higher in patients with more advanced 
fibrosis. Most of the patients enrolled had less severe liver fibrosis 
and cirrhosis was only diagnosed in one patient. Thus the potential 
association of serum chemerin with liver fibrosis has to be confirmed 
in suitable cohorts [54]. Angiogenesis in chronic hepatitis C patients is 
positively associated with the stage of fibrosis, grade of inflammatory 
activity and steatosis [55]. Serum chemerin is, however, not associated 
with the formation of new blood vessels in lobules and portal tracts in 
the liver [56]. There is a positive correlation of serum chemerin and 
leptin levels [54,56]. Analysis of chemerin and CMKLR1 expression 
in the liver of 63 non-obese chronic hepatitis C patients shows no 
associated with necroinflammatory activity and steatosis grade, fibrosis 
stage and metabolic abnormalities. Of note, a negative association 
between serum chemerin and hepatic chemerin expression has been 
found [57]. Serum chemerin is higher in the patients compared to 30 
healthy, age and BMI matched controls [57] (Table 2).

Chemerin expression and serum levels in hepatocellular 
carcinoma

Chronic hepatitis B and C infections and increasingly NAFLD 
are underlying risk factors for hepatocellular carcinoma [58]. Lin et 
al describe reduced expression of chemerin protein in hepatocellular 
carcinoma tissues of 72 patients compared with paracarcinomatous 
liver tissue (Table 2). Chemerin correlates with tumor size, histological 
grade and the infiltration of dendritic cells and natural killer cells. 
Patients with low hepatic chemerin have poorer survival and liver 
chemerin expression is of prognostic value [59]. 

CellMinerHCC is a freely accessible database of microarray 
expression profiles of currently 18 different hepatocellular carcinoma 
cell lines [60]. Expression of chemerin is reduced in the 18 different 
hepatocellular carcinoma cell lines when compared to normal liver 
(Figure 1). In the liver chemerin is mainly expressed by hepatocytes 
[13] suggesting that levels are lower in these cell lines when compared to 
normal hepatocytes. Therefore, these cell lines may be used to evaluate 
a possible role of chemerin on proliferation, survival and migration in 
liver tumor cells. 

In a cohort of 44 patients with any stage of hepatocellular carcinoma 
systemic chemerin correlates with albumin, platelet count and 
prothrombin time. Interestingly, serum chemerin is inversely related to 
Child-Pugh score, serum alanine aminotransferase and total bilirubin. 
Chemerin in serum is not associated with survival [61]. 

Figure 1: Log2 ratios of chemerin expression in 18 hepatocellular 
carcinoma cell lines.
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Summary
Chemerin and its receptors are expressed in the liver. From current 

data it is unclear whether hepatic levels of chemerin and CMKL1 are 
induced or suppressed in NAFLD. Animal studies suggest a minor if 
any role of chemerin and CMKLR1 in metabolic liver disease. Further, 
serum chemerin may be elevated or similar to controls in NAFLD 
patients. Circulating chemerin is increased in patients with chronic 
hepatitis C and is even negatively associated with inflammatory grade. 
In hepatocellular carcinoma serum chemerin is associated with severity 
of liver injury defined by the Child-Pugh score. Chemerin is reduced 
in carcinomatous liver tissue and hepatic chemerin expression is 
associated with survival. Further studies are needed to evaluate whether 
chemerin plays a role in the pathophysiology of liver tumors. 
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