
International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 5 No. 2 (July2014)©IJoAT Page 107

Checkpointing Based Fault Tolerant Job Scheduling
System for Computational Grid

Mangesh Balpande 1 and Urmila Shrawankar 1

 1 Computer Science and Engineering, G.H. Raisoni College of Engineering,
Nagpur, Maharashtra, India

Corresponding Author Email: mangesh.balpande111@gmail.com

Abstract

 A computational grid environment, due to its
heterogeneous, autonomous and dynamic nature is prone to
different kinds of faults which may lead to delay in completion of
job or even execution of job from starting point. Checkpointing
mechanism plays a vital role for making grid more reliable, cost
effective and efficient. In this paper, we have proposed schemes
based on system checkpointing and application checkpointing.
Their performance comparison is done based on the empirical
study. The ABSC scheme is suitable for the applications where
computations are not intense. But for computationally intense
applications where reliability is more important ABAC scheme is
more suitable. But this scheme may produce slight overheads in
fault free situations and very reliable in faulty situations.

Keywords: Fault Tolerance, Computational Grid, Checkpointing,
Genetic algorithm, performance evaluation.

1. Introduction

A computational grid environment consists of decentralized,
heterogeneous and autonomously managed subsystems, where
computations between these subsystems are independent with no
sharing of intermediate results. Designing of a fault tolerance
system in a grid environment with optimized resource utilization
and execution time is a critical and challenging task. A good fault
tolerant job scheduling approach should be able to handle not only
the complexity of the resources also various faults occurring
during the job execution.

For long running computationally intensive scientific
applications specified in [1] [2] [3] like Simulations, decoding,

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 5 No. 2 (July2014)©IJoAT Page 108

scientific experiments and industrial areas like bioinformatics may
require hours, days, weeks or even months to carry out the
execution due to which they are prone to various types of faults.
Thus the checkpointing techniques can be used to resolve this by
recovering from any type of fault without disturbing the normal
operation.

Grid checkpointing service should meet the following
requirements [4]: 1) Interoperability among of computing
resources: There should be a provision of interoperability among
variety of computing resources and the checkpointing operation
must be compatible with different platforms. Checkpointing
service should provide standard API to allow users to code in
different grid resources independently. 2) Availability of
checkpointing data: The checkpointing data should be stored in
separate storage devices. It should be capable of applying its
flexibility to different computing resources. Depending on the
condition that interface is not modified, it can adapt to the change
in the foundational architecture. 3) Interoperability between grid
middleware and infrastructure: Besides of interactive interfaces
checkpoint service should provide security, monitoring,
performance evaluation etc. while operating on checkpoint.

Checkpointing is a technique which allows a process to
preserve its state during arbitrary time interval and resuming its
normal operation to reduce faults during recovery process after
failure [5]. The proposed work addresses empirical analysis and
performance comparison in faulty and faulty free situations of
system checkpointing and application checkpointing also their
reliability and computational speed have been observed.

In this paper we have proposed ABSC scheme and ABAC
scheme capable recovering from node failure using checkpointing
mechanism. Remaining part of the paper is organized as follows:
Various issues related to checkpointing are discussed in section II,
related work is elaborated in section III, section IV discusses the
proposed schemes, section V gives the result and analysis and
section VI contains the conclusion and future work.

2. Checkpointing

In Grid computing to improve the reliability and system
availability a commonly used fault tolerance technique is
checkpointing. The efficiency of checkpointing mechanism is
based on three parameters [3]: 1) Checkpointing overhead in terms

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 5 No. 2 (July2014)©IJoAT Page 109

of time and resources consumed to generate and transfer
checkpoint among other nodes. 2) Time to resume the execution in
case of failures: Checkpoint size plays a major role in this context.
The size and frequency of checkpoint may vary depending on the
QoS requirement [6] [7]. 3) Compatibility and Portability of
checkpoints: Due to heterogeneous nature of grid, machines at
which the checkpoints are generated may have different platform
or operating system from which it is going to be used for resuming
the execution.

Checkpointing algorithm can be categorized into system
and application level [8]: 1) In application checkpointing, the
application itself is coded in a way to generate and store its own
checkpoints. Due to which checkpointing can be platform
independent. Application can also be coded to reduce the
checkpoint size and overhead. 2) System checkpointing is used to
store the kernel level information. It requires much effort from the
programmer. It can generate checkpoint state that can be obtained
from RAM using multithreading, but it is less flexible and creates
more checkpoint overhead.

The fault tolerance could be carried by approaches based
on the job replication, checkpointing and adaptive approach [18]
[9]. In checkpointing approach, the status of the running job before
occurrence of the fault is stored into the stable storage and when
fault occurs the roll backing of the state of the job up to the failure
point is done. The rollback mechanism plays a vital role because
data from the previous node may be faulty or the data recovery
from the faulty state of a particular node may lead to
malfunctioning [10].

The checkpointing mechanism along with rollback and
recovery is as shown in figure1. 1) The grid user’s job is submitted
to Resource Information Service (RIS) through scheduler manager
for optimized resource utilization. The Job scheduler offers the
computing resources from resource pool. 2) After receiving jobs
from the user scheduler manager select optimal resources by
submitting jobs to RIS. The mapping between jobs to resource is
generated and a job dispatcher dispatches the job to central
checkpoint unit. 3) As soon as a new checkpoint is created,
rollback mechanism is initiated by checkpoint controller. It
performs rollback operation for a faulty process and finds the
possible states of recovery. The checkpoint replication services are
initiated by checkpoint controller if the checkpoint rollback is not
possible. Application replicas get called by replication services and

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 5 No. 2 (July2014)©IJoAT Page 110

if not available on demand application is carried out and critical
services are replicated. The checkpoint controller contains the
buffer inside to store the details such as time of initiation, identity
of replicas.

Fig 1: Checkpointing with rollback and recovery

3. Related Work

 An Adaptive fault tolerant scheduling [2] utilizes an
adaptive number of job replicas according to the grid failure
history. This technique composed of Adaptive Job Replication
(AJR) and Backup Resource Selection (BRS). AJR determines
number of replicas according to selected resources. BRS evaluates
the resources selected for execution by AJR. Due to adaptive
nature, this technique reduces the excessive cost and response time,
but may lead to overloading of Grid in extreme conditions.
 The NSGA-II with fuzzy mutation works on the theory of
diversity preservation [11]. In fuzzy mutation fuzzy if then rules
are evaluated to get the probability of population in chromosome
by using individual cost variance and gene variance as inputs. This
technique requires less number of iterations but defuzzification
cost is more.

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 5 No. 2 (July2014)©IJoAT Page 111

 The job scheduling based on application checkpointing is
proposed in [3]. This scheme generates threads of application as
checkpoints. For a specific time period a message based
communication between the manager and executor is carried out to
check either fault is carried out or not. This scheme provides more
flexibility but may leads to checkpointing overhead in fault free
situations and whenever checkpoint frequency increases
 The method proposed in [12] consists of predictive
scheduling which utilizes rough set theory for predicting the
number of supporter nodes with less probability of failure. This
scheme requires excessive storage for storing every state in
advance.
The scheme in [13] consists of cooperative checkpointing which
utilizes the dynamic adjustment of checkpointing interval with in
the presence of failure to complete the job with in its time. In this
the remaining time, time left after deadline and remaining number
of failure expected are evaluated.
 The work in [17] addresses a Distributed Fault Tolerant
Scheduling (SFTS) algorithm that combines job scheduling and job
replication together. One scheduler manager acts as a scheduler
manager for another. It uses fixed number replicas for each job and
that are scheduled to various sites to be executed. This method
doesn’t provide flexibility in scheduling and can perform
bottleneck.

4. Proposed Algorithms Based On Checkpointing Scheme

 The proposed algorithms are specifically based on the
checkpointing mechanism. The ABSC is designed for fault tolerant
job scheduling which is based on the Genetic Algorithm (GA)
which utilizes a system checkpointing. The ABAC scheme
addresses the mechanism in which the application threads are
generated in the form of checkpoints. In case of failure the
corresponding application thread from its checkpoint is resuming
from the point of failure.

4.1 Algorithm Based on System Checkpointing (ABSC) Scheme

 The proposed ACSC Scheme is based on Genetic
Algorithm (GA) which works on the principal of “Natural
Selection” [11] and is used to provide the optimized solution in
faulty situations. The working of the proposed scheme is based on
four operations [15]: 1) Initialization of population generation:
This operation uses genetic operators for generation and
representation of possible solution of mapping between task and

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 5 No. 2 (July2014)©IJoAT Page 112

nodes in the search space. 2) Chromosome representation and
evaluation: In grid computing a chromosome can be a one
dimensional array of the node id indexed by the corresponding job
allocated to it and the evaluation can be carried out with the help of
fitness function. The fitness function calculates the fitness value
which is nothing but the makespan between task and node.3)
Crossover and Mutation operation: In crossover, the random
selection of task from the number of tasks is taken known as
crossover point. The parts of two parent chromosomes are swapped
over the crossover point for the generation of two new
chromosomes. The random selection of a job and replacement of
its value in its entry in the parent chromosome with randomly
selected valid resource id which leads to mutation.

ALGORITHM:

Start

1. Assume a Fault is occurred due to resource failure, resource

overloading or underloading.

2. Generate the initial population as a set of nodes.

3. Fitness value F(x) is evaluated as [14]:

…….(1)

Where, Fi- Fitness value of ith node

 n- Total number of nodes.

4. Cross over of parameters like resources, failure rate,

memory, speed etc. which leads to new chromosome.

5. If the fitness value of newly arrived chromosome from

crossover is better than the available one then add this to the

existing population else got to step 5.

6. While new generated population becomes zero and of the

generated fitness value is satisfied then stop and return the

best node else go to step 3.

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 5 No. 2 (July2014)©IJoAT Page 113

7. Repeat this process until the Grid scheduler receives the

backup storage.

8. Stop.

4.2 Algorithm Based on Application Checkpointing (ABAC)
Scheme

In ABAC scheme, the application itself is designed to store
its own checkpoints by inserting the checkpoint code. The replica
manager replicates the checkpointing data on various nodes. The
recovery manager recovers in case of faulty situation.

 The database used for storing the checkpoint data is
Mysql. The table named as Applcheck is created which provides
fast access and flexibility of storing various types of data also the
intermediate results can be stored and retrieved from the table
without disturbing the normal flow of application.

ALGORITHM:

1. Start

2. User submit the job to the scheduler manager

3. While (all thread finished execution)

If (the thread is present in the application threads) then

a. Execute the thread by executor node.

b. Continue the handshaking between executor and

manager

4. If handshaking delay is greater than threshold then

a. Restart the failed thread on another available

node.

5. Return the computed final result to the user.

6. Stop

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 5 No. 2 (July2014)©IJoAT Page 114

 The figure 2 shows different phases of thread during its

execution. After the application has been started, threads of an
application do some of its work and store the corresponding
thread’s checkpoint in a stable storage. After the completion the
thread restarts its work.

Fig.2. Thread execution with checkpoints

The application initiates checkpointing at time t then the
time require to complete the execution of the thread is . At fault
free situation, the time requires to compute from last checkpoint up
to the point of failure is . The time at which the latest
checkpoint generated is . The time requires to restart the
execution of the thread by scheduler manager is and

 is the time consumed to generate and store checkpoints
on scheduler manager in fault free situations. indicates the
checkpoint latency. If the job fails, its corresponding threads force
the job to restart from previous checkpoint, it requires
time.

The efficiency of checkpointing can be evaluated
depending on the value of . The minimum value of indicates
efficient checkpointing scheme. Thus the total completion time of
thread in a faulty situation is given by:

 …….. (2)
5. Analysis and Discussion

 Building a grid environment on a real scale to evaluate the
fault tolerant scheduling techniques is very difficult. Gridsim a
widely used simulator based on java. It supports the heterogeneous
nature of resources and platforms. Since this work is concentrated
on the resource failure and the latest version of the Gridsim toolkit
5.2 contains the package gridsim.ResFailure for detection of
resource failure, thus it is used in our simulation.
 The simulation parameters are as shown in table I. Based
on different MIPS, nodes are registered to GIS (Grid Information
Server). The handshaking delay threshold for resource failure in
proposed application checkpointing is 150 seconds.

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 5 No. 2 (July2014)©IJoAT Page 115

Table I. Parameter setting

Parameters Values
No. of Computing Nodes 300

No. of Tasks 1200
Speed of Resource Nodes (MIPS) 1000-3500
Task Length in Million Instructions (MI) 300000-450000

The performance evaluations of the proposed

checkpointing schemes have been done in two situations fault free
and faulty and are also compared with the system checkpointing
algorithm. Because application checkpointing generates the
overhead in fault free situations, the system checkpointing
algorithm performs better than application checkpointing algorithm.
The results are as shown in table II with generated overhead and
time difference.

Table II. Execution time along with the overhead in fault free situation

Sr. No. No. of Threads ABSC
Scheme

ABAC
Scheme

Overhead
Caused

1 1 170.290 172.752 2.462
2 3 222.231 226.894 4.663
3 6 270.338 276.860 5.522
4 8 318.780 325.191 6.414
5 9 332.405 325.513 6.892

The experiment is carried out for evaluating the

performance of the ABAC scheme in faulty situation. In this the
execution is interrupted by either by switching off or disconnecting
the executor node during the execution of the thread. The results
are as shown in table III.

Table III. Execution time along with the saved time in faulty situation
Sr.
No.

No. of Threads ABSC
Scheme

ABAC Scheme Saved
Time

1 1 187.465 172.344 15.121
2 3 248.728 232.458 16.270
3 6 360.606 327.164 33.442
4 8 409.826 367.453 42.373
5 9 418.917 373.707 45.214

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 5 No. 2 (July2014)©IJoAT Page 116

By studying the experimental results, we can say that, in

fault free situations the ABSC scheme performs well. But the
dynamic nature of grid makes it more vulnerable to various faults.
For such situation this scheme is not well suited, instead ABAC
scheme provides very good results.

In both faulty and fault free situation the checkpoint
frequency may have a considerable effect on total execution time.
It may lead to increase in total execution time in fault free situation.
It depends on the failure rate and thread failure time [3]. On the
other hand the increased frequency of checkpoint may improve
recovering capability of job after the node failure [16]. Based on
the results shown in table III, the execution time comparison can
be observed graphically as shown in figure 3.

Fig.3. comparison of Total execution time

5. Conclusion and Future

The dynamic and heterogeneous nature of the grid makes it
more vulnerable to different types of faults. In this paper, we
proposed two fault tolerant job scheduling algorithms based on
system checkpointing and application checkpointing. The
performance of both the algorithms for total execution time and
generated overhead under faulty and fault free situation is
evaluated. Thus it can be concluded that the ABAP scheme
provides better source sharing, improved resource utilization and
computational speed which is best suited for the computationally
intensive applications in grid environment.

Thus After the performance comparison we can say that, in
future the proposed ABAC scheme could be modified to deal with
scheduler manager failure and for improving the reliability of tasks,

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 5 No. 2 (July2014)©IJoAT Page 117

resource utilization and computational speed by increasing the
frequency of checkpoints with in an application itself.

References

[1] Chtepen, M.; Claeys, F.H.A.; Dhoedt, B.; De Turck, F.; Demeester, P.;
Vanrolleghem, P.A., "Adaptive Task Checkpointing and Replication:
Toward Efficient Fault-Tolerant Grids," Parallel and Distributed
Systems, IEEE Transactions on , vol.20, no.2, pp.180,190, Feb. 2009.

[2] Amoon, M., "Design of a Fault-Tolerant Scheduling System for Grid
Computing," Networking and Distributed Computing (ICNDC), 2011
Second International Conference on , vol., no., pp.104,108, 21-24 Sept.
2011.

[3] Bawa, R.K.; Singh, R., "Application checkpointing in grid
environment with improved checkpoint reliability through replication,"
Computing Communication & Networking Technologies (ICCCNT),
2012 Third International Conference on , vol., no., pp.1,6, 26-28 July
2012.

[4] Wenxing Wang; Zhen Li, "Research of Process Migration Mechanism
Based on Checkpoint in Computational Grid," ChinaGrid Conference
(ChinaGrid), 2010 Fifth Annual , vol., no., pp.245,248, 16-18 July
2010.

[5] Rakesh, V.K.; Kar, C.; Samanta, T.; Banerjee, S., "A resource
selection strategy and check pointing to minimize computational time
in case of grid resource failure," Advanced Communication Control and
Computing Technologies (ICACCCT), 2012 IEEE International
Conference on , vol., no., pp.444,448, 23-25 Aug. 2012.

[6] El-Desoky, A.E.; Ali, H.A.; Azab, A.A., "Improving Fault Tolerance
in Desktop Grids Based On Incremental Checkpointing," Computer
Engineering and Systems, The 2006 International Conference on , vol.,
no., pp.386,392, 5-7 Nov. 2006.

[7] Janki Mehta; Chaudhary, S., "Checkpointing and Recovery Mechanism
in Grid," Advanced Computing and Communications, 2008. ADCOM
2008. 16th International Conference on , vol., no., pp.131,140, 14-17
Dec. 2008.

[8] S.T.L. Anthony, G.Sumathi, S.Anthony Dalya, “Dynamic Adaptation
of Checkpoints and Rescheduling in Grid Computing”, International.
Journal of Computer Applications, Vol. 2(3). pp. 95-99, 2010.

[9] Medeiros, R.; Cirne, W.; Brasileiro, F.; Sauve, J., "Faults in grids: why
are they so bad and what can be done about it?," Grid Computing,
2003, Proceedings. Fourth International Workshop on , vol., no.,
pp.18,24, 17 Nov. 2003.

[10] Baghavathi Priya, S.; Subramaniam, C.; Ravichandran, T., "On demand
check pointing for grid application reliability using communicating
process model," Advanced Communication Technology (ICACT), 2011
13th International Conference on , vol., no., pp.393,398, 13-16 Feb.
2011.

[11] Salimi, R.; Motameni, H.; Omranpour, H., "Task scheduling with Load
balancing for computational grid using NSGA II with fuzzy mutation,"
Parallel Distributed and Grid Computing (PDGC), 2012 2nd IEEE
International Conference on , vol., no., pp.79,84, 6-8 Dec. 2012.

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol. 5 No. 2 (July2014)©IJoAT Page 118

[12] Bouyer, A.; Abdullah, A.H.; Ebrahimpour, H.; Nasrollahi, F., "Fault-
Tolerance Scheduling by Using Rough Set Based Multicheckpointing
on Economic Grids," Computational Science and Engineering, 2009.
CSE '09. International Conference on , vol.1, no., pp.103,109, 29-31
Aug. 2009.

[13] Yang Xiang; Zhongwen Li; Hong Chen, "Optimizing Adaptive
Checkpointing Schemes for Grid Workflow Systems," Grid and
Cooperative Computing Workshops, 2006. GCCW '06. Fifth
International Conference on , vol., no., pp.181,188, Oct. 2006.

[14] Priya, S.B.; Prakash, M.; Dhawan, K. K., "Fault Tolerance-Genetic
Algorithm for Grid Task Scheduling using Check Point," Grid and
Cooperative Computing, 2007. GCC 2007. Sixth International
Conference on , vol., no., pp.676,680, 16-18 Aug. 2007.

[15] Upadhyay, N.; Misra, M., "Incorporating fault tolerance in GA-based
scheduling in grid environment," Information and Communication
Technologies (WICT), 2011 World Congress on , vol., no., pp.772,777,
11-14 Dec. 2011.

[16] Latip, R.; Lew Wai San; Chanchary, F.H., "Checkpointing in selected
most fitted resource task scheduling in grid computing," Computer
Science & Education (ICCSE), 2012 7th International Conference on ,
vol., no., pp.331,334, 14-17 July 2012.

[17] J. Díaz, S. Reyes, A. Niño, C. Muñoz-Caro, “Derivation of Self-
Scheduling Algorithms for Heterogeneous Distributed Computer
Systems: Application to Internet-based Grids of Computers,” Future
Generation Computer Systems, ElSevier, vol. 25, no. 6, pp. 617-626,
2009.

[18] R.k.bawa and Ramandeep Singh. Article: Comparative Analysis of
Fault Tolerance Techniques in Grid Environment. International Journal
of Computer Applications 41(1):21-25, March 2012

