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Introduction
Spider venoms are a multicomponent mixture of polypeptides 

that contain a diverse array of structure and function that is used for 
both the immobilization of prey as well as a defense mechanism [1-4]. 
To date, the venom composition of less than 100 of the nearly 40,000 
characterized species of spiders has been investigated [5]. Although 
certain venom protein families are highly conserved across spider taxa 
[6], there are several instances of novel taxa-specific venom proteins, 
such as latrotoxins in Latrodectus, Sphyngomyelinase D in Loxosceles, 
and μ-ctenitoxin-Pn1a in Phoneutria [7-9]. Spider venom has been 
shown to have several therapeutic applications due to the vast array of 
biological functionality such as neurotoxic, antimicrobial, antiparasitic, 
cytolytic, hemolytic, and antiarrhythmic activities [10]; it is thus likely 
that undiscovered peptides of novel importance are likely to be found 
in previously unexplored venoms. 

Spiders in the Ctenidae family, a group containing nearly 500 
species in 42 genera that range mostly in tropical terrains, is home 
to the most venomous spider in the world Phoneutria nigriventer 
[11], and a nonlethal spider that has become the model species for 
arachnological studies on evolution and development Cuppienius 
salei [12]; both of which are South American spiders whose venom 
has been highly studied [13,14]. In the U.S., Ctenus hibernalis is one of 
only 7 representative species of Ctenidae spiders and it has primarily 
been collected in Alabama [15], but little to no information is available 
about its ecology or physiology, nor is there anything known about 
its divergence from its tropical counterparts in relation to its venom. 
The aim of this study is to utilize proteomics techniques in order to 
characterize the venom proteome of C. hibernalis and to determine 
what similarities exist between its venom composition and other spider 
taxa as well as its tropical counterparts. 

Methods
Spider collection

Individuals were hand collected at night, the time when they are 

most active, using spotlight techniques due to the reflective tapetum 
within their eyes [16]. Collection was done within the Homewood Forest 
Preserve in Homewood, AL in September 2015. Only adult females, 
collected within the same week, were included to limit confounding 
variables such as ontological differences in venom composition that 
may occur over time and between sexes as has occurred in other species 
[17-19].

Venom collection

Prior to venom collection, individuals were anesthetized with 
CO2 as previously described [20]. Venom was collected using 
electrostimulation with 7V of AC current, similar to previous studies 
[21-24]. Anesthetized individuals were placed on clamped forceps 
attached to an electrode. One prong of the forceps was wrapped in 
nonconductive insulating tape to create a point of contact for the spider 
that would retard current, while the other prong of the forceps was 
wrapped with a cotton thread and soaked in saline to create a point of 
contact with the spider to promote electrical conductivity. A capillary 
tube was then placed over the fang in order to collect the venom. 
Finally, the second electrode was touched to the base of the chelicerae in 
order to complete the circuit and allow the muscles around the venom 
gland to contract and eject venom into the capillary tube. Venom was 
pooled from 21 individuals and then stored at -80°C prior to analysis 
according to previously reported methodology [25,26].
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Sample preparation and data acquisition
The venom protein isolates were quantified against an 8-point 

standard curve run in triplicate using a BCA Protein Quantification 
Kit (Invitrogen), 50 µg was diluted in LDS PAGE buffer (Invitrogen) 
containing reducing agent and separated on a 4-2% SDS Bis-Tris 
gel (Invitrogen). The gel was stained overnight with colloidal blue 
(Invitrogen), and destained prior to visualization. The entire lane was 
cut into 19 molecular weight (MW) fractions. Gel slices were reduced, 
carbidomethylated, dehydrated, and digested with Trypsin Gold 
(Promega) as per manufacturers’ instructions. Peptide digests were 
analyzed in duplicate using an LTQ XL ion trap mass spectrometer 
equipped with a nano-electrospray source, and a Surveyor plus 
binary high-pressure liquid chromatography (HPLC) pump (Thermo 
Scientific, San Jose CA) using a split flow configuration. Separations 
were carried out using a 75 µm × 13 cm pulled tip C-18 column (Jupiter 
C-18 300 A, 5 µm, Phenomenex). 

Data analysis

The data was searched using SEQUEST (v.27 rev12, .dta files). 
Searches were performed using all published Araneae venom peptide 
sequences in Uniprot that also contained common contaminants such 
as porcine digestion enzymes and human keratins.

Identified peptides were filtered, grouped, and quantified using 
Scaffold (Proteome Software, Portland Oregon). Only peptides with 
charge state of ≥ 2+, a minimum peptide length of 6 amino acids, 
were accepted for this analysis, in addition to proteins containing ≥ 2 
peptides and a final false discovery rate of <1%. Relative quantification 
was performed via spectral counting, and spectral count abundances 
were normalized across the entire set. Toxin groups, delineated by 
taxonomic family, and molecular targets were identified according to 
activity prefix from King et al. [27,28].

Results
A total of 21 female C. hibernalis were collected for venom 

sampling. Pooled venom from the 21 individuals provided a total of 
20 µL with a protein content of 53.8 µg/µL as determined by BCA 
assay. The proteins were separated into 19 MW fractions in the 1D gel 
ranging from 3-188 kDa (Figure 1) for downstream analysis by LCMS2. 
From these data, 1,182 proteins matched the published spider venom 
sequences with >99% confidence. A match required at least 2 peptides 
uniquely mapped to the protein. These matches ranged from 93 species 
in 27 spider families (Figure 2a). Of those 1,182 proteins, 86 were found 
in other Ctenidae spiders, and 335 of these matches had an attributed 
molecular activity prefix (Figure 2b). There were strong matches with 
cytolytic proteins as well as proteins involved in channel inhibition 
(Ca2+ Na+ and K+) (Table 1, Supplementary Material). 

Discussion 
This study marks not only the first attempt to characterize the 

venom of Ctenus hibernalis, but also the venom composition of a 
U.S. native Ctenidae. We detected over a thousand unique proteins 
homologous with venom proteins across several spider taxa, which 
indicates the venom proteins are highly conserved. Although venom 
proteins in evolutionarily young clades of venomous animals such as 
snakes that diverged 30-50 million years ago (MYA) typically undergo 
positive selection due to a predatory arms race [29,30], it has been 
discovered that certain venom protein families in the ancient clade 
of spiders that diverged 416-359 MYA have been optimized for their 
predatory purposes and undergo purifying selection to conserve 
venom protein functionality [6,31].

The venom of C. hibernalis has been determined to contain a 
diverse array of biological functionality. This variable composition 
is signature of predatory venoms found throughout several taxa of 
venomous predators [32]. The complex nature of the venom provides 
further insight into the venom strategy of C. hibernalis. The array of 
channel inhibitors detected in the venom of C. hibernalis indicates a 
strong potential for neurotoxicity as seen in previous studies [33-35]. 
Co-injection of these several ion channel inhibitors is likely to have 
synergistic effects similar to what has been discovered in the agotoxins 
of the American funnel-web spider Agelenopsos aperta. A particularly 
surprising match was with that of μ-ctenitoxin-Pn1a found in P. 
nigriventer that has been determined to be the lethal component [7], 
so it is unexpected to be detected in the venom of C. hibernalis venom, 
which is not lethal to humans. Future expression level investigations 
and structural comparisons will be necessary to determine the use of 
μ-ctenitoxin-Pn1a in C. hibernalis. Amongst the cytolitic matches were 
several antimicrobial peptides. This suggests that C. hibernalis may be 
an ideal source for therapeutic antimicrobial peptides.

Figure 1: 1D gel of pooled crude venom from female Ctenus hibernalis, 
separated into 19 fractions.
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Figure 2: a) Distribution of homologous spider toxin families of detected proteins in the venom of Ctenus hibernalis. Other spider venom families such 
as pisautoxin, barytoxin, zodatoxin, oxotoxin, miturgitoxin, filistitoxin segestritoxin, latrotoxin, plectotoxin, cyrtautoxin, sicaritoxin, sparatoxin, amaurobitoxin, 
diguetoxin, nemetoxin, thomitoxin were also detected and grouped into the the “other” section.  b) Distribution of prefix activities from the 335 matches that 
had a characterized activity prefix from. The preifix ω (omega) inhibits voltage-gated calcium (Cav) channels, μ (mu) inhibits voltage-activated sodium (Na  v) 
channels, κ (kappa) inhibits voltage-activated potassium (K v) channels, M (Mu) indicates haemolytic cytolytic or antimicrobial. Lumped into the “other” category 
are matches with the prefix δ (delta) delays inactivation of voltage-activated Na v channels, β (beta) shifts voltage-dependence of Nav channel activation α 
(alpha) targets acetylcholine receptor, γ (gamma) targets HCN nonspecific cation channels, and τ  (tau) targets transient receptor potential (TRP) channel.

Accesion#
(Uniref 100) Homologous toxins name Species Peptide

count Molecular target Coverage (%)

A9QQ26 CRISP-1-Lycosa Lycosa singoriensis 47 Cysteine-rich secretory protein 97.9
B3EWF4 U2-zodatoxin-Lt2a Lachesana tarabaevi 38 Insecticidal 100
D5GSJ8 Δ-miturgitoxin-Cp1a Cheiracanthium punctorium 44 Cytolitic 72.7
G4V4G1 IGFBP_rP1-1-Cupiennius Cupiennius salei 36 Insulin-like growth factor 93.1

GB000059 ω-theraphotoxin-Hs1a_2 Haplopelma schmidti 13 Calcium channel 100
GB000132 ω-filistatoxin-Kh2b Kukulcania hibernalis 15 Calcium channel 98.6

O76199 δ-ctenitoxin-Pn2c Phoneutria nigriventer 11 Sodium channel 100
O76200 κ-ctenitoxin-Pn1a Phoneutria nigriventer 18 Potassium channel 55.4
O76201 ω-ctenitoxin-Pn1a Phoneutria nigriventer 24 Calcium channels 95.1
P0C2U6 M-lycotoxin-Ls3b Lycosa singoriensis 4 Antimicrobial peptide 100
P0DM68 U4-theraphotoxin-Spl1a Selenotholus plumipes 19 Insecticidal 100
P17727 μ-ctenitoxin-Pn1a Phoneutria nigriventer 10 Sodium channel 70.5
P29425 δ-ctenitoxin-Pn2a Phoneutria nigriventer 7 Sodium channel 100
P36984 U1-plectoxin-Pt1b Plectreurys tristis 5 Insecticidal 100
P49267 U1-cyrtautoxin-As1a Apomastus schlingeri 11 Insecticidal 100
P58425 κ-sparatoxin-Hv1a Heteropoda venatoria 3 Potassium channel 100
P58605 ω-segestritoxin-Sf1a Segestria florentina 17 Calcium channel 100
P59367 γ-ctenitoxin-Pn1a Phoneutria nigriventer 4 NMDA-glutamate receptor 67.9
P60978 U1-nemetoxin-Csp1c Calisoga sp. 5 Insecticidal 100
P81694 ω-ctenitoxin-Cs1a 292 Cupiennius salei 16 Calcium channel 95.9
P83256 δ-Amaurobitoxin-Pl1a Pireneitega luctuosa 4 Insecticidal 100
P83620 M-ctenitoxin-Cs1b Cupiennius salei 12 Antimicrobial peptide 100
P84033 U21-ctenitoxin-Pn1a Phoneutria nigriventer 10 Protease 100
P85505 μ-thomitoxin-Hme1a Heriaeus melloteei 6 Sodium channel 100
Q25338 δ-Latroinsectotoxin-Lt1a Latrodectus tredecimguttatus 110 Insecticidal 63.5
Q8MTX1 U3-aranetoxin-Ce1a Caerostris extrusa 24 Unknown 100
W4VSH9 U19-barytoxin-Tl1a Trittame loki 28 Serene protease 100

Table 1: Partial list of detected proteins in the venom of Ctenus hibernalis highlighting several species and molecular functionality, sorted by Uniref accession number. An 
exhaustive list of detected proteins has been included as supplementary material.
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We were only able to characterize the venom proteins that 
had significant matches within the database; there are still several 
peptides to be characterized that are entirely unique to C. hibernalis. 
It is evident that the knowledge base of venom peptide sequences 
in Ctenidae spiders is limited, which merits further investigation. 
Future work is necessary to determine the sequences of peptides 
found in the venom that are not found in the database by generating 
transcriptomic data from the spider’s venom gland. This ongoing work 
will allow for orthogonal validation and entire peptide sequences for 
all expressed venom proteins, rather than just the partial sequences 
generated from this study, which will also aid in determining the gene 
ontology distribution found in the venom proteins. Additionally this 
information will allow for future work quantifying expression levels 
in this species and its relatives using mRNA based methodologies. 
Further work is also necessary to expand the taxa that we investigated, 
as well as expanding to the population level using both proteomic 
and transcriptomic techniques in tandem to generate comprehensive 
venomic information of several species as well as individuals within 
a population. This will help generate a better understanding of the 
molecular evolution of venom proteins in these animals. 
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