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Spinal cord injury (SCI) is a devastating event which results in 
significant and catastrophic dysfunction and disability. It physically 
and psychologically affects not only the individual, but also the family 
and society. Currently no effective therapies are available. SCI involves 
an initial mechanical insult such as compression, tissue tears and 
vertebral distortions followed by the secondary injury with a cascade 
of cellular and molecular events, which ultimately leads to a fluid-filled 
cyst [1,11,12]. Pathophysiological studies suggest that the disruption of 
spinal axons in the white matter and chronic progressive loss of myelin 
ensheathing the axons after SCI are the major causes for neurological 
deficits. Current treatments for SCI include surgery to stabilize the 
injury site and early administration of high doses of methylprednisolone 
to help limit the extent of secondary injury. Unfortunately, their 
clinical efficacy is modest with high risk of complications and patients 
still face significant neurological dysfunction and disability. Recently, 
stem cell-based strategies emerge as promising therapies for SCI since 
stem cells are supposed to be able to replace lost or dysfunctional 
neural cells and provide a permissive substrate for axonal regeneration. 
Using animal models of SCI, various cell sources have been examined 
on their efficacy in treating SCI including embryonic stem cells (ESCs), 
neural precursor cells (NPCs), oligodendrocyte precursor cells (OPCs), 
Schwann cells, olfactory ensheathing cells, and bone marrow stromal 
cells [2-7,9,10,13,14 ]. However, it remains unknown which cell type is 
optimal for the treatment of SCI. It is an important question we need to 
address before we move cell therapy to clinical trials.

Of all stem cell types, ESCs currently show the greatest potential for 
the widest range of cell therapies. The pluripotency and plasticity of ESCs 
isolated from inner cell masses have been demonstrated conclusively 
by many pioneering studies [8,16]. However, immune rejection and 
ethical controversy are major hurdles for clinical application of ESCs. 
Compared to other stem cells, NPCs are already committed to a 
neural fate and hence will be easier to differentiate into mature neural 
phenotypes. Therefore, they have been widely used in neurological 
disorder repair. Nevertheless, the difficulty in access to human tissues 
for cell isolation and limited expansion potential of NPCs hamper their 
application in the clinical setting. Other cell types such as Schwann cells, 
olfactory ensheathing cells, and bone marrow stromal cells are also 
subject to various limitations in differentiation potency and self-renewal 
capacity. Collectively, current cell therapies lack clinical feasibility 
due to limited cellular availability, ethical concerns, and the need for 
immunosuppression.  A recent breakthrough in stem cell biology is the 
finding of induced pluripotent stem cells (iPSCs) technology [15,17]. 
Using iPSCs technology, researchers can achieve embryonic-like cells 
without the ethical dilemma. iPSCs, have the advantage of eliminating 
immune rejection concerns as they are obtained from host as well as 
have pluripotent behaviour. The generation of iPSCs from a patient’s 
own somatic cells would potentially allow for a plentiful source of 
cell therapeutics for autotransplantation. Furthermore, the use of 
iPSCs largely circumvents political, ethical, and logistical roadblocks 
previously associated with other cell transplantation. Therefore, they 

are considered to be an ideal cell source for transplantation therapy for 
the treatment of SCI. 

However, it should be noted that iPSC-based therapies are still 
in their infancy, and many key issues need to be fully addressed 
before their clinical applications become a reality. We need to better 
understand the reprogramming mechanisms and generate safe, virus-
free, and transgene-free autologous iPSCs at a relatively high efficiency; 
we need to establish defined pathogen-free and feeder-free culture 
conditions to cultivate iPSCs; we need to develop specific protocols for 
efficiently driving iPSCs to differentiate into targeted neural subtypes; 
and finally we need to fully evaluate the potential risks associated with 
transplantation of iPSCs. With the development of iPSC technology, 
we believe that iPSC-based therapies will be the future for the treatment 
of SCI.
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