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To optimize the survival of patients in cancer clinical trials requires 
that rational, pharmacogenomic strategies in cancer clinical trials are 
adopted which include specific molecular targeting of cancer cells that 
are resistant to existing cancer therapies. Such novel strategies must 
be based on adequate cancer genomics data [1] and on a detailed 
understanding/modeling of cancer cell genomes, the modifications of 
cancer signaling pathways and the epigenetic mechanisms involved 
in cancer. It can be said in general that “all cancers arise as a result 
of changes that have occurred in the DNA sequence of the genomes of 
cancer cells” [1]. Cancer research and clinical trials are now moving 
into a completely new phase in which it has become feasible to obtain 
the complete DNA sequences for large numbers of cancer genomes 
that would provide essential information on how individual cancers 
have developed in specific patients. Novel translational oncogenomics 
research [2] is thus rapidly expanding through the application of 
highly sensitive and specific advanced technology, novel research 
findings, computational tools and complex models utilized to solve 
both pharmaceutical and clinical problems. Multiple sample analyses 
from several recent clinical studies have shown that gene expression 
data for cancer cells can be employed to distinguish between tumor 
types as well as to predict outcomes. Potentially important applications 
of such results are individualized human cancer therapies [2-4] or, in 
general, ‘personalized medicine’ that will have to be validated through 
optimally designed clinical trials in cancer [4]. Such treatments 
based on personalized medicines form the subject of the new field of 
Pharmacogenomics.

Carcinogenesis is a very complex process that involves dynamically 
inter-connected biomolecules in the intercellular, membrane, cytosolic, 
nuclear and nucleolar compartments that form numerous inter-related 
pathways referred to as networks [2-6]. One such family of signaling 
pathways contains the cell cyclins. Cyclins are often over-expressed in 
cancerous cells [6]. This provides a basis for the development of novel 
rational chemotherapies and chemoprevention of cancers. Cyclins are 
proteins that link several critical pro-apoptotic and other cell cycling/
division components, including the tumor suppressor gene TP53 and 
its product, the Thomsen-Friedenreich antigen (T- F antigen), Rb, 
mdm2, c-Myc, p21, p27, Bax, Bad and Bcl-2, which all play major roles 
in carcinogenesis of many cancers. Cyclin-dependent kinases (CDK), 
their respective cyclins, and inhibitors of CDKs (CKIs) were identified 
as instrumental components of the cell cycle-regulating machinery. 
CDKs are enzymes that phosphorylate several cellular proteins thus 
‘fueling’ the sequential transitions through the cell division cycle. The 
analysis of cancer models including CDKs and signaling pathways 
suggests the possibility of optimizing novel clinical trials through the 
development of rational therapies of cancer and the possibility of re-
establishing cell cycling inhibition in metastatic cancer cells without 
subsequent transformations that lead to drug resistance [4].

On the one hand, quite remarkable progress has been made with 
cancer treatments through a handful of such clinical trials targeting 
cancer signaling pathways over the last decade [2-4,7-22]. This is the 
case especially with lung cancer treatments where new classes of anti-
cancer medicines were thoroughly tested [23], and the development 
of a few new anti-cancer drugs which involved rational pharmacology 

[24,25], as for example in the case of Imatinib. Such novel anti-cancer 
drugs were found to prolong cancer patient lives significantly for large 
numbers of lung cancer patients. However, many other drugs tested in 
numerous cancer clinical trials were shown not to have a significant 
impact on the growth of malignant tumors, and thus, did not have 
any positive outcomes for cancer treatments. It is therefore surprising 
that such unsuccessful or unremarkable compounds are currently still 
being tested in cancer clinical trials in several large countries. Several 
such controversial, cancer clinical trials in a few foreign countries may 
be only financially-driven, rather than being rational as advocated in 
this article. The critical need for optimizing clinical trials in cancer 
could only be satisfied by multi-disciplinary teams that can obtain 
both the necessary cancer genomics data and corroborate such 
individualized cancer genome data with carefully analyzed progress of 
the individualized treatments of the cancer patients involved in well-
designed clinical trials. 

On the other hand, in spite of the remarkable progress made in 
cancer chemotherapy through clinical trials with novel anti-cancer 
drugs, the expected `magic bullet’ for a complete treatment of cancers 
has not yet been found, and most of the clinical trials were not optimized 
for the maximum possible length of survival of the largest number of 
cancer patients involved in such advanced stage cancer trials. The latter 
fact raises the important issue of designing rational strategies for clinical 
trials in cancer that would optimize the survival rates of the maximum 
possible number of patients undergoing new clinical trials in cancer. 
The number of new anti-cancer drugs proposed for testing in cancer 
clinical trials is on a fast rise, and there is, therefore, an added urgency 
for maximizing cancer patients’ survival in such clinical trials through 
a rational selection of new drugs and optimal treatment strategies 
based on a knowledge of the specific cancer genomes involved. Only 
five years ago, this approach would not have been technically feasible 
on the time scale of typical clinical trials, and it would also have been 
prohibitively expensive. Optimized cancer patient survival in clinical 
trials is now possible through multi-disciplinary approaches and 
high-throughput, low-cost analysis of cancer genomics [26-28,36], 
interactomics/proteomics [29-36] and epigenetics [36,37]. 

The critical part of all such optimized cancer clinical (OCC) 
trials involves learning how to deal with the drug-resistant malignant 
tumor subpopulations of cancer patients that were previously treated 
only with very limited success. The determination of the complete, 
individual cancer genomes present in such therapy-resistant cancer 
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cell subpopulations [1] is therefore critical for the success of optimized 
clinical trials that maximize the survival rates of the cancer patients 
involved in the OCC trials. 
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