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Determining the functional roles of cancer stem cells (CSCs) and 
epithelial to mesenchymal transition (EMT) in carcinogenesis and 
tumorigenesis are pivotal topics in cancer biology research in general 
and pancreatic cancer in particular. Several publications, including 
ours, have demonstrated that CSCs and EMT function in tandem, 
ultimately leading to cancer progression and metastasis [1]. This 
has been demonstrated in breast, pancreas, and colorectal cancers 
and likely occurs in all types of cancers. A pressing issue in the field 
of CSC and EMT research is that of pancreatic adenocarcinoma 
(PDAC), as it has the worst prognosis of any major malignancy with 
a 3% 5-year survival rate [2]. Major obstacles in treating pancreatic 
cancer include delayed diagnosis, extensive local tumor invasion, and 
early metastasis. CSCs, or cancer initiating cells (CICs), represent 
approximately 1% to 5% of the tumor, and are capable of unlimited 
self-renewal, and are often resistant to chemotherapy and radiation 
therapy [3]. This may explain why these treatments do not cure or 
prevent recurrence of PDAC [4,5]. Improving survival for all types 
of cancer likely hinges on the identification and eradication of CSCs. 
The existence of CSCs was first demonstrated in acute myelogenous 
leukemia [6] and subsequently verified in breast [7], pancreatic [8], 
and brain tumors [9-11]. The CD133+ subpopulations from brain 
tumors can initiate clonally derived neurospheres in vitro showing 
self-renewal, differentiation, and proliferative characteristics similar 
to normal brain stem cells [9-11]. In a recent study, a subpopulation 
of CD44+ CD24+ ESA+ cells derived from primary human pancreatic 
adenocarcinoma CSCs [8] were implanted in immunocompromised 
mice and resulted in enhanced tumorigenic potential. We have 
recently demonstrated that doublecortin and CAM kinase-like-1 
(DCAMKL-1) is a pancreatic stem cell marker that is upregulated in 
pancreatic cancer and may be a marker of CSCs [1,12].

It has been hypothesized that CSCs and cancer cells arise from 
stem cells due to external injury or mutation in the genome. These 
stem cells can be distinguished from other cells by two characteristics: 
(a) self-renewability and (b) pluripotency. Pluripotency is the ability of
a cell to differentiate into any cell type and is a unique characteristic
of embryonic stem cells (ESCs). Pluripotency transcription factors
OCT4, SOX2, Nanog, and KLF4 form regulatory networks and
influence a wide spectrum of downstream genes [13]. Overexpression
of these factors can dedifferentiate human and mouse somatic cells
into induced pluripotent stem cells (iPSCs). This indicates that CSCs
and iPSCs behave in a similar manner.

There are several links between CSCs and iPSCs, including the 
p53 gene. p53 is a tumor suppressor gene and is a master regulator in 
cancer prevention. Furthermore, it has been demonstrated that p53 
prevents pluripotency. Blocking the p53 pathway results in improved 
efficiency of transformation of differentiated cells into iPSCs. Also, 
p53 is mutated in various cancers and overexpression in cancer cells 
leads to apoptosis. p53 is not the only cancer-related factor important 
for the creation of iPSCs. The reprogramming factors OCT4, SOX2, 

Nanog, KLF4, c-Myc, and Lin28 have also been suggested to be 
oncogenes and may be implicated in the generation of various 
cancers. OCT4 is overexpressed in CD133+ lung cancer stem-like 
cells and plays a crucial role in maintaining cancer stemness and 
chemoresistant properties [14]. OCT4 has also been demonstrated to 
play a major role in liver [15], non-small cell lung [16], and gastric 
[17] cancer initiation and progression. Over-expression of OCT4
and Nanog has been observed in human pancreatic metaplastic
ducts, and that increased OCT4 expression precedes Ras mutation.
These data suggest that OCT4 and Nanog are associated with early
stage pancreatic carcinogenesis and play an important role in cancer
progression [18]. SOX2 is up-regulated in early pancreatic cancer
lesions [19] and in a majority of advanced tumors [20]. In the MCF-7
breast cancer cell line, SOX2 over-expression stimulated anchorage
independent growth and induced tumor growth in mice, while
its knockdown produced converse effects. [21]. The KLF4α gene is
upregulated in aggressive human pancreatic cancer cells and tumor
tissues. Overexpression of KLF4α results in pancreatic tumor growth
in mice [22]. All these data taken together indicate that factors
responsible for reprograming cells to iPSCs play a major role in CSCs.
These data suggest that iPSCs are analogous to ‘man-made CSCs’.

Multiple authors have shown that these transcription factors are 
regulated, at least in part, by microRNAs (miRNAs). miRNAs are 
non-protein coding RNAs that regulate gene expression and play 
an important role in iPSCs, CSCs, and cancer. miR-145 specifically 
inhibits the aforementioned pluripotency factors by binding the 
3’ untranslated mRNA region, leading to inhibition of ESCs, self 
renewal, and induction of differentiation [13]. Furthermore, loss 
of miR-145 impairs differentiation and elevates OCT4, SOX2, and 
KLF4. Additionally, it has been demonstrated that the miR-145 
promoter is bound and repressed by OCT4 in ESCs. This indicates 
(a) the existence of a direct link between the core reprogramming
factors and miR-145, and (b) the presence of a double-negative
feedback loop involving OCT4, SOX2, KLF4, and miR-145 [13]. miR-
145 demonstrates tumor suppressor properties and is downregulated
in cancer tissue/specimens. Evidence supporting that loss of miR-
145 (miR-143/145 cluster) is observed in KRAS mutated pancreatic
cancers, and restoration of these miRNAs abrogates tumorigenesis.
Furthermore, Ras-responsive element binding protein 1 represses
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miR-143/miR-145 promoter activity, indicating that repression is 
an early event in pancreatic cancer initiation and progression [23]. 
Additionally, it has been demonstrated that miR-143/145 is associated 
with bone metastasis of prostate cancer and involved in regulation 
of EMT. Ectopic expression of miR-143/145 results in repressed 

evidence indicates that miR-145 is a master regulator of iPSC factors 
in ESCs and CSCs, and may play an important role in inhibition of 
pancreatic cancer initiation, progression, and EMT.

Understanding the miRNA pathways and the molecular 
mechanisms that control them is paramount to the elucidation of 
CSC self-renewal and pluripotency. Furthermore, understanding the 

improving cancer treatment modalities, as iPSCs (reprogrammed 

desired cell types. It may be assumed that CSCs are reprogrammed 

malignant cell types. We predict that miR-145 has great promise as 
a potential drug target as it suppresses pancreatic cancer initiation, 
progression, and EMT by repressing key pluripotency factors. 
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