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This perspective article offers our view on the current and future 
directions of the integration of “big” data and genome-wide engineering. 
In our perhaps not-so-distant view of the future, a desired phenotype 
can be simply envisioned and inputted into a computational algorithm 
to obtain a detailed experimental strategy that would make it happen. 
It is foreseeable that a detailed map of a fully integrated regulatory and 
metabolic network can be generated using already built-in capabilities, 
resulting from large-scale genomics, proteomics, transcriptomics and 
modomics data.

Two important questions that arise from genome-wide engineering 
approaches are: how can we systematically search the genome for targets 
that do something we care about? And how do we achieve predictable 
system-wide tunability of gene expression? As part of these answers, 
systems biology approaches have most recently turned to cellular 
regulators.

Already, the combination of systems-wide experimental approaches 
and mathematical modeling has allowed new ways of thinking about 
controlling and optimizing large-scale gene expression. In particular, 
the use of modeling tools supports the central vision of large scale 
genome engineering: that optimal gene targeting schemes can be 
determined a priori to allow rational synthesis of specific patterns that 
can best contribute to a desired trait. Recently, systems approaches to 
genome regulation have echoed “big data” approaches in biology, where 
a tremendous focus has been placed on the simultaneous large-scale 
characterization of all cellular effects (e.g. proteomics, transcriptomics, 
modomics) [1-4]. A vision of where the complete merging of 
computational and experimental systems approaches could lead us is 
depicted in Figure 1. 

The emphasis on the use of large biological data sets in strain 
engineering is evidenced by a number of experimental genome-wide 
engineering strategies that have recently emerged to rapidly evolve 
specific metabolic functions in the context of all natural metabolic 
pathways. These approaches (e.g. MAGE, CAGE, and TRMR [5-7]), 
are briefly described below and target both the coding content of the 
genome, as well as multiple promoter regions to introduce genome-
wide modifications that improve cellular fitness. 

Multiplex Automated Genome Engineering (MAGE) is capable of 
attaining genomic diversity by simultaneously introducing mutations 
in many locations of the genome in a single cell or across populations. 
In this way, MAGE rises as a cutting-edge technique by accelerating 
the evolution of improved metabolically relevant strains. This method 
allows for the automated large-scale programming, and evolution 
of cells and has been showcased by applying oligo-mediated allelic 
replacement in E. coli. One end goal of this approach is the optimization 
of metabolic pathways, with the ultimate purpose of overproducing 
industrially relevant compounds [5]. More Recently, hierarchical 
Conjugative Assembly Genome Engineering (CAGE) has been applied 
in the development of genome-wide replacement of all TAG for 
TAA stop codons in parallel across 32 E. coli strains [6]. Hierarchical 
Conjugative Assembly Genome Engineering (CAGE), MAGE’s more 

powerful sibling, enables the recombination of genomic modifications 
in pairs by hierarchically transferring the codon deletions from a donor 
cell to a recipient cell in a series of successive conjugations. Remarkably, 
this method can be applied so that all 314 stop codon modifications 
can be introduced into a single fully recoded strain. Ultimately, CAGE 
arises as a complementary method to the proven ability of MAGE to 
introduce nucleotide-scale modifications across the genome and allows 
for the in vivo assembly of modified chromosomes. While MAGE and 
CAGE enable the large-scale genomic modifications of relevant genes, 
these approaches assume that the targeted locations are known a priori 
(Box 1).

Tractable Multiplex Recombineering (TRMR) [7] is another 
genome-wide methodology that combines multiplex DNA synthesis [8-
12], recombineering [13-15] and barcoding technology [16,17], for the 
simultaneous mapping of genetic mutations and their corresponding 
traits. Application of this method has allowed perturbation of the 
expression levels of >95% of genes in E. coli by introducing DNA 
cassettes and barcode sequences upstream each gene. In general, a 
major breakthrough has been the ability to map thousands of genes in 
several conditions via the use of barcoded and microarray technologies. 
It is also worth noting that a series of other significant efforts have 
preceded the genome engineering methodologies summarized above. 
Others have included whole genome assembly [18], developing a 
“minimization” method in which large segments of unstable DNA are 
eliminated in the genome [19], and transforming entire genomes across 
microorganisms [20]. The Church group has written a relatively recent 
review of these genome engineering techniques [21]. This wave of 
large-scale combinatorial and evolutionary methods to engineer entire 
biological systems has been enabled by major advancements in DNA 
synthesis tools and by techniques for manipulating, synthesizing and 
recombining DNA, in an almost a la carte manner [21].

These experimental approaches have brought us closer to the 
dream of simultaneously targeting entire genomes for fast evolution. 
This has been in part due to the realization that creating complex 
phenotypes requires simultaneous manipulations of multiple genes 
[22,23]. These systems approaches have been highly justifiable by the 
understanding that control and regulation of cellular metabolism is 
distributed over multiple enzymes, and that multiple mutations are 
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Figure 1: The “dream” of In silico-aided genome-wide engineeering.
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required to alter expression even of a single enzyme [24]. Importantly, 
what these approaches have in common is the emphasis on rationally 
creating the shortest evolutionary path to a desired trait. These 
techniques, in essence, try to rewire the many synergistic, regulatory 
and feedback effects present in cellular circuitry. These methods 
also aim to modify levels of enzymes involved in multiple enzymatic 
pathways (e.g. multiple knockouts that can redirect metabolic flux) for 
greater perturbation of metabolic behavior. However, to date, most 
genome-wide approaches have been demonstrated in the context of 
model organisms. A challenge moving forward will be to showcase 
large-scale strategies to control global gene expression in a targeted 
way in other organisms besides E. coli and Saccharomyces cerevisiae. 
In addition, these methods operate ad hoc, targeting a vast number 
of enzymes and proteins that might not be functionally related to a 
desired phenotype. A major risk with these approaches is the tradeoff 
between achieving more diversity and perturbing larger gene sets as 
the latter can interfere with function; this is especially the case, as these 
strategies can represent uncoordinated genome modifications. In this 
case, a major challenge is the risk of deteriorated strain performance, 
given that resulting metabolic configurations do not take into account 
optimal interdependence of the affected pathways. 

To help predict beneficial genome targets that could be tuned 
simultaneously to produce optimal phenotypes, several genome-
wide metabolic models and optimization frameworks have been 
constructed [25]. Importantly, a series of optimization methods have 
been developed [26-30], to formulate strategies a priori for rerouting 
metabolites by controlling gene expression in a highly rational 
way. As an example, the Maranas’ lab recently developed a cellular 
optimization framework called OptForce (an improvement to previous 
work with OptKnock and OptReg). This approach uses flux data from 
wild type cells to determine which genes need to be up -or down-
regulated by identifying fluxes that would have to change significantly 
relative to wild type, in order to achieve a metabolic objective [26]. 
Although similar to Optknock, OptORF (Box 1) has been developed 
to specifically account for potential manipulation of transcriptional 
regulation [29]. In an attempt to further contribute to the modeling of 
regulation, a different group has developed a flux scanning technique, 
based on enforced objective flux (FSEOF) to maximize a biomass 
objective [31]. Thus far, these simulations have been used to identify 
reactions (and, therefore, gene targets) that have large shifts in flux 
when product formation is high. It is encouraging that these (and other 
similar) methods have aided the rational design of several metabolite 
producing strains [32,33]. 

As we ponder upon where to go next with guiding genome-wide 
regulation, the “Utopia” of genome-wide engineering becomes an 
important frame of reference. That is, we would love for computational 
systems models to lay the path towards tapping into relevant patterns 
of gene expression that are actually important to the function in 
question. Recent collaborative databases such as K-base and subtiwiki 
[34], highlight current interest in dovetailing experimental and 
computational approaches into powerful engineering tools. The 
ability to obtain a coherent genome-wide engineering game plan 
“from the get-go” will likely offer an important advantage over the 
large-scale regulation of unsynchronized regulators (e.g. unrelated 
transcription factors), by random library approaches. In addition, 
experimentalists continue to envision several abilities that include: 
targeting the minimal number of molecules to induce significant strain 
diversity, simultaneously managing functionally diverse pathways and 
preventing disruption of any other cellular activities by isolating the 
engineering of an individual metabolic function.

So what can computational systems approaches do? The prediction 
of organism-wide impact of regulators and variants thereof on a 
specific phenotype requires thorough quantitative understanding of 
the expression of the regulating entities, in the context of specific intra- 
and extra-cellular conditions. Moreover, one requires a clear map 
of the effect of changing these regulators on intracellular metabolic 
fluxes, proteins and mRNA transcript levels. However, mathematical 
understanding of cellular regulation is in its incipient stages [35,36]. 
Given that current (metabolic flux and kinetic) models do not explicitly 
reflect the mechanistic influence of any form of gene regulation, full 
predictive capabilities for deciphering which regulators to target do not 
yet exist. Yet, it would be remarkable to determine genomic targets a 
priori to create desired diversity for strain customization based on a 
desired optimization objective. Such a vision of in silico-aided genome 
engineering is depicted by Figure 1. In the perhaps not-so-distant 
view of the future, a desired phenotype can be simply envisioned 
and inputted into a computational algorithm to obtain a detailed 
experimental strategy that would make it happen. It is foreseeable that 
a detailed map of a fully integrated regulatory and metabolic network 
can be generated using already built-in capabilities, resulting from 
large-scale genomics, proteomics, transcriptomics and modomics 
data. In this way, it would be highly feasible to obtain (1) potential 
molecular and/or pathway targets, (2) genome engineering strategies 
and (3) simulation of how genome modifications would play out in 
a biologically-relevant way. Importantly, these would offer a highly 
guided strategy for executing effective systems-wide engineering at 
the bench. Moreover, this includes the vision of an iterative process 
where experimental data obtained from phenotypic evaluations will be 
used for continual algorithm improvement. If we further stretch our 
imagination of the future, it is highly possible that, before too long, such 
an integrated in silico-experimental setup can operate in real time. It 
is even more exciting to consider the possibility of a feedback closed-
loop system that would continually optimize a target living system for 
a desired phenotype base on generated data. Rapid progress is already 
being made towards complete integration of large-scale experimental 
and computational efforts that target both metabolic and regulatory 
pathways, although we are only at an early stage. 
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