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ABSTRACT
Background: It has been revealed that aging plays crucial roles in tumorigenesis, prognosis, and therapy response of 
tumors including esophageal carcinoma (ESCA). In this work, we aim to establish an aging-relevant risk signature to 
assess the survival outcome and immunogenicity status of ESCA patients.

Methods: A total of 351 ESCA patients with both gene expression data and clinical information from 3 independent 
datasets were curated. The Lasso-Cox regression model was applied to identify the aging genes that contributed most 
to the survival outcome. The risk signature was constructed by combining the specific gene expression level with 
the corresponding regression coefficients. Microenvironment-based immunologic factors, mutational burden, and 
significantly mutated genes were evaluated based on the identified risk groups. One cohort under the immune 
checkpoint inhibitor (ICI) treatment was used to investigate the immunotherapy predictive roles of the determined 
aging signature.

Results: Based on the 22 aging-relevant genes, a risk signature was constructed. ESCA patients with low-risk scores 
had improved survival outcomes in both discovery and validation datasets. Subsequent immunologic exploration 
demonstrated that the enhanced infiltration abundance of immune-response cells, decreased abundance of immune-
suppressive cells, immune response-related signals, and the preferable ICI indicator enrichment were found in the 
low-risk group. Genomic mutation analysis showed the elevated mutational burden and increased mutation rates 
of significantly mutated genes of TP53, NAV3, and FAT1 were observed in patients with low-risk scores. In the ICI-
treated cohort, we noticed that low-risk aging scores were significantly linked to favorable treatment outcomes and 
elevated response rates.

Conclusion: In summary, our identified aging risk signature showed the associations with survival, immune 
microenvironment, immunogenicity, and especially, the immunotherapy efficacy, which offers the clues for guiding 
prognosis evaluation and immune treatment strategies, and promotes precision therapy of ESCA patients.
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INTRODUCTION

Esophageal Cancer (ESCA) is the sixth leading cause of death 
across all cancers, accounting for 5% of all cancer-relevant deaths 
in 2018 [1]. ESCA is classified into esophageal squamous cell 
cancer and adenocarcinoma. Approximately half of ESCA patients 
present with unresectable or metastatic settings after diagnosing 
[2]. Over the past few years, owing to the improvements of 
multidisciplinary treatment, better therapy efficacies and clinical 
benefits for ESCA patients are observed. However, the survival 

outcome of unresectable or metastatic ESCA was still poor, with a 
median survival of less than one year [3]. Recent multiple molecular 
indicators were identified to predict ESCA prognosis outcomes; 
nevertheless, they are sometimes ineffective [4]. Therefore, more 
robust biomarkers are necessary to reliably evaluate the survival 
status of ESCA patients.

The invention of Immune Checkpoint Inhibitor (ICI) treatment 
has greatly improved the prognosis of several advanced cancers, 
such as melanoma, renal cancer, NSCLC, and ESCA [5-7]. 
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to identify the genes that contributed most to prognosis [18]. Based 
on the Lasso regression coefficient results, the optimal gene panel 
could be determined to establish a risk signature. By integrating 
particular gene expression values with their corresponding 
coefficients, risk cores across all ESCA patients could be obtained. 
The specific calculation formula was: risk score=Coefficient of 
gene (i) *Expression of gene. ESCA samples were partitioned into 
low and high-risk subpopulations with median risk score as the 
cut-off value.

Assessment of tumor infiltrated immunocytes and 
immune checkpoints

To investigate the different immunocyte infiltration abundance 
in low and high-risk groups, we calculated the abundance for 28 
tumor-infiltrating immunocytes [19]. The 28 immune cells were 
stratified into three types: anti-tumor, pro-tumor, and intermediate 
immune cells. The representative genes for each immunocyte type 
were exhibited (Table S2). CIBERSORT algorithm could evaluate 
the infiltration levels of 22 immune cell subtypes based on 547 
informative genes (termed LM22). In our work, we applied both 
methods to gain a mutual-confirmation association [20].

A comprehensive integration of immune checkpoint genes was 
achieved according to a recent immunogenomic research [21]. In 
the TCGA ESCA cohort, the checkpoint gene of VISTA was not 
detected due to the distinct sequencing method. We thus calculated 
the diverse expression of 33 genes in low-versus high-risk groups.

Enrichment of immunogenicity and ICI response 
indicators

Recent multiple studies have been reported that immune-relevant 
signatures are associated with immunogenicity and ICI treatment 
response. Herein, we collected six typical signatures as follows: 1) 
T cell-inflamed signature; 2) IFNγ signature; 3) Cytolytic activity; 
4) immune cell signature; 5) cytokines and chemokines and 6) 
immune signaling molecules [22-25]. The feature genes applied for 
assessing enrichment scores of each signature were shown in Table 
S3.

Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was used to explore signaling 
pathways enriched in distinct risk subpopulations. The t parameter 
obtained from the differential analysis achieved by limma package 
was considered as the input factor for the fgsea method conducted 
by the R fgsea package [26]. Pathways gleaned from KEGG and 
HALLMARK databases were used as the comparison signals. 
Pathway enrichment plot was achieved through the cluster Profiler 
package [27]. Single sample GSEA (ssGSEA) algorithm embedded 
in the GSVA package was employed to infer enrichment scores 
of curated immune signatures and immunocytes for each ESCA 
patients [28].

Determination of mutational signatures in the genome

We used Signature Analyzer to extract mutational signatures based 
on somatic mutation data from the TCGA ESCA dataset [29]. 
Bayesian nonnegative matrix factorization was applied to optimally 
identify the rank of mutational signatures. Mutation portrait matrix 
A was divided into two nonnegative matrices W and H (i.e., A ≈ 
W × H), with W indicating the determined mutational signatures 

Furthermore, the ICI therapy has been becoming a main clinical 
practice for LUAD, alongside surgery, chemotherapy, and targeted 
therapy. Blockading the immune checkpoints of Programmed 
Cell Death protein 1 (PD-1) or its ligand PD-L1 is so far the best-
described immunotherapy approach and is becoming the routine 
first-line treatment strategy for NSCLC [8,9]. Although the 
dramatic therapeutic advantage of ICI treatment was found in both 
clinical trials and real-world data, a major limitation is that only a 
subset of patients responds to clinical treatment [10]. Therefore, 
newly effective determinants to select ESCA patients to receive 
immunotherapy are urgently necessary.

Age is an important risk factor for most diseases including human 
tumors. Besides age itself, its relevant molecular traits were 
also demonstrated to be linked with disease prognosis. Recent 
studies revealed that particular genes (e.g., APOE and FOXO3), 
genomic regions (e.g., 5q33.3), and numerous single-nucleotide 
polymorphisms were associated with longevity [11-15]. It is hard to 
decompose and explore aging owing to the complex interactions 
between aging and numerous factors in genome, environment, and 
age-related diseases [16]. To deeply understand the transcriptome 
landscape of aging, Peters et al. performed a large-scale 
transcriptomic exploration and identified aging-relevant genes.

In our work, we collected a total of 351 ESCA samples from 3 
independent datasets based on publicly available sources to 
establish and confirm an aging-relevant risk signature. To explore 
the possible molecular functions behind the determined risk 
signature, multi-level immunologic analysis was performed and 
results revealed the strong capacity of this risk signature for 
assessing immune microenvironment. Moreover, the identified 
aging signature could predict ICI therapy response and outcome. 
Findings derived from this study may provide ideas for survival 
evaluation and immunogenicity prediction of ESCA patients.

MATERIALS AND METHODS

Sample collection and aging-related genes

All eligible ESCA patients with both transcriptomic data and 
clinical information were acquired from Gene Expression 
Omnibus (GEO) and the Cancer Genome Atlas (TCGA) projects. 
Totaling 351 patients were included in this study, they are from 
TCGA (N=172), GSE53624 (N=119), and GSE53622 (N=60). 
Among the ESCA cohorts, the TCGA cohort harbored the largest 
sample size with 172 samples; we thus considered it as the discovery 
cohort and used it for constructing the risk signature. The detailed 
cohort features and detection platforms of all ESCA patients were 
illustrated in Table S1. A total of 348 urothelial cancer patients 
who received anti-PD-L1 treatment in the IMvigor210 trial were 
collected to ulteriorly explore the association of the determined 
aging signature with ICI response and outcome [17]. Totaling 1438 
aging-related genes was identified based on a previously published 
study.

Development of the aging-relevant risk signature

All 1438 aging-relevant genes were performed univariate Cox 
regression analysis by using transcriptomic profiles of the ESCA 
discovery dataset to explore the genes with respect to survival status. 
Then, aging genes associated with survival risk were presented to 
the Lasso-Cox regression function (achieved by R glmnet package) 
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and H reflecting the corresponding mutational activities. The 
identified mutational signatures were then annotated with the 30 
well-curated signatures stored in the COSMIC database based on 
the cosine similarity [30].

Significantly mutated genes

MutSig CV method was used to determine Significantly Mutated 
Genes (SMGs) in TCGA ESCA patients [31]. One SMG must meet 
three criteria: statistically significant, expressed in TCGA ESCA 
samples and an encyclopedia of cell lines [32]. SMGs mutational 
patterns were exhibited using the maftools package [33].

Statistical analysis

We employed R software (version 4.1.1) to perform the relevant 
calculations. This study regarded tumor mutation burden (TMB) as 
the total nonsynonymous mutation count per megabase. Heatmap 
illustration of identified aging genes in different risk subgroups 
was achieved with the pheatmap package. Kaplan-Meier method 
was used to produce survival plots and the group difference was 
evaluated by the Log-rank test. Multivariate regression models of 
the forestmodel package were applied to eliminate the confounding 
factors and obtain an adjusted association. The correlation of 
numerical and categorical variables with two risk groups was 
calculated with Wilcoxon rank-sum test and Fisher exact test, 
respectively.

RESULTS

Identification of the aging risk signature

Since the ESCA dataset from the TCGA has the largest sample 
size (N=172) and complete clinical information, we, therefore, 
considered it as the discovery cohort to construct the aging risk 
signature. Univariate Cox regression analysis of the collected 1438 
aging-relevant genes was performed with transcriptomic data of the 
TCGA dataset. Results demonstrated that 37 genes were linked 
with prognosis (all P<0.05; Table S4). We then used the Lasso-Cox 
regression with 10-fold cross-validation to identify the aging genes 
that contributed most to the ESCA survival. The Lasso coefficient 
information between the log (λ) and the gene penal number was 
shown in Figure 1A. The minimum deviance was observed when 
the gene number was selected as 22 in Figure 1B. Finally, we chose 
22 aging-relevant genes to establish a risk signature for ESCA 
survival assessment.

The determined 22 genes including SDCCAG3, ANXA5, 
ARHGEF18, VPREB3, MEOX1, RCAN3, EDAR, SYNE2, C22 
or f29, PCSK5, CHMP7, RPUSD4, MT1E, HLA-DOB, SREBF1, 
ATF3, LRRN3, HSPD1, HSPH1, KLRB1, GLA, and DYRK2. Their 
prognosis contribution values for ESCA patients were exhibited 
in Table S5. We constructed a risk signature to calculate the risk 
scores for each ESCA patient in Figure 1C according to the linear 
combination between the determined 22 gene expression levels 
and corresponding regression weights. The risk association plot 
of the calculated risk scores with survival times and statuses was 
shown in Figure 1C. In addition, distinct expression distribution 
of the determined 22 genes in low and high-risk groups was also 
presented with a heat map.

To investigate the survival predictive capacity of the identified risk 
signature, we stratified ESCA patients from the discovery cohort 

into low-risk (N=86) and high-risk (N=86) groups. We found that 
patients of low-risk group had a significantly better overall survival 
than patients of high-risk group (Log-rank test P<0.001; Figure 1D). 
This link was still significant after controlling for age, sex, stage, 
grade, smoking status, and alcohol status in a multivariate Cox 
regression model (HR: 0.1295% CI: 0.05-0.25, P<0.001; Figure 1E) 
(Figures 1A-1E).

Corroboration of the aging risk signature

To validate the prognosis predictive roles of the constructed 
risk signature, we used the Disease-Specific Survival (DSS) and 
Progression-Free Survival (PFS) information from the TCGA 
ESCA cohort. Besides, two additional ESCA cohorts derived from 
the GEO were also used for validation. We observed that ESCA 
patients with a low-risk score exhibited both improved DSS and 
PSS as compared with high-risk patients in the TCGA cohort (Log-
rank test both P<0.001; Figures 2A and 2C). 

The associations remained still significant when controlling for 
clinical confounding factors (multivariate Cox regression P<0.001 
and P=0.003, respectively; Figures 1B and 1D). In two GEO cohorts 
of GSE53624 and GSE53622, the significantly prolonged overall 
survival outcomes were also observed in patients with low-risk 
scores in Log-rank test P<0.001 and P=0.021, respectively; Figures 
2E and 2F (Figures 2A-2F).

The identified risk signature associated with preferable 
immunocyte infiltration and immune activity

Previous two studies have been demonstrated that aging 
and its relevant genomic traits were involved in the immune 
microenvironment and immunity [34,35]. Hence, we speculated 
that the determined aging signature might regulate the immune 
cell infiltration and biological circuits associated with the immune 
activity. A heatmap according to ssGSEA algorithm was achieved to 
show the different infiltrated levels of 28 immunocyte types in low-
versus high-risk groups in the TCGA ESCA cohort in Figure 3A. 
Results revealed that increased infiltration of anti-tumor immune 
cell types, such as central memory CD4+ and CD8+ T cells, and 
effector memory CD8+ T cells were observed in ESCA patients of 
low-risk group (all P<0.05). Moreover, the decreased infiltration of 
pro-tumor immunocytes, like neutrophils and regulatory T cells were 
noticed in the low-risk group (both P<0.05). In addition, activated 
B cells and gamma delta T cells, which belong to the intermediate 
immune cell type, were also markedly enriched in patients with 
low-risk scores (both P<0.05). We also performed immunocyte 
infiltration analysis via the CIBERSORT method in Figure S1, and 
consistently, more infiltration of immune response cells (Ex: CD8 
T cells, activated natural killer cells, and M1 macrophages) and less 
infiltration of immune suppressive cells (Ex: regulatory T cells and 
M2 macrophages) were observed in low-risk ESCA patients.

GSEA analysis against KEGG and HALLMARK databases was 
conducted to investigate the specific biological pathways involved 
in the aging signature. We found that immune response-relevant 
circuits in the KEGG database (Ex: T cell receptor signaling 
pathway and chemokine signaling pathway) and HALLMARK 
database (Ex: Inflammatory response, interferon-gamma response, 
and IL2-STAT5 signaling) were markedly enriched in the ESCA 
low-risk subgroup in Figures 3B and 3C.
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Figure 2:  Corroboration of the prognostic ability of the identified aging signature. (A) Disease-specific survival plots of ESCA patients in low- and 
high-risk subgroups. (B) Association of the aging risk signature with disease-specific survival in a multivariate Cox model. (C) Progression-free survival 
plots of ESCA patients in low- and high-risk subgroups. (D) Association of the aging risk signature with progression-free survival in a multivariate Cox 
model. Kaplan-Meier survival plots of ESCA patients from two distinct risk subgroups in (E) GSE53624 cohort and (F) GSE53622 cohort.

Figure 1:  Construction of the aging risk signature and its prognostic capacity. (A) Lasso coefficient information of 37 prognostic aging genes in the 
TCGA ESCA cohort. (B) Partial likelihood deviance of different gene panels calculated by the Lasso-Cox model. The red dots reflected the concrete 
partial likelihood of deviance values, the gray lines reflected the Standard Error (SE), the two vertical dotted lines on the left and right reflected 
the optimal gene panel with minimum criteria and 1-SE criteria, respectively. (C) ESCA samples were stratified into low- and high-risk groups with 
median risk score as cut-off value. Distinct prognosis outcome and survival time were exhibited in low- versus high-risk groups. Heatmap illustration 
of the distinct expression levels of the identified 22 aging-relevant genes in two risk subgroups. (D) Kaplan-Meier survival plots of ESCA patients from 
two distinct risk subgroups. (E) Connection between the determined aging signature and ESCA survival outcome in a multivariate Cox regression 
model with clinical confounders taken into consideration. Note: ( ) High, ( ) Low, ( )Alive, ( )Dead.
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Figure 3:  Connection of the aging signature with immune infiltration and immunogenicity. (A) Infiltration levels of different immunocytes in low- 
and high-risk ESCA groups. Immunocyte highlighted with red suggested its infiltration was markedly enhanced in the low-risk group, while the blue 
suggested the infiltration was markedly decreased in the low-risk group. GSEA pathway analysis of low-risk patients with comparison circuits from (B) 
KEGG and (C) HALLMARK databases, respectively. Pathways marked with green were immune response-relevant pathways. Different enrichment of 
(D) T cell-inflamed signature, (E) IFNγ signature, and (F) cytolytic activity signature in low- versus high-risk ESCA patients. *P<0.05, **P<0.01. Note: 
Risk group: ( ) High; ( ) Low; Alcohol status: ( ) No; ( ) Unknown; ( ) Yes; Smoking status: ( ) No; ( ) Unknown; ( ) Yes; Grade: ( ) G1; ( ) G2; 
( ) G3; ( ) Unknown; Stage: ( ) I; ( ) II; ( ) III; ( ) IV; Sex: ( ) Female; ( ) Male; Age: ( ) ≤ 60; ( ) >60. P-adjust: ( ) 2e-04; ( ) 4e-04; ( ) 6e-04.
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ESCA patients of low-risk group had a significantly enhanced 
enrichment of T cell-inflamed signature, IFNγ signature, and 
cytolytic activity than those patients of high-risk group (Wilcoxon 
test all P<0.05; Figures 3D-3F). Besides, the elevated enrichment 
of immune cell signature, immune signaling molecules, and 
cytokines/chemokines signature was also observed in low-risk 
patients (Wilcoxon test all P<0.05; Figure S2) (Figures 3A-3F).

The different expression levels of complete immune checkpoints 
between low and high-risk subpopulations were calculated. Results 
showed that the common immune checkpoints (e.g., CD274, 
CD276, IDO1, LAG3, and PDCD1) were highly expressed in 
patients with a low-risk score (all P<0.05; Figure S3).

TMB and SMGs linked with the determined aging 
signature

Tumor mutation burden (TMB) was revealed to be associated with 
tumor prognosis and immunotherapy response [36,37]. We thus 
explored the connection between the aging signature and TMB. 
By using the somatic mutational profile of TCGA ESCA dataset, 
we calculated the TMB for each ESCA patient and noticed that 
patients with a low-risk score harbored a markedly enhanced TMB 
than patients with a high-risk score in Wilcoxon test, P<0.001; 
(Figure 4A).

Mutational signatures are characterized by specific combination 
patterns of nucleotide substitutions and have been demonstrated 
to associate with TMB. Hence, we detected possible mutational 
signatures of ESCA samples by dividing the nucleotide substitution 
matrix under the NMF approach. Based on the cophenetic metric 
plot, four mutational signatures were determined in Figure 4B. 

After annotating them with signatures from the COSMIC database 
in Figure 4C, we identified these four mutational signatures as 
signature 1 (associated with age of cancer diagnosis), signature 4 
(associated with smoking), signature 13 (associated with APOBEC 
enzyme activity), and signature 17 (the etiology of this signature 
remains unknown). Distinct mutational features of the above 
four signatures were exhibited in Figure 4D. Mutational signature 
activity of all ESCA samples was calculated and illustrated in Figure 
4E and Table S6. Subsequent investigation indicated that low-risk 
scores were significantly associated with the elevated mutational 
activity of signature 1 (P=0.036; Figure S4A) and decreased activity 
of signature 17 (P=0.049; Figure S4B). No significant differences 
were found between two risk groups concerning signatures 4 and 
13 (P=0.829 and 0.779, respectively).

To elucidate whether the enhanced TMB of low-risk group was 
affected by other clinical confounders, we added clinical features 
(i.e., age, sex, stage, smoking status, and alcohol status) and 
determined mutational signatures (i.e., signatures 1, 4, 13, and 
17) into a multivariate logistic regression model. The connection 
between the low-risk scores and the elevated TMB was still remained 
(OR: 2.38, 95% CI: 1.13-5.69, P=0.002; Figure 4F) (Figures 4A-4F).

Totaling 16 significantly mutated genes (SMGs) were determined 
by detecting the somatic mutation data of the TCGA cohort. 
Waterfall plot between low and high-risk groups demonstrated a 
markedly different mutation frequency in TP53 [66 of 80 (82.5%) 
vs. 71 of 79 (89.9%); P=0.038], NAV3 [3 of 80 (3.8%) vs. 11 of 79 
(13.9%); P=0.025], and FAT1 [2 of 80 (2.5%) vs. 6 of 79 (7.6%); 
P=0.045] (Figure 5).

Figure 4:  The determined aging signature associated with TMB in the TCGA cohort. (A) Connection between the determined aging signature and 
TMB. (B) The cophenetic metric plot was achieved to select an optimal number of mutational signatures. (C) The detected four mutational signatures 
versus COSMIC signatures based on the cosine similarity. (D) The concrete mutational features of the detected four mutational signatures. (E) 
Distinct mutational activities of the four signatures across all ESCA patients. (F) Multivariate Logistic regression model was conducted with clinical 
factors and identified mutational signatures taken into account to obtain the association of the aging signature with TMB. Note: ( ) Signature 1; 
( ) Signature 4; ( ) Signature 13; ( ) Signature 17.
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Roles of the determined aging signature in assessing ICI 
treatment efficacy

The aforementioned results demonstrated that the established 
aging risk signature was connected with immune microenvironment 
and immunogenicity; we hypothesized that the aging signature may 
play vital roles in immune checkpoint inhibitor (ICI) treatment. 
Hence, an urothelial cancer anti-PD-L1 dataset (Imvigor210) with 
both gene expression profiles and immunotherapeutic information 
was used to investigate the connection between determined aging 
signature and ICI efficacy. Results revealed that patients of low-risk 
subgroup had a markedly better ICI prognosis as compared with 
patients of high-risk subgroup (Log-rank test P=0.002; Figure 6A). 
This association was remained even controlling for sex, baseline 
ECOG score, smoking status, immune phenotype, and platinum 
treatment in a multivariate Cox regression model (HR: 0.69, 95% 

CI: 0.53-0.91, P=0.007; Figure 6B). Subsequent analysis showed 
that a higher proportion of better ICI response status (i.e., CR and 
PR) was observed in the low-risk group (28.7% vs. 16.9%, P=0.018; 
Figure 6C). Besides, in this ICI-treated cohort, we also observed 
patients with low-risk scores exhibited an elevated TMB (Wilcoxon 
test P=0.004; Figure 6D). A trend of higher neoantigen burden was 
also noticed in the low-risk subgroup, although this association did 
not reach statistical significance (Wilcoxon test P=0.083; Figure 6E) 
(Figures 6A-6E). 

Finally, we conducted immune infiltration analysis by using 
transcriptomic data of this immunotherapeutic cohort to compare 
the distinct infiltration levels between two risk subgroups. 
Consistently, the enhanced infiltration of immune response 
lymphocytes represented by CD8 T cells was significantly enriched 
in patients with low-risk signature scores in Figure S5.

Figure 5:  Waterfall plot exhibition of the ESCA SMGs obtained from ESCA mutation profiles. The left panel indicated the gene symbols, the upper 
panel reflected the TMB for each sample, the middle plot indicated SMGs mutational patterns with different mutational types marked differently, the 
right penal reflected the mutation rates for each SMG, and the bottom panel presented two risk subgroups, clinical characteristics, and base substitution 
subtypes. SMGs colored with red were significantly differentially mutated between low- and high-risk groups. *P<0.05. Note:  ( ) C>T; ( ) C>G; ( ) 
C>A; ( ) T>A; ( ) T>C; ( ) T>G; ( ) In frame Del; ( ) Nonsense mutation; ( ) Missense mutation; ( ) Fremae shift Ins; ( ) In frame Ins; ( ) Frame 
shift Del; ( ) Splice site; Risk group: ( ) High; ( ) Low; Age: ( ) <65; ( ) ≥ 65; Sex: ( ) Female; ( ) Male; Stage: ( ) I; ( ) II; ( ) III; ( ) IV; ( ) Unknown; 
Grade: ( ) G1; ( ) G2; ( ) G3; ( ) Unknown; Smoking: ( ) No; ( ) Unknown; ( ) Yes; Alcohol: ( ) No; ( ) Unknown; ( ) Yes.
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DISCUSSION

In this work, by using gene expression profiles and clinical data 
from several ESCA datasets, we constructed and validated an aging-
relevant risk signature for prognosis evaluation, immunogenicity, 
and ICI response prediction. Future prospective studies are 
necessary, but findings obtained from our research suggest the 
potential roles of the aging risk signature in ESCA clinical prognosis 
and immunotherapeutic efficacy surveillance. 

Mutational signatures are the manifestations of endogenous and 
exogenous factors that indicated specific mutational patterns [38]. 
Amongst, the aging-relevant mutational signature 1 was revealed to 
be linked with the poor tumor microenvironment and prognosis 
in triple-negative breast cancer, indicating its possible roles for 
immune treatment efficacy [39]. Subsequently, a recent study 
integrated somatic mutational profiles of melanoma and NSCLC 
samples that received ICI therapy and noticed that both tumors 
with aging signature showed a worse survival outcome [40]. In our 
study, different from mutation-level biomarkers, an aging-relevant 
risk signature was constructed at the transcriptomic level, and we 
observed this signature harbors the ability to predict prognosis 
outcome and immunogenicity in ESCA.

Of the identified 22 aging genes, six (i.e., ANXA5, MEOX1, 
PCSK5, HLA-DOB, SREBF1, and KLRB1) were also demonstrated 
to be associated with tumor immunity. ANXA5 was associated with 
infiltration of antigen-presenting cells in glioma and was recently 
identified as a novel immune checkpoint inhibitor [41,42]. A 
molecular signature contained MEOX1 was constructed to predict 
survival and immune immunologic status in breast cancer [43]. 
PCSK5 was linked with cancer alternative splicing events, which 
contribute to carcinogenesis and immune microenvironment in 
head and neck squamous cell carcinoma [44]. In ovarian cancer, 
an immune-related prognostic model including HLA-DOB was 
determined to be connected with prognosis and immunity [45]. 
Enhanced transcription of SREBF1 promoted invariant natural 
killer T cell activity, thus increasing lipid biosynthesis and 
inhibiting anti-tumor effect [46]. A recent study reported that 
loss of function of KLRB1 enhanced T cell-mediated toxicity and 
anti-tumor function in glioma [47]. The above evidence further 
confirms the potential implications of established risk signature in 
immune infiltration and immunotherapy efficacy.

TP53, NAV3, and FAT1 are frequently mutated in ESCA and 
their mutations are associated with an inferior survival outcome in 
ESCA and other several cancers [48-51]. In this study, the relatively 

Figure 6:  The roles of the established aging risk signature in assessing immunotherapy efficacy. (A) Kaplan-Meier survival curves between low- and high-
risk groups under urothelial cancer (UC) ICI cohort. (B) Multivariate Cox model was performed to calculate the connection between aging signature 
and ICI treatment prognosis. (C) Distinct proportion of favorable response status in low- versus high-risk groups. Distinct distribution of (D) tumor 
mutational burden and (E) neoantigen burden in two ESCA risk subgroups. Note: Response: ( ) CR/PR; ( ) SD/PD.
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lower mutation frequency of the above SMGs was enriched in the 
ESCA low-risk subgroup, which is consistent with the finding that 
patients of low-risk group exhibited a favorable prognosis. However, 
recent studies have also reported that TP53 mutations could predict 
a better efficacy in cancer immunotherapy; this suggests that lesser 
TP53 mutations in the low-risk ESCA patients contribute to the 
survival benefits rather than immunotherapy efficacy. Future in-
depth studies are warranted [52]. 

Given the lack of ESCA datasets with both gene expression 
profiles and ICI treatment data, we thus used an urothelial 
cancer immunogenomic dataset [17], which is so far the largest 
immunotherapy dataset to explore the connection of the aging 
risk signature with ICI treatment efficacy. Results demonstrated 
the preferable ICI prognosis and response status (i.e.CR and PR) 
were presented in patients of low-risk group. Considering the 
cancer homogeneity in particular situations (e.g., therapy outcome 
assessment), we conclude that the aging-relevant signature is 
predictive of ICI efficacy not only in urothelial cancer but also 
ESCA and other tumor subtypes.

Limitations exist in our study. First, the gene expression profiles 
of ESCA samples were acquired from publicly available datasets, 
which might produce deviation in the analysis procedure of 
different cohorts. Second, relevant results from the genomic 
mutational profile were calculated only based on the TCGA ESCA 
dataset, no additional mutational data was used for validation. 
Finally, experimental verification used for multiple associations is 
lacking.

CONCLUSION

In summary, by employing the aging gene expression data of 
ESCA samples, we constructed a risk prediction model to evaluate 
prognosis, immunogenicity, and immunotherapy response. The 
novel determined signature might be a possible indicator for ESCA 
clinical monitoring and treatment.

ACKNOWLEDGMENTS

None

STATEMENT OF ETHICS

Due to the nature of this study, no ethical approval was required.

CONFLICT OF INTEREST STATEMENT

The authors certify that there are no conflicts of interest regarding 
this manuscript.

FUNDING SOURCES

None

AUTHOR CONTRIBUTIONS

JY and JZ conceived this study; WD, WF, JQ, and HC collected the 
related data and performed main data analysis; WD, WF, JQ, and 
GJ conducted data analysis and interpretation; WD, WF, and JQ 
drafted and corrected the paper; JY and JZ supervised this study.

DATA AVAILABILITY STATEMENT

All genomic data and clinical information employed in this work 

are obtained from publicly accessible dataset.

REFERENCES

1.	 Abrams JA, Sharaiha RZ, Gonsalves L, Lightdale CJ, Neugut AI. 
Dating the rise of esophageal adenocarcinoma: Analysis of Connecticut 
Tumor Registry data, 1940–2007. Cancer Epidemiol Prev Biomark. 
2011;20(1):183-186.

2.	 Van Rossum PS, Mohammad NH, Vleggaar FP, Van Hillegersberg R. 
Treatment for unresectable or metastatic oesophageal cancer: current 
evidence and trends. Nat Rev Gastroenterol Hepatol. 2018;15(4):235-
249.

3.	 Cao K, Ma T, Ling X, Liu M, Jiang X, Ma K, et al. Development 
of immune gene pair-based signature predictive of prognosis 
and immunotherapy in esophageal cancer. Ann Transl Med. 
2021;9(20):1591.

4.	 Qu J, Zhao Q, Yang L, Ping Y, Zhang K, Lei Q, et al. Identification 
and characterization of prognosis-related genes in the tumor 
microenvironment of esophageal squamous cell carcinoma. Int 
Immunopharmacol. 2021;96:107616.

5.	 Carlino MS, Larkin J, Long GV. Immune checkpoint inhibitors in 
melanoma. Lancet. 2021;398(10304):1002-1014.

6.	 Zambrana F, Carril-Ajuria L, de Liaño AG, Chanza NM, Manneh R, 
Castellano D, et al. Complete response and renal cell carcinoma in the 
immunotherapy era: The paradox of good news. Cancer Treat Rev. 
2021;99:102239.

7.	 Thai AA, Solomon BJ, Sequist LV, Gainor JF, Heist RS. Lung cancer. 
Lancet. 2021;398(10299):535-554.

8.	 Zhang C, Zhang Z, Li F, Shen Z, Qiao Y, Li L, et al. Large-scale analysis 
reveals the specific clinical and immune features of B7-H3 in glioma. 
Onco Immunol. 2018;7(11):e1461304.

9.	 Reck M, Rodríguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, 
et al. Pembrolizumab versus chemotherapy for PD-L1–positive non–
small-cell lung cancer. N Engl J Med. 2016;375:1823-1833.

10.	Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and 
acquired resistance to cancer immunotherapy. Cell. 2017;168(4):707-
723.

11.	Broer L, Buchman AS, Deelen J, Evans DS, Faul JD, Lunetta KL, et 
al. GWAS of longevity in CHARGE consortium confirms APOE and 
FOXO3 candidacy. J Gerontol A Biol Sci Med Sci. 2015;70(1):110-118.

12.	Anselmi CV, Malovini A, Roncarati R, Novelli V, Villa F, Condorelli 
G, et al. Association of the FOXO3A locus with extreme longevity in a 
southern Italian centenarian study. Cell Reports. 2009;34(4).

13.	Giuliani C, Garagnani P, Franceschi C. Genetics of human longevity 
within an eco-evolutionary nature-nurture framework. Circ Res. 
2018;123(7):745-772.

14.	Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, 
et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait 
associations. Nucleic Acids Res. 2014;42(D1):D1001-D1006.

15.	Eicher JD, Landowski C, Stackhouse B, Sloan A, Chen W, Jensen 
N, et al. GRASP v2. 0: An update on the Genome-Wide Repository 
of Associations between SNPs and phenotypes. Nucleic Acids Res. 
2015;43(D1):D799-D804.

16.	Peters MJ, Joehanes R, Pilling LC, Schurmann C, Conneely KN, Powell 
J, et al. The transcriptional landscape of age in human peripheral 
blood. Nat Commun. 2015;6(1):1-4.

17.	Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang 
Y, et al. TGFβ attenuates tumour response to PD-L1 blockade by 
contributing to exclusion of T cells. Nature. 2018;554(7693):544-8.

https://aacrjournals.org/cebp/article/20/1/183/68400/Dating-the-Rise-of-Esophageal-Adenocarcinoma
https://aacrjournals.org/cebp/article/20/1/183/68400/Dating-the-Rise-of-Esophageal-Adenocarcinoma
https://www.nature.com/articles/nrgastro.2017.162
https://www.nature.com/articles/nrgastro.2017.162
https://atm.amegroups.com/article/view/81961/html
https://atm.amegroups.com/article/view/81961/html
https://atm.amegroups.com/article/view/81961/html
https://www.sciencedirect.com/science/article/pii/S1567576921002526?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1567576921002526?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1567576921002526?via%3Dihub
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)01206-X/fulltext
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)01206-X/fulltext
https://linkinghub.elsevier.com/retrieve/pii/S0305737221000876
https://linkinghub.elsevier.com/retrieve/pii/S0305737221000876
https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)00312-3/fulltext
https://www.tandfonline.com/doi/full/10.1080/2162402X.2018.1461304
https://www.tandfonline.com/doi/full/10.1080/2162402X.2018.1461304
https://www.nejm.org/doi/10.1056/NEJMoa1606774
https://www.nejm.org/doi/10.1056/NEJMoa1606774
https://www.sciencedirect.com/science/article/pii/S009286741730065X?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S009286741730065X?via%3Dihub
https://academic.oup.com/biomedgerontology/article/70/1/110/2947666?login=false
https://academic.oup.com/biomedgerontology/article/70/1/110/2947666?login=false
https://www.liebertpub.com/doi/10.1089/rej.2008.0827
https://www.liebertpub.com/doi/10.1089/rej.2008.0827
https://www.ahajournals.org/doi/10.1161/CIRCRESAHA.118.312562
https://www.ahajournals.org/doi/10.1161/CIRCRESAHA.118.312562
https://academic.oup.com/nar/article/42/D1/D1001/1062755?login=false
https://academic.oup.com/nar/article/42/D1/D1001/1062755?login=false
https://academic.oup.com/nar/article/43/D1/D799/2439076?login=false
https://academic.oup.com/nar/article/43/D1/D799/2439076?login=false
https://www.nature.com/articles/ncomms9570
https://www.nature.com/articles/ncomms9570
https://www.nature.com/articles/nature25501
https://www.nature.com/articles/nature25501


10

Cheng H, et al. OPEN ACCESS Freely available online

Chemo Open Access, Vol.10 Iss.4 No:1000158

18.	Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized 
linear models via coordinate descent. Journal of statistical software. 
2010;33(1):1.

19.	Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, 
Rieder D, et al. Pan-cancer immunogenomic analyses reveal genotype-
immunophenotype relationships and predictors of response to 
checkpoint blockade. Cell Rep. 2017;18(1):248-262.

20.	Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. 
Robust enumeration of cell subsets from tissue expression profiles. 
Nat Methods. 2015;12(5):453-457.

21.	Ye Y, Jing Y, Li L, Mills GB, Diao L, Liu H, et al. Sex-associated 
molecular differences for cancer immunotherapy. Nat Commun. 
2020;11(1):1-8.

22.	Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman 
DR, et al. IFN-γ–related mRNA profile predicts clinical response to 
PD-1 blockade. J Clin Invest. 2017;127(8):2930-2940.

23.	Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and 
genetic properties of tumors associated with local immune cytolytic 
activity. Cell. 2015;160(1-2):48-61.

24.	Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-
Garcia W, et al. Inferring tumour purity and stromal and immune cell 
admixture from expression data. Nat Commun. 2013;4(1):1-1.

25.	Akbani R, Akdemir KC, Aksoy BA, Albert M, Ally A, Amin 
SB, et al. Genomic classification of cutaneous melanoma. Cell. 
2015;161(7):1681-1696.

26.	Ritchie ME, Phipson B, Wu DI, Hu Y, Law CW, Shi W, et al. Limma 
powers differential expression analyses for RNA-sequencing and 
microarray studies. Nucleic Acids Res. 2015;43(7):e47.

27.	Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: 
A universal enrichment tool for interpreting omics data. Innovation. 
2021;2(3):100141.

28.	Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation 
analysis for microarray and RNA-seq data. BMC Bioinformatics. 
2013;14(1):1-5.

29.	Kim J, Mouw KW, Polak P, Braunstein LZ, Kamburov A, Tiao G, et 
al. Somatic ERCC2 mutations are associated with a distinct genomic 
signature in urothelial tumors. Nat Genet. 2016;48(6):600-606.

30.	Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, 
Biankin AV, et al. Erratum: Signatures of mutational processes in 
human cancer. Nature. 2013;502(7463):415-421.

31.	Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, 
Sivachenko A, et al. Mutational heterogeneity in cancer and the search 
for new cancer-associated genes. Nature. 2013;499(7457):214-218.

32.	Klijn C, Durinck S, Stawiski EW, Haverty PM, Jiang Z, Liu H, et al. A 
comprehensive transcriptional portrait of human cancer cell lines. Nat 
Biotechnol. 2015;33(3):306-12.

33.	Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: 
efficient and comprehensive analysis of somatic variants in cancer. 
Genome Res. 2018;28(11):1747-1756.

34.	Fane M, Weeraratna AT. How the ageing microenvironment influences 
tumour progression. Nat Rev Cancer. 2020;20(2):89-106.

35.	Huang Z, Chen B, Liu X, Li H, Xie L, Gao Y, et al. Effects of sex 
and aging on the immune cell landscape as assessed by single-cell 
transcriptomic analysis. Proc Natl Acad Sci. 2021;118(33):e2023216118.

36.	Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen 
R, Janjigian YY, et al. Tumor mutational load predicts survival 
after immunotherapy across multiple cancer types. Nat Genet. 
2019;51(2):202-206.

37.	Klempner SJ, Fabrizio D, Bane S, Reinhart M, Peoples T, Ali SM, et 
al. Tumor mutational burden as a predictive biomarker for response 
to immune checkpoint inhibitors: a review of current evidence. 
Oncologist. 2020;25(1):e147-e159.

38.	Kim YA, Wojtowicz D, Sarto Basso R, Sason I, Robinson W, 
Hochbaum DS, et al. Network-based approaches elucidate differences 
within APOBEC and clock-like signatures in breast cancer. Genome 
Med. 2020;12(1):1-2.

39.	Chen H, Chong W, Yang X, Zhang Y, Sang S, Li X, et al. Age-related 
mutational signature negatively associated with immune activity and 
survival outcome in triple-negative breast cancer. Onco Immunology. 
2020;9(1):1788252.

40.	Chong W, Wang Z, Shang L, Jia S, Liu J, Fang Z, et al. Association 
of clock-like mutational signature with immune checkpoint inhibitor 
outcome in patients with melanoma and NSCLC. Mol Ther Nucleic 
Acids. 2021;23:89-100.

41.	Zhong H, Liu S, Cao F, Zhao Y, Zhou J, Tang F, et al. Dissecting tumor 
antigens and immune subtypes of glioma to develop mRNA vaccine. 
Front Immunology. 2021;12:709986.

42.	Kang TH, Park JH, Yang A, Park HJ, Lee SE, Kim YS, et al. Annexin 
A5 as an immune checkpoint inhibitor and tumor-homing molecule 
for cancer treatment. Nat Commu. 2020;11(1):1-6.

43.	Zhu J, Shen Y, Wang L, Qiao J, Zhao Y, Wang Q. A novel 12-
gene prognostic signature in breast cancer based on the tumor 
microenvironment. Ann Transl Med. 2022;10(3):143.

44.	Li ZX, Zheng ZQ, Wei ZH, Zhang LL, Li F, Lin L, et al. Comprehensive 
characterization of the alternative splicing landscape in head and 
neck squamous cell carcinoma reveals novel events associated with 
tumorigenesis and the immune microenvironment. Theranostics. 
2019;9(25):7648-7665.

45.	Li N, Li B, Zhan X. Comprehensive analysis of tumor microenvironment 
identified prognostic immune-related gene signature in ovarian cancer. 
Fron Genet. 2021;12:616073.

46.	Fu S, He K, Tian C, Sun H, Zhu C, Bai S, et al. Impaired lipid 
biosynthesis hinders anti-tumor efficacy of intratumoral iNKT cells. 
Nature Commun. 2020;11(1):1-5.

47.	Mathewson ND, Ashenberg O, Tirosh I, Gritsch S, Perez EM, Marx 
S, et al. Inhibitory CD161 receptor identified in glioma-infiltrating T 
cells by single-cell analysis. Cell. 2021;184(5):1281-1298.

48.	Zenz T, Eichhorst B, Busch R, Denzel T, Häbe S, Winkler D, et al. TP
53

 
mutation and survival in chronic lymphocytic leukemia. J Clin Oncol. 
2010;28(29):4473-4479.

49.	Jiao XD, Qin BD, You P, Cai J, Zang YS. The prognostic value of TP53 
and its correlation with EGFR mutation in advanced non-small cell 
lung cancer, an analysis based on cBioPortal data base. Lung Cancer. 
2018;123:70-75.

50.	Lin SC, Lin LH, Yu SY, Kao SY, Chang KW, Cheng HW, et al. FAT1 
somatic mutations in head and neck carcinoma are associated with 
tumor progression and survival. Carcinogenesis. 2018;39(11):1320-
1330.

51.	Izadi F, Sharpe BP, Breininger SP, Secrier M, Gibson J, Walker RC, 
et al. Genomic analysis of response to neoadjuvant chemotherapy in 
esophageal adenocarcinoma. Cancers. 2021;13(14):3394.

52.	Dong ZY, Zhong WZ, Zhang XC, Su J, Xie Z, Liu SY, et al. Potential 
predictive value of TP53 and KRAS mutation status for response to 
PD-1 blockade immunotherapy in lung adenocarcinoma. Clin Cancer 
Res. 2017:15;23(12):3012-3024.

https://www.jstatsoft.org/article/view/v033i01
https://www.jstatsoft.org/article/view/v033i01
https://www.sciencedirect.com/science/article/pii/S2211124716317090?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2211124716317090?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2211124716317090?via%3Dihub
https://www.nature.com/articles/nmeth.3337
https://www.nature.com/articles/s41467-020-15679-x
https://www.nature.com/articles/s41467-020-15679-x
https://www.jci.org/articles/view/91190
https://www.jci.org/articles/view/91190
https://www.sciencedirect.com/science/article/pii/S0092867414016390?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0092867414016390?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0092867414016390?via%3Dihub
https://www.nature.com/articles/ncomms3612
https://www.nature.com/articles/ncomms3612
https://www.sciencedirect.com/science/article/pii/S0092867415006340
https://academic.oup.com/nar/article/43/7/e47/2414268?login=false
https://academic.oup.com/nar/article/43/7/e47/2414268?login=false
https://academic.oup.com/nar/article/43/7/e47/2414268?login=false
https://linkinghub.elsevier.com/retrieve/pii/S2666675821000667
https://linkinghub.elsevier.com/retrieve/pii/S2666675821000667
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-7
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-7
https://www.nature.com/articles/ng.3557
https://www.nature.com/articles/ng.3557
https://www.nature.com/articles/nature12477
https://www.nature.com/articles/nature12477
https://www.nature.com/articles/nature12213
https://www.nature.com/articles/nature12213
https://www.nature.com/articles/nbt.3080
https://www.nature.com/articles/nbt.3080
https://genome.cshlp.org/content/28/11/1747
https://genome.cshlp.org/content/28/11/1747
https://www.nature.com/articles/s41568-019-0222-9
https://www.nature.com/articles/s41568-019-0222-9
https://www.pnas.org/doi/full/10.1073/pnas.2023216118
https://www.pnas.org/doi/full/10.1073/pnas.2023216118
https://www.pnas.org/doi/full/10.1073/pnas.2023216118
https://www.nature.com/articles/s41588-018-0312-8
https://www.nature.com/articles/s41588-018-0312-8
https://academic.oup.com/oncolo/article/25/1/e147/6443315?login=false
https://academic.oup.com/oncolo/article/25/1/e147/6443315?login=false
https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-020-00745-2
https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-020-00745-2
https://www.tandfonline.com/doi/full/10.1080/2162402X.2020.1788252
https://www.tandfonline.com/doi/full/10.1080/2162402X.2020.1788252
https://www.tandfonline.com/doi/full/10.1080/2162402X.2020.1788252
https://www.sciencedirect.com/science/article/pii/S2162253120303450?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2162253120303450?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S2162253120303450?via%3Dihub
https://www.frontiersin.org/articles/10.3389/fimmu.2021.709986/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.709986/full
https://www.nature.com/articles/s41467-020-14821-z
https://www.nature.com/articles/s41467-020-14821-z
https://www.nature.com/articles/s41467-020-14821-z
https://atm.amegroups.com/article/view/89279/html
https://atm.amegroups.com/article/view/89279/html
https://atm.amegroups.com/article/view/89279/html
https://www.thno.org/v09p7648.htm
https://www.thno.org/v09p7648.htm
https://www.thno.org/v09p7648.htm
https://www.thno.org/v09p7648.htm
https://www.thno.org/v09p7648.htm
https://www.thno.org/v09p7648.htm
https://www.nature.com/articles/s41467-020-14332-x
https://www.nature.com/articles/s41467-020-14332-x
https://www.sciencedirect.com/science/article/pii/S0092867421000659?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0092867421000659?via%3Dihub
https://ascopubs.org/doi/10.1200/JCO.2009.27.8762
https://ascopubs.org/doi/10.1200/JCO.2009.27.8762
https://linkinghub.elsevier.com/retrieve/pii/S0169500218304628
https://linkinghub.elsevier.com/retrieve/pii/S0169500218304628
https://linkinghub.elsevier.com/retrieve/pii/S0169500218304628
https://academic.oup.com/carcin/article/39/11/1320/5068479?login=false
https://academic.oup.com/carcin/article/39/11/1320/5068479?login=false
https://academic.oup.com/carcin/article/39/11/1320/5068479?login=false
https://www.mdpi.com/2072-6694/13/14/3394
https://www.mdpi.com/2072-6694/13/14/3394
https://aacrjournals.org/clincancerres/article/23/12/3012/79941/Potential-Predictive-Value-of-TP53-and-KRAS
https://aacrjournals.org/clincancerres/article/23/12/3012/79941/Potential-Predictive-Value-of-TP53-and-KRAS
https://aacrjournals.org/clincancerres/article/23/12/3012/79941/Potential-Predictive-Value-of-TP53-and-KRAS

