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Abstract
Pulmonary hypertension is an unremitting disease characterized by progressive increase of pulmonary vascular 

resistance and vascular remodeling. Due to poor understanding of the molecular basis of the pathogenesis, there are 
currently limited options available for the treatment of this devastating disease. Recent studies with Cav1-/- mice and 
other genetically modified animal models as well as experimental animal models of pulmonary hypertension have 
demonstrated the critical role of Caveolin-1 deficiency in the pathogenesis of pulmonary hypertension. Here, we will 
review the current knowledge about the role of Caveolin-1 signaling in the mechanisms of pulmonary hypertension 
focusing on protein kinase G nitration and STAT3 activation and provide insights into the molecular basis of the 
pathogenesis of human pulmonary hypertension.
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Introduction
Pulmonary hypertension (PH) is characterized by a progressive 

increase in pulmonary vascular resistance and vascular remodeling [1-
2]. PH features several clinical manifestations such as vasoconstriction, 
pulmonary vessel remodeling, intravascular thrombosis, and 
endothelial dysfunction [1-4]. The stiffening of artery walls as well 
as lumen narrowing make it more difficult for the heart to pump 
blood through the pulmonary circulation. Such strain on the heart 
causes the right ventricle to eventually weaken and fail. Progressive 
PH is currently an incurable disease with a high mortality rate, due 
to poor understanding of the molecular mechanisms underlying the 
pathogenesis and hence limited options available for the prevention 
and treatment of progressive PH [5-6]. Idiopathic pulmonary arterial 
hypertension (IPAH) is the most severe form of PH, which without 
treatment leads to right heart failure and premature death [2-4].

Caveolae are 50 to 100-nm vesicular invaginations of the cell 
plasma membrane [7]. Besides their critical role in mediating vesicular 
trafficking, caveolae serve as signal transduction microdomains to 
concentrate and orchestrate many signaling events [8-9]. Caveolin-1 
(Cav1), a 22 kDa protein abundantly expressed in many non-muscle 
cell types, especially in endothelial cells and adipocytes, is the 
scaffolding protein of caveolae [10-11]. Cav1 binds many signaling 
molecules such as eNOS, receptor and non-receptor tyrosine kinase 
receptors, G protein-coupled receptors, GTPase, calcium channels, 
integrins, as well as components of the mitogen-activated protein 
kinases, and regulates their functions [12-18]. The integral nature 
of Cav1 in signaling transduction implicates its important roles in 
health and diseases. Given the comprehensive review by Mathew R. 
regarding the cell-specific dual role of Cav1 in the pathogenesis of PH 
[19], we here discuss the recent findings about the pathogenic roles of 
defective Cav1 signaling in the mechanisms of PH and focus on Cav 
1 deficiency-induced nitration of ptotien kinase G (PKG) as well as 
STAT3 activation.

Genetic deletion of Cav1 induces PH in mice

To study the (patho) physiological role of Cav1, several groups 

have generated Cav1-/- mice a decade ago. Surprisingly, Cav1-/- mice 
are viable although there is lack of caveolae in Cav1-expressing cells 
such as endothelial cells [20-22]. However, it has been shown that 
Cav1-/- mice develop PH (greater than 80% increase of pulmonary 
arterial pressure) [22]. These mice exhibit right ventricle hypertrophy 
associated with marked increase of right ventricular contractility and 
diastolic function [22] and increased pulmonary vascular resistance as 
well as pulmonary vascular remodeling evident by increased medial 
thickness and muscularization of distal pulmonary vessels [23]. Studies 
have also shown decreased pulmonary artery density and defective 
pulmonary artery filling [24]. Consistent with the role of Cav1 
deficiency in promoting cell proliferation in vitro [25-27], Cav1-/- lungs 
exhibit hypercellularity and alveolar septal thickening [20-21, 23]. 
Endothelial re-expression of Cav1 in Cav1-/- background rescues the 
pulmonary hypertensive phenotypes seen in Cav1-/- mice [28]. Taken 
together, these data provide unequivocal evidence about the critical 
role of Cav1 deficiency in the pathogenesis of PH.

Cav1 deficiency is involved in the pathogenesis of experimental 
models of PH

Rats treated with one dose of monocrotaline (MCT) show loss of 
Cav1 prior to the onset of severe PH [29]. The progressive loss of Cav1 
in rat lungs starts as early as 48h and peaks at two weeks post-MCT 
challenge. Evidence of Cav1 involvement in PH is also observed in other 
animal models of PH such as myocardial infarction [30] and SU5416/
hypoxia-induced severe PH [31]. In the latter studies, Cav1 expression 
is selectively decreased in the complex cellular arterial lesions [31]. 
Importantly, administration of a cell-permeable Cav1 mimetic peptide 
corresponding to the putative scaffolding domain (amino acids 82-101) 
prevents loss of Cav1 and development of PH in MCT-challenged rats 
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[32]. These studies further demonstrate the pathogenic role of Cav1 
deficiency in the development of PH. However, it remains unclear 
how treatment with the Cav1 mimetic peptide prevents loss of Cav1. 
Previous studies have shown that this peptide can inhibit eNOS activity 
and reduces inflammation in vivo [33].

Persistent eNOS activation and resultant PKG nitration 
secondary to Cav1 deficiency plays a causal role in the 
pathogenesis of PH in Cav1-/- mice

Cav1 is a critical negative regulator of eNOS activity. We and others 
have shown chronic eNOS activation and marked increase of nitric 
oxide (NO) production in the circulation and also in lung tissues in 
Cav1-/- mice [20-23]. To gain insight into the role of eNOS activation in 
the mechanism of PH, we have used a double knockout (DKO) mouse 
model with genetic deletions of both Cav1 and NOS3 (encoding eNOS) 
[23]. In contrast to Cav1-/- mice, DKO mice do not develop pulmonary 
hypertension exhibiting normal right ventricular systolic pressure and 
pulmonary vascular resistance. Pulmonary vascular remodeling is also 
inhibited in DKO lungs. Consistently, treatment of Cav1-/- mice with 
L-NAME, a pan-NOS inhibitor reverses the hypertensive pulmonary 
phenotypes seen in Cav1-/- mice [23,34]. These data demonstrate the 
causal role of eNOS activation in the pathogenesis of PH in Cav1-/- mice. 
eNOS activation secondary to Cav1 deficiency leads to formation of the 
damaging reactive oxygen species (ROS) peroxynitrite which modifies 
proteins and regulates their function through tyrosine nitration 
[23]. Prominent nitrotyrosine immunostaining is evident in Cav1-/-

pulmonary vasculature. PKG, the downstream target of NO signaling 
responsible for vasorelaxation formation, is found nitrated and its 
kinase activity is impaired in Cav1-/- lungs. In vitro, direct incubation 
of PKG-1α with peroxynitrite impairs its kinase activity. Specifically, 
mutation of tyrosine residues 345 and 549 in the kinase domain of 
human PKG-1α abolishes PKG nitration-mediated impairment of 
PKG activity. In the DKO lungs, PKG nitration is inhibited and PKG 
kinase activity is normalized. L-NAME treatment and superoxide 
scavenging also inhibit PKG nitration and reverse PH in Cav1-/- mice. 
Restoration of PKG activity by overexpression of PKG-1 reduces right 
ventricular systolic pressure and pulmonary vascular resistance. These 
data suggest that oxidative/nitrative stress-induced PH in Cav1-/- mice 
is ascribed to impaired PKG kinase activity through tyrosine nitration. 
It is interesting to determine whether treatment with the Cav1 mimetic 
peptide in Cav1-/- mice will result in decreased PKG nitration through 
inhibition of eNOS activation and thereby reverses PH.

However, eNOS-derived NO is in general considered to be 
protective [35]. eNOS-/- male mice under normoxic condition are mildly 
pulmonary hypertensive (less than 20% increase in RVSP) [36,37]. In 
response to mild hypoxia, both male and female eNOS deficient mice 
develop severe PH [38]. Contrary to our finding where increased eNOS 
activity in Cav1-/- mice is shown to be crucial for the mechanism of 
PH, in previous studies the overproduction of NO in eNOS transgenic 
mice inhibits the increase in RVSP and lung vascular remodeling as 
well as right ventricular hypertrophy induced by chronic hypoxia 
[39]. Our recent study demonstrates increased superoxide production 
in Cav1-/- lungs (Zhao et al., unpublished observations), which reacts 
with eNOS-derived NO to form peroxynitrite and thereby induces 
PH in Cav1-/- mice. In agreement with our finding, NO alone did not 
induce tissue injury even at high concentration [40], whereas NO in 
the presence of superoxide produces peroxynitrite and subsequently 
causes severe nitrative stress and tissue injury [41-43]. Importantly, 
inhibition of NO production by L-NAME reverses the pulmonary 
alterations responsible for PH in Cav1-/- mice [23,34]. Together, these 
data show a critical role of Cav1 in the pathogenesis of PH through its 

tight regulation of eNOS activity such that disruption of the negative 
regulation of eNOS by Cav 1 leads to pulmonary vascular remodeling 
and PH through PKG nitration.

PKG nitration-mediated impairment of PKG activity may be 
a common mechanism of PH induced by tissue hypoxia and 
inflammation

PKG nitration and resultant impairment of PKG activity in the 
pulmonary vasculature is also involved in the mechanism of PH induced 
by hypoxia [44,45]. It has been shown that hypoxia impairs PKG 
activity and PKG-mediated relaxation in ovine fetal intrapulmonary 
veins through both downregulation of PKG expression and tyrosine 
nitration of PKG [45]. Other studies also show decreased PKG activity 
and resultant attenuated vasodilatory responses to exogenous NO 
and cGMP in rats following chronic hypoxia [44]. The impaired PKG 
activity is not due to decreased PKG expression as PKG expression is in 
fact upregulated in the rat pulmonary vasculature following four week 
hypoxia [44]. Although there is conflict about the expression levels of 
PKG in these two reports, both point to the role of PKG nitration in 
impairing its kinase activity. It is likely that decreased PKG activity in 
rats following chronic hypoxia is the result of hypoxia-induced PKG 
nitration. Recently, Lisanti and colleagues have shown that stromal 
cells lacking Cav1 mimic a constitutive hypoxic phenotype [46]. These 
Cav1 null cells may experience mitochondria dysfunction, leading to 
nitrative stress as evident by peroxynitrite formation. In contrast to the 
observation in Cav1-/- mice, hypoxia-induced PKG nitration is eNOS-
independent but iNOS-dependent [45]. Thus, it is possible that both 
tissue hypoxia and inflammation will result in increased nitrative stress 
and PKG nitration through iNOS. In turn, PKG nitration impairs PKG 
activity and thereby induces PH.

STAT3 activation secondary to Cav1 deficiency is attributed 
to the pathogenesis of PH

STAT3, a member of the signal transducer and activator of 
transcription is translocated to nuclei upon phosphorylation and 
subsequently induces expression of genes involved in cell proliferation 
and anti-apoptosis including Bcl-xL, cyclin D1 and survivin. All of 
these molecules have been implicated in PH [47,48]. Cav1 deficiency 
results in STAT3 phosphorylation in Cav1-/- lungs [30]. In MCT-treated 
rat lungs, decreased Cav1 expression is associated with increased 
phosphorylation of STAT3 and upregulation of cyclin D1 [30,32]. 
Administration of Cav1 mimetic peptide restores Cav1 expression 
and inhibits STAT3 phosphorylation and upregulation of cyclin D1, 
which is accompanied by inhibition of PH [32]. Given that STAT3 
phosphorylation is a downstream effector of proinflammatory cytokine 
interleukin-6, and hypoxia activates STAT3, STAT3 phosphorylation 
may be an important mediator of PH associated with inflammation in 
human and experimental forms of PH [49].

Cav1 deficiency is implicated in the pathogenesis of PH in 
humans

Plexiform lesion samples taken from deceased patients with severe 
PH show abnormal growth of endothelial cells as well as smooth 
muscle cells. Cells of both types in these lesions have dramatically 
decreased levels of Cav1, whereas tissue from other parts of the lung 
has ubiquitous expression. Heme oxygenase 1 levels also mirrored 
Cav1, where lack of antioxidant properties may exacerbate oxidative 
stress and PH, as discussed above. The authors suggest the lack of 
Cav1 as a mechanism for hyperproliferation and apoptosis-resistance 
of these cells [31]. Other studies of human subjects suffering from 
IPAH showed decreased levels of Cav1 in whole lung lysates [50]. 
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Vessels from these patients show almost a complete lack of Cav1 in 
the endothelium. However, Cav1 expression was overexpressed in 
pulmonary vascular smooth muscle cells. Employing lung samples 
from IPAH patients, we have observed decreased Cav1 expression in 
IPAH lung tissues [23]. eNOS activity and PKG nitration are drastically 
increased in IPAH lung tissues in the absence of marked changes of 
eNOS and PKG expression [23].

Paradoxically, impaired bioavailability of NO is a key underlying 
feature for clinical and experimental pulmonary hypertension. It 
is possible that NO reaction with greater amount of reactive oxygen 
species in lung tissues from IPAH patients results in decreased 
bioavailability of NO although eNOS is activated. In addition, eNOS 
is robustly expressed in the plexiform lesions of IPAH lungs [51]. On 
the basis of the findings from Cav1-/- mouse lung, it is likely that Cav1 
deficiency in endothelial cells in IPAH pulmonary vasculatures results 
in eNOS activation and PKG nitration and thereby induces PH in 
IPAH patients. 

Conclusions
PH is characterized by progressive increases in pulmonary vascular 

resistance (PVR) and vascular remodeling, which without treatment 
leads to right heart failure and death. Prominent oxidative/nitrative 
stress is a hallmark of the pathology of severe PH [52-53]. Tissue 
hypoxia, ischemia, and inflammation all contribute to ROS production 
in the lung tissue of patients with severe PH [54-55]. Recent studies 
from genetically modified mouse models, experimental animal models 
of PH and lung samples from patients with severe PH including 
IPAH have demonstrated the critical role of Cav1 deficiency in the 
pathogenesis of PH. Cav1 deficiency induces nitrative stress through 
eNOS activation and ROS production, which causes PKG nitration and 
resultant impairment of PKG activity. Impaired PKG activity induces 
vasoconstriction and vascular remodeling and thereby PH (Figure 1). 
These studies provide a novel insight into the molecular basis of severe 
PH associated with oxidative/nitrative stress. It would be of great value 
to identify the source of superoxide which is essential for formation 
of peroxynitrite and PKG nitration and the underlying signaling 

pathway(s) activated by Cav1 deficiency. Thus, targeting such signaling 
pathway(s) to inhibit superoxide production and resultant PKG 
nitration may represent a novel therapeutic strategy for the prevention 
and treatment of severe PH including IPAH. Other studies also show 
Cav1 deficiency leads to

activation of STAT3. Activated STAT3 induces cell proliferation 
and apoptosis resistance and thereby contributes to vascular 
remodeling (Figure 1). Thus, targeting PKG nitration may represent 
novel therapeutic strategies for the prevention and treatment of PH.
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