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Abstract
With increasing demands for efficiency, product quality, reliability and process safety, the field of fault 

detection (FD) plays an important role in chemical industries. This paper deals with a FD method based on the 
combination of Generalized Likelihood Ration Test (GLRT) and Artificial Neural Networks (ANNs). A reliable neural 
model in normal conditions, under all regimes (i.e. steady-state and dynamic conditions), is found by means of a 
NARX (Nonlinear Auto-Regressive with eXogenous input) model and by an experimental design. The efficiency 
of the combination of these two approaches used for detecting faults has been tested under real anomalous 
conditions on a real plant as a distillation column. From the experimental results, it is observed that the proposed 
FD is able to detect the process status effectively.

Keywords: Fault detection; Reliability; Safety; GLRT, ANNs;
Distillation column

Introduction
Early detection of occurrence of an abnormal event, fault or failure 

in an operating plant is vital for ensuring plant safety and maintaining 
product quality in chemical industries. The necessity to improve 
FD methods is further underlined by the finding that about 70% of 
industrial accidents are caused by human errors [1]. Traditionally, the 
most usually implemented FD methods have been based on model-
based approaches. However, in modern process industry, there is a 
demand for data-based methods because of the complexity and the 
limited availability of the nonlinear models in chemical units.

Artificial Neural Networks (ANNs) have an adaptive behavior 
i.e. they are able to adjust and to modify their behavior according
to nonlinear dynamics of processes. ANNs can be trained to learn
new associations, complex modelling, functional dependencies and
new patterns [2]. Owing to their inherent nature to model and learn
complexities, ANNs have been successfully applied in medicine and
biomedical studies [3]. Also they have found wide applications in
various areas of chemical engineering [4,5].

This paper proposes a fault detection approach, which combines 
a statistical test as GLRT with ANNs to quickly detect faults in a 
distillation column. Firstly, this study consists to obtain a reduced and 
reliable model of this chemical process in steady-state and dynamic 
conditions. The chosen model is NARX model for forecasting the 
process dynamics. The performance of this neural model was then 
evaluated using the performance criteria. Then, the abnormal behaviour 
of the process is inspected when it is submitted to faults. Fault detection 
results show that the statistical test based on the GLRT is a powerful 
tool to detect changes in the behaviour of the distillation column.

This paper is organized as follows: Section 2 describes the neural 
training and selection of neural structure, Section 3 describes the fault 
detection strategy, in Section 4 the experimental set-up is introduced 
and presents the experimental results with the proposed FD method, 
and Section 5 ends the paper.

Network training modelling

In many fields, there are several models representing systems 
that are dominated by nonlinear characteristics. Many physical 

processes which have nonlinear behavior can be well represented 
by a polynomial representation, Volterra or Wiener series, or other 
nonlinear techniques. It is showed that the Autoregressive with 
eXternal input (ARX) model can be easily identified and outperform 
linear models [6]. Also, Nonlinear AutoRegressive Moving Average 
model with exogenous inputs (NARMAX) model [7] can provide 
a unified and simple representation for a wide class of discrete-time 
nonlinear stochastic systems. The NARMAX model is an input-output 
recursive model where the current output depends on lagged inputs, 
outputs and noise terms through a suitable nonlinear function. The 
simpler Nonlinear AutoRegressive with eXternal input (NARX) model 
is often preferred, although the absence of a disturbance model may 
result in bias problems i.e. a NARMAX model with the noise terms 
excluded. Structure determination of the NARX model is to choose 
sufficient and necessary terms for capturing the system dynamics. This 
model could represent a nonlinear model with a smaller number of 
parameters [4,8,9]. In this study, the effectiveness of this technique for 
black-box nonlinear modelling is described.

The ANN propagates the error from the output layer (yi) to the 
hidden layer to update the weight matrix (wi). Each node produces 
an output signal, which is a function of the sum of its inputs where 
y(k) is the Auto-Regressive (AR) variable or system output; u(k) is the 
eXogenous (X) variable or system inputs:

( )i ANN i iy x wφ= ∑ (1)

Where φANN (·) is the activation function. In this study, the neural 
model is defined as follows
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where y(k) is the Auto-Regressive (AR) variable or system output; u(k) 
is the eXogenous (X) variable or system input. ny and nu are the AR 
and X orders, respectively. m is the number of the used inputs. nk is the 
time delay between u and y.

For smaller number of hidden layers and nodes, the performance 
of the ANN may not be satisfactory, while with too many hidden 
nodes, there is the risk of over-fitting the training data. In this case, 
the ANN generalization on the new data is poor. Different methods, 
both heuristic and systematic, can be chosen in order to select the 
number of hidden layers and the nodes. There are a large number of 
selection methods of the ANN. Two most popular ways of significant 
structures are in general used. We start with a small number of nodes 
in the hidden layer and add new ones when a certain criterion is met 
(growing algorithms). On the other hand, we can start with a large 
number of nodes and delete some of them under certain conditions 
(pruning algorithms).

In this study, the hidden layer nodes have log-sigmoid transfer 
hyperbolic function as the activation function and the output have 
linear activation function. The ANN multi-layer feed forward network 
is trained to capture the underlying relationship between the input u(k) 
and output y(k) using the training data. The input data are presented to 
the network via the input layer. These data are propagated through the 
network to the output layer to obtain the network output. The network 
error (generally the mean square error function) is then determined 
by comparing the network output with the actual output. If the error 
is not smaller than a desired performance, the weights are adjusted 
and the training data are presented to the network again to determine 
a new network error. The aim of this step is to find the appropriate 
weights which minimize the cost function. This is usually done using 
an iterative procedure. One of the best known learning mechanisms 
for neural networks is the training algorithm of Levenberg-Marquardt 
[12], which is used along with back-propagation (BP). In this case 
the ANN is trained iteratively using the training dataset to minimize 
the performance function of mean square error (MSE) between the 
network outputs and the corresponding target values. The Levenberg-
Marquardt Algorithm (LMA) shows the fastest convergence during the 
training process based on gradient descent methods because it performs 
as a compromise between the stability of the first-order optimization 
methods (steepest-descent method) and the fast convergence 
properties of the second-order optimization methods (Gauss-Newton 
method). In many cases, LMA is able to obtain lower mean square 
errors than any of the other algorithms [12]. For weights initialization, 
the Nguyen- Widrow initialization method [13] is best suited for the 
use with the sigmoid/linear network which is often used for function 
approximation. After training, the networks thus developed are tested 
with the test data set to assess the generalization capability of each 
developed network. The best ANN model developed is trained off-line 
and then used on-line for detecting faults in the separation unit. All 
computations have been made on Matlab® 7.0.4.

Fault detection method: GLRT

GLR test is applied in order to establish an adaptive system, which 
achieves three important operations; fault detection, estimation 
and magnitude compensation of jumps generated by instantaneous 

changes of the process. GLRT is used for fault detection in signals and 
dynamic systems [14], geophysical signal segmentation [13], signals, 
incident fault detection on freeways [16], missiles trajectory [17], 
changes detection issue in a stochastic system [18]. Nikiforov [19] 
used GLRT when the model parameters after the change are unknown.
He introduced an alternative approach to reduce the computational 
burden of the GR scheme. The idea of this solution is to decompose 
a given parameter space into several sub-sets so chosen that in each 
subset the fault detection problem can be solved with loss of a small 
part of optimalit y by a recursive change detection algorithm. This test 
is also proposed for estimating the time instant of muscle contraction 
onset via electromyographic (EMG) signal processing [20]. The 
proposed algorithm proves to be reasonably accurate even for low levels 
of EMG activity; the improved behavior of the GLRT comes with just 
a modest increase in the computational complexity. Keller et al. [21] 
developed a new GLRT based method for detecting, identifying, and 
estimating gross errors in steady state processes. This method improves 
GLRT and can be applied to all types of gross errors including leaks and 
biases. Boukai [22] used the GLRT to detect a local shift of parameter 
of a distribution function occurring at unknown point of time between 
consecutive independent observations. Three parametric models of 
distributions are considered; the one parameter exponential family, the 
location parameter family and the scale parameter family. The class of 
considered tests is based on GLRTs, appropriately adapted for such a 
change-point problem. Asymptotic techniques are used to obtain the 
limiting distribution of the test statistics, under both the null hypothesis 
of no change and the change-point alternative. Micera et al. [23] 
utilized a hybrid approach to EMG pattern analysis for classification 
of movements. The hybrid model included GLRT and the principal 
component analysis. They show that the classification method classify 
correctly all patterns related to the selected movements. Kay et al. [24] 
derived a GLRT detector for the detection of a sinusoid in complex 
environment where the noise variance and the signal amplitude, phase 
and frequency are all unknown. They derived a detector that gives an 
upper performance bound for the GLRT applied to this problem.

In this study, the recursive algorithm of the GLRT is established 
according to normal conditions of the operating plant (null hypothesis) 
vs. an alternate hypothesis. This letter is normally distributed (where 
variance (σ2) is unknown). The problem is described in terms of a 
hypothesis test H0, with the null hypothesis denoted by with plant 
behaviour belonging to the normal region Ωo, and the alternate 
hypothesis H1 denoted by with this behaviour belonging to Ω1. One way 
to distinguish between these two hypotheses is to build the likelihood 
ratio test where P(l≤λ/H0 is true)=α. The main aim is to detect a change 
in the behaviour of a conditional probability distribution (P0), from the 
known value of the parameter (θ0) to the unknown value (θ1) which 
occurs at an unknown time of fault (tf). The detection rule of GLRT is 
defined as following:

1
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With tf = min (k: k ≥ α)

In the case of the Equ 2, the GLRT test rule is given as follows:
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where γ (k) = y(k) − yˆ(k) is the sequence of the residuals between the 
actual and predicted output of the system. During a normal operation, 
innovations fluctuation γ (k) = y(k) − yˆ(k) is low and corresponding 
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to random variations in measurements. Moreover, when a fault 
occurs, the innovation evolves differently according to the type of 
fault and its influence on the general state of the plant. In order to 
limit the computing time, it is decided to detect changes in a window 
of fixed size (M). The window size is chosen according to the process 
dynamics,GLRT sensitivity, and to the delay in detection.

Experimental Results
Experimental set-up

The proposed FD scheme is applied to a distillation unit. The feed 
tank contains a mixture to be separated (toluene-methylcyclohexane) 
with amass composition at 23% in methylcyclohexane. The operation 
in continuous mode involves charging the still with the mixture to 
be separated, bringing the column to equilibrium under total reflux. 
The product is introduced through the optimal feed tray so that the 
light components are volatilized, while the heavy part goes down again 
with the reflux in the column reboiler. The quality of the collected top 
product of the column depends on the reflux flow rate. The reflux ratio 
is varied through the magnetic valve by changing the relative quantities 
of material returning to the column and flowing to product storage. 
Feed preheating system is constituted by three elements of 250 W each 
one. In addition it has a low liquid level switch in order to avoid the 
running if the level is excessively low. The reciprocating feed pump is 
constituted by a membrane allowing firstly the suction of the mixture 
and the discharge towards the tank with a flow capacity F = 4.32 L.h-1. 
The column has also a reboiler of 2 liters hold-up capacity, an immersion 
heater of a power Qb = 3.3 kW and of a level liquid switch sensor which 
allows the automatic stop of heating if the level is insufficient. The 
column can be used in atmospheric (Patm) or in vacuum conditions 
(Pr). The stirring of the mixture in the reboiler is ensured by the 
boiling mixture. The internal packing is made of Multiknit stainless 
316L which enhances the mass transfer between the vapor and liquid 
phases. In order to approach the adiabatic conditions, a heat-insulating 
made of glass wool is laid around the column. A condenser is placed 
at the column overhead in order to condense the entire vapor coming 
out from the column. The cooling (Qc) used in exchangers is water. 
The heat transfer area of the total overhead condenser is 0.08 m2. 
Moreover the reflux timer (Rt) allows to control the reflux ratio (Rr). 
It is monitored by the overhead product temperature (Td). When the 
required distillate temperature (Td) is attained, the reflux timer opens. 
In the opposite case, it remains closed. Distillation supervision control 
system allows to modify the parameters and to follow their evolution 
such as the pressure drop (∆P), the flow or the temperatures at different 
points of the distillation column. This control system, therefore, must 
hold product compositions as near the set points as possible. The 
thermocouples are coupled to a calibrated amplification circuit (4-20 
mA, 0-150°C) whose signals are inputted to the computer on-line, 
which permits the bottom and top temperatures to be obtained. The 
unit has twelve sensors which measure continuously the temperature 
throughout the column.

Selection of the reliable and reduced structure of the ANN 
model

For ANNs learning, it is very important to appropriately choose the 
input and output variables, determination of the relative importance 
of inputs and time delay [25]. For the experimental application as this 
used distillation column, it is often faced with the challenge of pre-
processing a huge set of possible inputs. However, many variables 
possess redundant information and not all variables are relevant or 

even necessary. The strategy adopted here is the most relevant input 
variables are those preferentially define the most influential rules 
appearing in the model. For this reason, each input variable is modified 
and the variation relevance on the output variables is examined. It has to 
be bear in mind that this analysis of the relative importance is based on 
an experimental work but it takes the real physical nature into account 
as well. This analysis is based mainly on the physical knowledge of the 
industrial processes. The fact of changing an input and only one allows 
to visually observing the delay between this input and the outputs of 
the process. If the delay exists, therefore there is dependence between 
this input and the observed output. Otherwise, there is no correlation 
between these quantities. For this particular reason, the distillation 
unit operates at Td = 95°C from the isobar diagram of the toluene-
methylcyclohexane by using the Wilson thermo-dynamic model 
for vapor-liquid equilibrium (VLE). In order to define this nominal 
mode, all the regulation systems of the column are put in a closed-loop 
configuration. When the steady-state regime is achieved, the column 
was operated for approximately four hours in steady-state mode (Td 
= 95°C) in order to collect a sufficient number of data. The data are 
taken every 11 s. The set of the most important measurable variables of 
the process are (Rt, Qb, Pr, ∆P, Qf, Tf, F, Qc). Amongst the remaining 
variables, an experimental analysis of the process is carried out in order 
to observe the influence of each input variable on the output variables. 
This analysis aims at reducing more the system. Table 1 gives the values 
of the measurable variables calculated on average from the nominal 
steady-state regime.

Influence of all input variables

This part summarizes the experimental variation of all inputs as 
seen previously in 4.2. Table 2 collects the mean time delay measured 
between each input variable and the output variable [25]. The lower 
time delay is, the higher the relative importance is, because if a 
variation of the input variable occurs the output variable would be 
disturbed afterwards a time delay. On another side, it is important to 
highlight that the time delay between the reflux timer and the distillate 
temperature is 44 s. The feed flow rate has an influence on (Td); 
however the response of this temperature is especially low to a feed 
variation (210.6 s). Therefore, the feed flow rate has less influence on 
(Td) than the other input variables. When a time delay is called infinite 
(represented by “∞”), it means that there is no influence of the input 
variable upon the output variables.

Pattern generation

This study aims at modelling the overhead product temperature 
(Td) according to the input variables of the process such as ∆P, Rt, Qb, 
Qf, Qc, Tf, Pr and F. To have this database which is rich in amplitudes 
and in frequencies, the column behaviour is modified in both in a 
steady- state and dynamics conditions in the chosen temperature range 
(Td = 93.4 → Td = 95.9°C).

The test data are a set of independent data used to verify the 
consistency of the efficiency of the model. For more legibility of figures, 
the parameters of the distillation column are represented in Figures 1 
and 2. The operation duration of the distillation column is 12 hours 
continuously.

Data normalization

To maintain the influence of smaller data values in comparison to 
higher input values, the generated experimental data are no-directly 
introduced in the network as training patterns. For this reason, the 
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Figure 1: The operating conditions of the nominal steady-state regime.

experimental data are normalized before being presented to the ANN 
which gives equal priority to all the inputs variables. In our study, data 
normalization compresses the range of training data between 0.1 and 
0.9.

Reliability of modelling of the overhead product temperature 
(Td)

The number of nodes in the input and the output layers depend on 
the number of input and output variables, respectively. In this study, 
the adopted strategy is chosen as follows; the initial model has a low 
number of parameters and hidden nodes were gradually added during 
learning until the optimal result is achieved in the test subset. In the 
present work, the number of hidden nodes was modified from 1 to 
12. Also, one hidden layer was used. The complete training process 
of networks took approximately 80,000 epochs using the Levenberg- 
Marquardt algorithm. In this case, the model composed by the set of 
inputs (∆P, Rt, Qb, Qf, Qf, Tf, Pr and F) and the output (Td) is reduced 
according the equation 2 and tables 1 and 2.

Td (t ) = φ (Td (t − 1), T f (t − 3), Rt (t − 4), ∆P(t − 8),Qt (t−8)        (13)

 The difficult trade-off between model accuracy and complexity can 
be clarified be clarified by using model parsimony indices from linear 
estimation theory (Ljung, 1999) such as Akaike’s Information Criterion 
(AIC), Final Prediction Error (FPE) and Bayesian Information 
Criterion(BIC). A strict application of the indices would select a 
number Nh=5 because it exhibits the lowest of three indices for all 
the model structures compared. In conclusion, the developed network 

architecture used consisted of 5 nodes in the input layer and 5 nodes for 
the hidden layer. This reduced neural model is considered as a reliable 
one for describing the dynamic behaviour of the studied distillation 
column. In conclusion, the identified model is reduced from a (9-9-1) 
neural structure to (5-5-1)

Application of the developed fault detection

Once the identified ANN is trained and tested, it is ready for 
detecting faults. This neural model developed in part 4.5. is used both 
for the prediction and the FD procedure using the analysis of residuals. 
The proposed method is based on the GLRT as described in Section 
3. This test should be processed to detect any real fault condition, 
rejecting any false alarms caused by noise. In this section, the proposed 
FD is applied to an experimental fault to verify its workability and 
effectiveness under real measurement conditions.

Statistics concerning the incidents which occurred in the distillation 
column showed that the most frequent faults are due to an inadequate 
heating power, feed pump, feed preheating, reflux or pressure used 
in the column. Consequently, the choice was carried out on this type 
of faults. To illustrate the adopted approach for the fault detection, it 
was decided to attempt among these faults to detect a sudden closing 
of the reflux timer (Rt=0%). This fault is frequent in the distillation 
operation and introduces a large deviation in comparison with the 
normal behaviour. It is important to notice that this fault occurs at 
8173 s causes a large decrease of the overheat temperature (Td). This 
evolution is showed in Figure 4.
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Table 1: The operating conditions of the nominal steady-state regime.

Input / Output Rt Qb ∆P Qf Tf F Qc

Td 44 104.5 93.5 95.3 29.3 201.6 ∞

Table 2: Mean time delay (seconds) between input and output variables.

This decrease should be detected by the GLRT because it exceeds 
a statistical threshold (3.841). The statistical threshold of decision is 
chosen according to the physical description of the process. It considers 
the different noises resulting from the process and the imperfections. 
Of its modeling. Indeed, it must be chosen too high in order to avoid 
generating false alarms due to the variations of the measurement 
equipment. By analyzing the various rates of false alarms probability, 
a rate of 5% represents a good threshold of decision. This statistical 
acceptance threshold is shown clearly in Figure 5 which represents the 
evolution of the GLRT. The size of the window is chosen according to 
the system dynamics. The analysis of the GLRT algorithm shows that 
the size value M =10 is a judicious compromise between the process 
dynamics, the delay time in detection and the GLRT sensitivity.

Figure 5 shows two operating zones: a fault region and a confidence 
one. It is important to notice that the   fault which occurs at 8173 s, 

is detected at 8195 s i.e. with a delay of 33 s which corresponds to 
a difference (∆T≈0.5°C) between the temperature of the desired 
overhead temperature (Td =95°C) and the fault one (Td =94.5°C). This 
delay in detection defined as the difference between the time of the 
fault occurrence and the time of its detection, depends essentially on 
the evolution of the process dynamics.

Conclusion
Faults that change the system dynamics by causing surges of 

drifts of components, abnormal measurements, sudden shifts in the 
measurement channel, and other difficulties such as the decrease of 
instrument accuracy, an increase of background noise, reduction in 
actuator effectiveness etc., effect the characteristics of the likelihood 
ratio. This study shows that the combination of the ANN and the GLRT 
solves efficiently the FD problem. The experimental results show that 
the one-layer perceptron network provides promising assignments 
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to normal and faulty states of the investigated reference process. The 
dedicated example indicates the strength of the proposed approach for 
reliability of models, prediction of the future data and fault detection. 
It makes this combination very attractive for solving the modelling 
issues and fault detection in real time operation of complex plants 
as a distillation column. GLRT is used to advise the operator of an 
abnormal behavior of the process by setting-on the suitable alarm. 
Such alarm could be used in order to initiate the back-up procedure, 
to stop the operating plant or even to begin the diagnosis algorithm of 
the fault physical origin.
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