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Abstract

Lee and colleagues have shown that CDK4 plays a central role in glucose homeostasis. Insulin activates cyclin
D1–CDK4, leading to a decrease in circulating glucose as a consequence of the down-regulation of main genes
involved in liver gluconeogenesis.

Commentary
In recent years, our knowledge of CDK regulation has improved

significantly and is no longer restricted to just its role in the control of
cell cycle progression. Cyclin-dependent kinases (CDKs) are serine/
threonine protein kinases that are associated with their specific
partners, cyclins which phosphorylate their protein targets. Thus, the
cyclin-CDK complex works as a holoenzyme. The control of cell cycle
progression by cyclin-CDK complexes was first studied several years
ago, in the context of high proliferation rates and cancer.
Understanding how CDKs function was one of the main aims of these
studies, as the loss of this regulation can alter cell proliferation rates
which, in the worst case scenario, may translate into malignant
tumours.

The cell cycle is mainly divided into G1, S, G2, and M phases, and
transition between these phases is strongly controlled. Transition from
G1 to S is tightly regulated and depends on the activity of the G1 phase
cyclin-CDK complexes, where CDK can be CDK4 or CDK6 and is
associated with G1 D-type cyclins (D1, D2 and D3). In addition, there
is an upper-level control of the activity of cyclin-CDK complexes
determined by the presence or absence of two families of CDK
inhibitors (CKIs), INK4 proteins and the Cip/Kip family, respectively.
When the G1 phase cyclin-CDK complexes are active, they regulate
the transition to the S phase by a direct phosphorylation of the
retinoblastoma protein (Rb). Rb hyperphosphorylation mediates the
release of the E2F transcription factor, allowing its transit to the
nucleus, where it can promote the transcription of several genes
involved in cell cycle progression, apoptosis, and DNA synthesis [1].

Besides their well-described role in the control of cell cycle
progression, in recent years a new role for CDKs has emerged beyond
the context of cell cycle progression, as a master regulator of
metabolism. In this sense, the CDK4-RB-E2F axis and other cell cycle
components have acquired a main role in the control of insulin
secretion by pancreatic β-cells [2,3], of oxidative metabolism [4] and
of adipogenesis [5-8].

Much more recently, a unique study designed by the Puigserver
group [9] demonstrated that CDK4 plays a central role in glucose
homeostasis, specifically in liver gluconeogenesis. Briefly, insulin
activates AKT (also known as PKB) through a cascade of correlative
phosphorylation with the insulin receptor, insulin receptor substrates,
PI3K and finally PDK1 (Figure 1). Once AKT is activated, AKT

phosphorylates several substrates, among them, Glycogen synthase
kinase 3 (GSK3), at Ser 21 in α subunit and at Ser 9 in β subunit,
resulting in the inhibition of GSK3 kinase activity [10-13]. GSK3 is a
well-conserved kinase, originally identified as an enzyme that regulates
glycogen synthesis in response to insulin [14].Further studies have
demonstrated that GSK3 phosphorylates a broad range of substrates,
including several transcription factors [15,16]. Moreover, GSK3 was
eventually identified as being capable of phosphorylating cyclin D1 on
T286 and inducing its rapid turnover in a proteasomal-dependent
manner [17,18]. Consequently, GSK3 inhibition by AKT
phosphorylation leads to an accumulation of cyclin D1.Furthermore,
Lee et al. have demonstrated the increased mRNA expression of cyclin
D1 after re-feeding, with amino acids specifically responsible for
enhancing cyclin D1 mRNA levels [9] and (Figure 1). However, the
molecular mechanisms underlying this increase remain elusive. Thus,
we consider that it is necessary to investigate which amino acid oracids
are responsible for cyclin D1 overexpression in hepatocytes after
feeding. Subsequently, this knowledge may lead to the development of
non-invasive therapies to control liver gluconeogenesis.

Figure 1: Schematic diagram showing the regulation of
gluconeogenesis by CDK4 in liver. Adapted from (10)
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The scenario described above promotes an activation of the
holoenzyme cyclin D1–CDK4, which translates into decreased
circulating glucose as a consequence of the inhibited expression of
main genes involved in liver gluconeogenesis, namely Pck1 and G6pc.
Expression of Pck1 and G6pc is mainly regulated by PGC-1α
(peroxisome-proliferator-activated receptor-γ-coactivator-1α), whose
activity is regulated by acetylation (inhibition) and deacetylation
(activation).The histone deacetyl transferasesirtuin 1 (SIRT-1)
deacetylates and activates PGC-1α [19],whereas GCN5 (general
control non-repressed protein 5) acetylates PGC-1α and represses its
co-transcriptional activity [20].

Activation of cyclin D1-CDK4 by insulin does not affect SIRT-1
activity. On the contrary, once the CDK4-cyclin D1 complex is active,
this directly phosphorylates GCN5, increasing its acetyl transferase
activity and suppressing hepatic glucose production by acetylation and
inhibition of PGC-1α, which, in turn, inhibits the transcription of
gluconeogenic genes (Figure 1). These results were corroborated with
several molecular strategies: knock-down experiments, the use of non-
phosphorytable GCN5 alleles, CDK4 chemical inhibition, and the use
of different cyclin D1mutants. Consequently, the loss of holoenzyme
activity resulted inaugmented gluconeogenesis and in higher levels of
circulating glucose. In addition, in many in vivo studies, an
involvement of PPARs was observed in the regulation of energy
metabolism by the liver [21,22].

These discoveries indicate a potential crosstalk between the proteins
of cell cycle control and metabolic machinery. Very recently, Lee and
colleagues [9] contributed striking evidence toward these discoveries.
They ingeniously showed using cells and animal models that insulin is
capable of activating cell cycle machinery in hepatocytes to control
glucose homeostasis. Thus, a new rolefor CDKs emerges,
independently of previous ones related to cell division. This fact,
combined with the role of CDK4 in pancreatic β-cell proliferation and
insulin secretion, points to cell cycle machinery as a central regulator
of systemic glucose homeostasis.

Many interesting questions remain open, and answering them can
help provide a more complete view of CDK control in liver
gluconeogenesis. Future investigations should determine whether
CDK4 phosphorylations over FoxO3A trigger any physiological
effects, perhaps modifying in some way cyclin D1 expression and
consequently affecting CDK4 activity. Another point to consider is if
the implication of CDKs is restricted to liver gluconeogenesis or if they
are also involved in the metabolic regulation of other tissues such as
skeletal muscle or adipose tissue. Finally, another unanswered
question is if CDK6, also activated by D type cyclins, may play a
similar role in the liver.

These results open a new field of research aimed at deciphering the
metabolic functions of cell cycle components, as well as, in an
opposing manner, the regulation of cell cycle progression by metabolic
genes, not only in the liver but also in other organs and tissues. A
greater understanding of CDKs may pave the way for developing the
use of these proteins as therapeutic targets for metabolic diseases.
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