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Atherosclerotic renovascular disease (ARVD) is a reversible cause 
of secondary hypertension that accounts for almost 7% of individuals 
older than 65 years old, and is implicated in over a third of all cases of 
end-stage renal disease (ESRD) in the United States [1]. Importantly, 
ARVD is associated with increased risk of myocardial infarction, 
congestive heart failure, stroke, peripheral artery disease, and mortality 
[2]. 

Renal revascularization by percutaneous transluminal renal 
angioplasty (PTRA) is commonly performed in ARVD patients. 
However, twenty-five years after the first successful PTRA [3], its 
role remains uncertain. While small clinical studies have reported 
significant improvement in blood pressure and renal function among 
PTRA-treated patients [4,5], large randomized clinical trials failed to 
determine an incremental value of PTRA, on a top of medical therapy, 
for the treatment of ARVD [6,7]. In agreement, we have previously 
shown in a swine model of ARVD that PTRA normalizes blood pressure 
levels, but fails to improve tubulointerstitial injury, microvascular 
rarefaction, and renal function in the stenotic kidney [8]. 

One of the potential explanations of the unfavorable renal outcomes 
after PTRA could be the activation of multiple deleterious pathways 
in the post-stenotic kidney tissue. It is well known that activation of 
renin-angiotensin system, oxidative stress, apoptosis and fibrosis in 
ARVD leads to tissue injury and might compromise response to renal 
revascularization [9]. Moreover, damage of the renal microcirculation is 
an important determinant of tubulointerstitial and glomerular fibrosis 
beyond the stenotic lesion [10]. Accordingly, intra-renal administration 
of the angiogenic factor vascular endothelial growth factor (VEGF) 
has been shown to attenuate fibrosis and microvascular damage, 
improving renal function after PTRA in chronic experimental ARVD 
[11]. Renal inflammation has also been identified as a key mediator of 
tissue injury and progressive renal dysfunction in ARVD [12]. We have 
recently shown that the post-stenotic human kidney releases numerous 
inflammatory mediators leading to a progressive compromise of renal 
function [13]. Taken together, these observations emphasize the need 
for more effective strategies in addition to revascularization to improve 
renal outcomes in ARVD.

Therapeutic utilization of allogeneic and autologous stem cells is 
becoming an attractive alternative to conventional treatments for several 
diseases. Circulating endothelial progenitor cells (EPC), mobilized and 
recruited after renal ischemia, play a key role in repairing ischemic 
tissues in experimental models of renal injury [14]. Their mobilization 
from bone marrow and recruitment to the injured kidney is regulated by 
the release of homing factors such as stromal cell-derived factor (SDF)-
1 and stem cell factor (SCF). Our group has demonstrated that delivery 
of EPC in the stenotic ARVD kidney improved renal hemodynamic 
and function and decreased the release of endogenous injury signals 
from the stenotic kidney [15,16]. In line with these observations, we 
have shown in swine ARVD that intra-renal delivery of autologous 
hematopoietic EPC during PTRA improved renal hemodynamics and 
function in the post-stenotic kidney [17]. Moreover, oxygen-dependent 
tubular function and microvascular architecture were normalized and 

fibrosis and inflammation reduced in PTRA+EPC-treated animals, 
underscoring a novel regenerative potential for EPC in experimental 
ARVD. However, a significant disadvantage of EPC therapy is the fact 
that in order to generate autologous EPC, mononuclear cells must be 
isolated from peripheral blood, and expanded in vitro, which requires 
collection of large amounts of peripheral blood from each individual.

Over the last decade, mesenchymal stem cells (MSC) have emerged 
as an alternative therapy for a range of renal injuries. These cells possess 
extensive proliferation potential, unique anti-inflammatory properties, 
and can be isolated from a variety of tissues, such as adipose tissue and 
bone marrow [18]. Experimental studies have revealed the ability of 
MSC to stimulate renal parenchymal regeneration and attenuate kidney 
injury secondary to ischemia/reperfusion injury [19-21]. Consistent 
with these results, we have demonstrated in swine ARVD that intra-
renal administration of adipose-tissue derived MSC improved 
renal function and structure after revascularization and reduced 
oxidative stress, apoptosis, fibrosis, inflammation, and microvascular 
remodeling in the stenotic kidney [22]. Importantly, histological 
analysis showed no evidence of cellular rejection, micro-infarcts, or 
tumors in PTRA+MSC-treated pigs. Therefore, our findings uncovered 
a unique renoprotective effect of MSC to restore renal cellular integrity 
and repair mechanisms in experimental ARVD.

In summary, ARVD is a prevalent and progressive disease for 
which the optimal therapeutic strategy remains to be elucidated. While 
PTRA may reduce blood pressure, improvement of renal function is 
not commonly achieved, warranting adjunctive therapies. Cell-based 
therapies with EPC or MSC appear to be safe and effective approaches 
to improve renal outcomes in experimental ARVD. Additional studies 
are needed to evaluate the clinical therapeutic benefit of these strategies.
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