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Abstract
Hypoxia is defined as the reduction of oxygen levels below normal (normoxia), i.e. below 5% and may occur 

naturally in certain physiological processes such as normal embryo development, stem cell function and angiogenesis 
[1-6]. However, hypoxia also plays a major role in many human pathological conditions, including cancer, inflammation, 
vascular disease and chronic kidney disease [7-10]. When an organism or tissue is exposed to hypoxia, a series of 
events takes place within that organism or tissue so as to reinstate oxygen homeostasis. Even though the physiological 
responses to hypoxia are well-documented, the molecular changes taking place at the cellular level are still being 
investigated to this very day. Detection of hypoxia by the cell is achieved through oxygen sensor relays residing inside 
the cell, a class of deoxygenases called PHDs (prolylhydroxylases), which activate special transcription regulators that 
lead to changes in the gene expression profile of the cell [11]. The changes in gene expression are mainly commanded 
by a family of hypoxia-responsive transcription factors called HIFs (hypoxia-inducible factors) which, since their 
discovery in the early 1990s [12] have greatly facilitated molecular research in the field; research on HIFs has led to 
the discovery of other hypoxia-responsive transcription factors, as well as additional molecular processes that take 
place following hypoxia, which play a very distinctive role in the transcriptional outcome of the cell. Overall, hypoxia 
causes a cell cycle arrest at the G1 phase [13] and ultimately, a hypoxia-responsive mechanism for the remodelling 
of chromatin leads to the activation or repression of specific downstream target genes, to changes in the translational 
profile of the cell and even to epigenetic post-translational modifications in the cell [14-17]. 
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Introduction
Hypoxia is defined as the reduction of oxygen levels below 

normal (normoxia), i.e. below 5% and may occur naturally in certain 
physiological processes such as normal embryo development, stem 
cell function and angiogenesis [1-6]. However, hypoxia also plays a 
major role in many human pathological conditions, including cancer, 
inflammation, vascular disease and chronic kidney disease [7-10]. 
When an organism or tissue is exposed to hypoxia, a series of events 
takes place within that organism or tissue so as to reinstate oxygen 
homeostasis. Even though the physiological responses to hypoxia are 
well-documented, the molecular changes taking place at the cellular 
level are still being investigated to this very day. Detection of hypoxia 
by the cell is achieved through oxygen sensor relays residing inside the 
cell, a class of deoxygenases called PHDs (prolylhydroxylases), which 
activate special transcription regulators that lead to changes in the gene 
expression profile of the cell [11]. The changes in gene expression are 
mainly commanded by a family of hypoxia-responsive transcription 
factors called HIFs (hypoxia-inducible factors) which, since their 
discovery in the early 1990s [12] have greatly facilitated molecular 
research in the field; research on HIFs has led to the discovery of 
other hypoxia-responsive transcription factors, as well as additional 
molecular processes that take place following hypoxia, which play a 
very distinctive role in the transcriptional outcome of the cell. Overall, 
hypoxia causes a cell cycle arrest at the G1 phase [13] and ultimately, a 
hypoxia-responsive mechanism for the remodelling of chromatin leads 
to the activation or repression of specific downstream target genes, to 
changes in the translational profile of the cell and even to epigenetic 
post-translational modifications in the cell [14-17]. Hypoxia has long 
been recognised for its multifaceted role in cancer development and 
is regarded one of the most important features of solid tumours [18]. 
The hypoxic tumour microenvironment diverts the glucose flux into 
the pentose phosphate pathway (ie. there is no oxidative respiration) 
and cancer cells gain a proliferative advantage due to the limitation 
of oxidative damage by ROS [19]; as a result they evade apoptosis 
and immune surveillance, obtain genomic instability and unlimited 
proliferation potential, express various growth factors to promote 
angiogenesis and ultimately invade and metastasize [10]. In addition, 

this microenvironment presents an obstacle to conventional anti-cancer 
therapies [20], thus increasing the likelihood for malignant progression 
and metastasis. Therefore, tumour hypoxia is seriously considered in 
the prognosis and treatment of cancer patients, whereas therapeutic 
strategies for targeting the hypoxic cancer microenvironment are well 
underway.

In this article we give an overview of the current knowledge 
on the cellular response to hypoxia, including a summary of the 
transcription factors regulating it and the molecular processes resulting 
from it. We will give particular emphasis on the role of hypoxia in 
cancer development and treatment, with respect to changes in the 
transcriptional and translational profile of the cancer cell. Finally, we 
will discuss the present therapeutic modalities in overcoming hypoxia-
mediated drug resistance and the progress in the pharmacological 
design of hypoxia inhibitors as new cancer chemotherapeutics. Overall, 
since our field of expertise is pediatric oncology, we will at the same 
time attempt to present this information in relation to pediatric cancers.

The Cellular Response to Hypoxia
The HIF transcription factors

The HIF family of transcription factors are highly conserved 
heterodimeric proteins composed of α and β subunits. HIF- α consists 
of three isoforms: HIF- 1α, HIF-2α and HIF-3α, whereas HIF-β, also 
known as ARNT (aryl hydrocarbon receptor nuclear translocator), has 
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only one isoform, HIF-1 β [21]. The α subunits are similar in structure 
and contain basic helix-loop-helix (bHLH) and PAS (PRE-ARNT-SIM) 
domains, in addition to an ODD (oxygen-dependent degradation) 
domain that renders them labile in the presence of oxygen [11]. The 
HIF-3α isoform lacks the C-terminal transactivation domain that 
the other two possess, thus suggesting an inhibitory role on HIF-1 α 
and HIF-2 α [22]. Interestingly, the PAS domain, due to its primitive 
origin and involvement in circadian rhythms, is believed to suggest 
a link between the circadian light-dark cycle and oxygen availability 
[23,24]. Overall, ARNT is essentially a constitutively expressed subunit 
not regulated by oxygen levels, whereas HIF- α subunits are actively 
involved in conferring oxygen homeostasis [25]. Under normoxic 
conditions (≥ 5% O2), the special sensors called PHDs catalyse the 
hydroxylation (hence prolyl hydroxylation) of the ODD domain in the 
HIF- α and act as a signal for HIF- α recognition by the VHL (von 
Hippel-Lindau) tumor suppressor protein [26]. The VHL, in turn, 
acts as an E3 ligase substrate recognition component and promotes 
ubiquitination of HIF-α, thus marking it for rapid degradation by the 
proteasome [27]. In addition, a second type of hydroxylation of HIF- 
α may take place, the so-called asparaginyl hydroxylation, catalysed 
by a class of deoxygenases called FIHs (factors inhibiting HIF). FIHs 
negatively regulate the transactivation domain of HIF- α by preventing 
it from binding to its co-activators p300 and CBP, thus repressing its 
transcriptional activity [28]. In other words, normoxia results in HIF- α 
being either transcriptionally repressed or degraded by hydroxylation. 
On the other hand, in an acutely hypoxic environment, where oxygen-
dependent hydroxylation is inhibited, HIF-α translocates to the 
nucleus where it dimerizes with ARNT, thus avoiding degradation and 
increasing in stability [29]. Consequently, the HIF-α/ARNT complex 
recruits the necessary co-activators p300/CBP (and/or p160/SRC in 
the case of ARNT) in order to modify chromatin structure via histone 
acetylation and to be able to bind to target genes via its recognition 
sequence 5’-(A/G)CGTG-3’, thus increasing transcription of the 
target sequences [30,31]. Figure 2 diagrammatically represents the 
regulation of gene expression by HIF-1. Several hundreds of genes have 
been recognised as direct targets of HIF binding and transactivation, 
the most important ones regulating erythropoiesis, angiogenesis, 
glycolysis, vascular development, mitochondrial function, metabolism, 
cellular proliferation, cell migration and cancer. Examples include 
erythropoietin (Epo), vascular endothelial growth factor (VEGF), 
platelet-derived growth factor (PDGF), glucose transporter-1 (Glut-1), 
GAPDH, lactate dehydrogenase A (LDHA), p53 and MYC [24,32,33]. 
Recent evidence shows that HIF-1α preferentially binds to loci that 
have been transcriptionally active prior to the onset of hypoxia, further 
implying that the pre-existing differences in the basal gene expression 
of the cell may be responsible, at least in part, for the cell-type specificity 
in the response to hypoxia, as well as the promiscuity of certain genes 
to transactivation by the HIFs [34]. 

HIF-independent response to hypoxia

In addition to the HIFs, there are several other transcription factors 
and pathways that show altered activity as a result of hypoxia. These are 
outlined below.

Mammalian target of rapamycin (mTOR): Being a main 
regulator of cellular energy, mTOR’s normal function is to 
phosphorylate the ribosomal protein S6 kinase (S6K) and the eIF4E-
binding protein 1 (4E-BP1) and to promote the translation of mRNAs 
that are essential for cell growth and survival [35]. Under hypoxic 
conditions, however, mTOR phosphorylation of S6K and 4E-BP1 is 

markedly suppressed, thus inhibiting ribosomal biogenesis and cap-
dependent protein translation, respectively, in order to save cellular 
energy (ATP consumption) in the oxygen-limiting environment [36]. 
More specifically, hypoxia inhibits mTOR activity via the hypoxia-
inducible gene REDD1, through the TSC1/TSC2 tumour suppressor 
complex and the constitutive activation of S6K promotes cell death 
[37]. On the other hand, it has been suggested that in a hypoxic 
tumour microenvironment inhibition of the mTOR pathway might 
induce new energy conservation strategies in cancer cells and thus 
be critical for maintaining their malignant phenotype via growth 
retardation and accumulation in the G1 phase [36,38]. This could have 
major implications in the way we regard cancer therapy, as attempts 
towards a forced activation of mTOR signalling are already proving 
more effective than mTOR suppression in inhibiting cancer growth in 
studies with mice [39].

Endoplasmic reticulum (ER): Under conditions of hypoxic stress, 
in order to maintain protein quality or to induce cell death, the ER 
activates the unfolded protein response (UPR), a coordinated cell-
survival program mediated by three resident regulator kinases: PERK, 
IRE1 and ATF6. More specifically, upon hypoxic exposure, the ER 
induces phosphorylation of the eukaryotic initiator factor 2 alpha 
(eIF2 α) on Ser51 via activation of PERK, resulting in the rapid down-
regulation of protein synthesis [40]. Inactivation of PERK or inhibition 
of eIF2 α phosphorylation has a negative effect on cell survival and 
tumour cells possessing these properties show a higher apoptotic 
rate than tumours with a normal functioning UPR [41]. In addition, 
activation of the IRE1 kinase has been found to promote the splicing 
of the X-box binding protein (XBP1) pre-mRNA, resulting in hypoxic 
tolerance and tumour growth in vitro [42]. 

Nuclear factor-kappa B (NF-κB): This is essentially a family 
of seven transcription factors, encoded by the following five genes: 
RelA(p65), RelB, c-Rel, NF-κB1(p50/p105) and NF-κB2(p52/p100), all 
of which share an N-terminal DNA-binding and dimerisation domain, 
the Rel homology domain (RHD) [43]. Apart from being one of the 
most important regulators in the immune system and in inflammatory 
responses, the NF-κB pathway is also known for its implication in 
cell cycle progression and cancer [44,45]. Under hypoxic conditions, 
down-regulation of PHD2 directs an increase in NF-κB levels and up-
regulates the expression of IL-8 and angiogenin genes, thus causing 
angiogenesis [46]. The exact mechanism for the hypoxia-mediated 
induction of NF-κB has not been fully elucidated but a dual and 
opposing mode of action has been well established. For example, even 
though NF-κB acts as a survival signal on most cell systems, it has a 
pro-death effect on neuronal cells [47-49], a property currently subject 
to intense scrutiny in the research field. Recent studies have shown 
NF-κB to directly modulate HIF-1 α transcriptionally as a response to 
hypoxic stress [50,51]. Subsequent studies will reveal which subunits 
are involved in HIF activation and whether a reciprocal relationship 
exists. 

Tumor suppressor p53: Encoded by the gene TP53, the p53 
protein is so well-known for its tumour suppressor properties that it 
has been tagged “the guardian of the genome”. The importance of p53 
in preventing cancer is highlighted in the fact that the gene is mutated 
in over 50% of all the human cancers, whereas p53 null mice develop 
cancer very early in life [52,53]. Normally, p53 has a half-life of only a few 
minutes, as the Mdm2 ubiquitin ligase directly binds to it and mediates 
its proteolytic degradation; upon activation, however, p53 becomes 
subject to various post-translational modifications that disrupt the 
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Figure 1: Diagrammatic representation of oxygen levels in adult brain cells. PO2 (oxygen tension) varies with the cell type and the microenvironment of the 
respective organ. In the brain, physiological oxygen levels range between 2-5% whereas in the bone marrow physiological oxygen levels have been calculated to be 
highest (~5%) near the sinuses and lowest (1%) inside the cortical bone. Adapted from David M. Panchision (2009).
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Figure 2: Regulation of gene expression by HIF-1α. In normoxic conditions, FIH and PHDs hydroxylate residues in the CTAD and ODD domains of HIF-1α, which 
in turn activates VHL binding and ubiquitination of HIF-1α, ultimately leading to its proteasomal degradation. Under hypoxic conditions, however, the lack of oxygen 
inhibits the action of FIH and PHDs, so HIF-1α is able to stabilise and dimerize with HIF-1β, ultimately activating target gene transcription through recruitment of co-
activators. Adapted from Kenneth and Rocha (2008).

binding of Mdm2 and render p53 stable and transcriptionally active for 
a good few hours [54,55]. Activation is usually conferred as a response 
to DNA damage and results in either cell cycle arrest or apoptosis [53]; 
in particular, p53 interacts with the co-activator p300, as well as other 
transcription factors (eg. TFIID), so it is able to bind to damaged DNA 
in a sequence-dependent manner and to induce the transcription of 
downstream genes that are responsible for cell cycle inhibition or 
apoptosis [56,57]. Many studies have documented that p53 activation 
by hypoxia can be achieved by both HIF-1-dependent and HIF-1-
independent mechanisms but it appears to be a very atypical response, 
in the sense that it does not induce the transactivation of the same set 
of genes as other stress signals, as for example in the case of Bnip3L [58-
61]. Even though not all the p53 transcription targets have been defined 
so far, the role of p53 in hypoxia-induced apoptosis is profound. Under 
hypoxic conditions, p53 levels are believed to increase through an HIF-
1 α-mediated decrease in Mdm2 [62] but others have speculated that 
p53 protein levels may also be influenced by the severity (i.e. 5.0-0.1% 
O2) and duration of hypoxia (in hours versus days), as well as the cell 
type affected [63-65]. Like NF-κB, p53 also has a dual and opposing 

mode of activity in that it can serve either as a pro-survival signal or 
as a pro-death signal. Under moderate hypoxia (± 1.0% O2), p53 levels 
may be reduced so as to protect the cells from apoptosis, whereas under 
severe hypoxic conditions (≤ 0.1% O2, reaching anoxia) the situation 
may reverse, in that HIF-1 may induce p53 stabilisation and lead to 
apoptosis [63,66]. 

MYC: This refers to a family of four transcription factors containing 
a bHLH/LZ (bHLH/Leucine Zipper) domain: c-Myc, N-Myc, L-Myc 
and S-Myc [67]. The Myc protein can bind DNA via its bHLH domain 
and form heterodimers with its partner transcription factor, Max, 
through the LZ domain. The Myc-Max heterodimers are able to bind 
to specific DNA sequences, the Enhancer Box Sequences (E-boxes), in 
the promoters of their target genes, recruit histone acetyltransferases 
(HATs) and activate transcription [68,69]. On the other hand, Myc 
can also act as a transcriptional repressor through displacing the p300 
co-activator and binding to the Miz-1 transcription factor instead, 
hence inhibiting the expression of Miz-1 genes [70]. Overall, Myc 
proteins have essential functions in many biological processes, such 
as cell growth, proliferation, angiogenesis and genomic instability 
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[67,71]. The gene is frequently mutated in human cancers, resulting in 
its constitutive expression and leading to the unregulated expression 
of many other genes; a common example is the t(8;14) translocation, 
characteristic to the pathogenesis of Burkitt’s Lymphoma [72]. Under 
normoxic conditions, Myc promotes cell growth and proliferation via 
the repression of cyclin-dependent kinase inhibitors; under hypoxic 
conditions however, Myc activity is compromised by the antagonistic 
relationship between Myc and HIF for the binding sites of target genes 
[13,73,74]. More specifically, in low oxygen levels, c-Myc is replaced 
by HIF-1 and so induces expression of the cyclin-dependent kinase 
inhibitor p21 and causes cell-cycle arrest [75]. Many reports have also 
shown that in hypoxic cells HIF-1 α can reduce the expression of Myc 
target genes and inhibit transformation via direct binding to Myc or 
to its partners [74-76]. Interestingly, HIF-2 α has the opposite effect 
and promotes hypoxic cell proliferation by inducing c-Myc activity; it 
does so via stabilization of the Myc-Max heterodimer, which allows it 
to activate the expression of its target genes [77]. Overall, both Myc and 
HIF are directly involved in angiogenesis and cancer development, while 
recent studies have also shown that HIF-1 α and c-Myc cooperation 
is essential in c-Myc-induced tumorigenesis [78,79]. Finally, HIF and 
c-Myc have been found to synergise for the induction of shared target 
genes VEGF, HK2 (hexokinase) and PDK1 (pyruvate dehydrogenase 
kinase 1), in a cell-type-specific manner [80], so speculations are also 
being made on additional functional relationships between other 
important transcription factors, such as p53 and NF-κB. 

Activator protein 1 (AP-1): This refers to any heterodimeric 
protein combination resulting from dimers between the Jun, Fos 
and ATF (activating transcription factor) families, so, depending on 
the cell type and microenvironment, the role of AP-1 is multifaceted 
and highly complex. Overall, AP-1 is able to respond to a variety of 
stimuli, including cytokines, growth factors, stress signals, infections 
and has been associated with many important biological processes, 
such as embryonic development, differentiation, proliferation, 
apoptosis and even tumorigenesis [81,82]. Activation of certain AP-1 
dimer combinations (such as the c-Jun homodimer or the c-Jun/c-Fos 
heterodimer) induces the transcription of genes containing the TPA 
DNA recognition element (TRE; 5’-TGAG/CTCA-3’) via site-specific 
binding [83]. It has been well documented that hypoxia induces AP-1 
activity and mediates alterations in the gene expression of tyrosine 
hydroxylase, VEGF and endothelial nitric oxide synthase (eNOS) 
[84-86]. In addition, a functional cooperation seems to exist with 
other transcription factors in order to increase gene transcription; 
interestingly, AP-1 and HIF-1 cooperate to induce VEGF transcription, 
thus promoting vasculogenesis and angiogenesis [85,87,88]. AP-1 
has also been shown to be strongly activated by hypoxia in a series 
of different tumour types, such as colon cancer, glioblastoma and 
malignant melanoma [89]. Last but not least, a synergistic relationship 
has also been reported between AP-1 and NF-κB in the activation of 
common target genes, such as IL-8, contributing to the malignant 
progression of pancreatic cancer [90]. 

Other transcription factors: ATF-4 (activating transcription 
factor 4) is activated and stabilised independently of HIF by 
anoxia rather than hypoxia [91]; Egr-1 (early growth response 1), a 
transcription factor known for modulating the expression of genes 
involved in synaptic plasticity, cell growth and cell survival, is also up-
regulated by hypoxia independently of HIF and is actively involved in 
the pathogenesis of pulmonary thrombosis and vascular remodelling 
[92-94]; Ets-1 is induced by hypoxia in an HIF-regulated manner and 
plays a very important role in angiogenesis and cancer invasion [95]. 

Other transcription factors responding to hypoxia via transcriptome 
regulation include RTEF-1 (related transcriptional enhancer factor-1), 
GATA-2, the STAT family, Mash-2 (mammalian achaete-scute 
homologous protein-2) and GADD153 (growth arrest and DNA 
damage-153) [94]. 

Chromatin modifications in hypoxia

The cellular response to hypoxia recruits special transcription 
factors to the promoters or enhancers of their target genes, where 
they bind to specific DNA sequences and ultimately alter the gene 
expression profile of the cell. Considering that DNA is packaged into 
dense structures of chromatin called nucleosomes, accessibility of 
the transcription factors to their target areas may not always be an 
easy task. Adjustment of the chromatin structure to accommodate 
for the accessibility of transcriptional activators or repressors seems 
to be an essential mechanism for the appropriate gene expression. 
Chromatin is distributed into euchromatic and heterochromatic 
regions corresponding to transcriptionally active or repressed regions, 
respectively, depending on how tightly the structure is packed. 
Heterochromatin is the higher-order packed chromatin, generally 
inaccessible to transcription factors. The nucleosome is the basic repeat 
unit of chromatin and consists of an octamer that has two molecules 
of each of the four histones H2A, H2B, H3, H4 and 146bp of DNA 
wrapped twice around it; the globular domains of the histones are 
enclosed in the nucleosome, whereas their N-terminal tails protrude 
from it and facilitate histone modifications [96]. Linker histones (such 
as H1 and H5) are used to connect the nucleosomes together and to 
be able to fold the DNA into more compact structures, such as the 
heterochromatin regions [97]. Overall, chromatin structure can be 
altered so as to allow for alterations in the regulation of transcription 
mainly via three basic mechanisms: 

Post-translational modifications of the histones via their 
flexible tails: These refer to the covalent modifications of histones, 
such as phosphorylation, methylation, acetylation, ubiquitination, 
SUMOylation and poly(ADP-ribosyl)ation, that either alter the charge 
and structure of chromatin, or provide accessible DNA binging sites 
that are recognised by specific structural domains (eg. bromo- and 
chloro-domains) [98]. 

ATP-dependent nucleosome remodelling: This is essentially 
chromatin remodelling at the nucleosome level, via the utilisation of 
ATP as a source of energy by complexes such as the SWI/SNF, the ISWI 
and the MI-2/CHD [99]. These remodelling complexes create a shift of 
the DNA segments in the histone-DNA interactions and facilitate the 
disruption of the nucleosome structure [100]. 

Histone replacement modifications: This refers to the 
incorporation into nucleosomes of chromosome variants (mainly H2A 
and H3 variants) that are assembled and synthesized independently of 
DNA replication and which have profound epigenetic consequences in 
the transcriptional profile of the cell [101]. 

Under hypoxic conditions, the histone acetyltransferase (HAT) 
complex p300/CBP interacts with HIF and the acetylate histones in 
target genes, via inhibition of FIH-1, leading to an increase in localized 
histone acetylation and transcriptional activation of the target genes 
[17,30]. Other observations, however, have shown that the HIF-p300/
CBP interaction is responsible for the altered expression of only 30-
50% of the target genes, further demonstrating that not all of the 
hypoxia-responsive genes are transactivated by histone acetylation 
[102]. Histone deacetylases (HDACs) on the other hand, whilst 
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generally known for facilitating repression of transcription, in hypoxia 
can cooperate with HIF and regulate transcription either positively 
or negatively [14]. Accordingly, histone deacetylase inhibitors, which 
usually promote transcriptional activation, in the hypoxic environment 
turn into transcriptional repressors of HIF targets and promote HIF-
regulated angiogenesis [103-105]. Changes in histone methylation 
are not an exception to the chromatin modification repertoire in the 
hypoxic environment. In a recent study it was observed that following 
exposure to hypoxia, the responsive promoters of the VEGF and Egr-1 
genes displayed an increase of histone H3K4 trimethylation (usually 
associated with transcriptional activation) and a decrease in histone 
H3K27 trimethylation (generally associated with transcriptional 
repression), demonstrating a bivalent chromatin behaviour under 
hypoxic influence [15]. This may further suggest important epigenetic 
changes caused by modifications in the neighbouring cis- and trans-
acting elements of the histones or even by the recruitment of different 
co-activators and co-repressors that are yet to be determined. In 
the context of ATP-dependent chromatin remodelling, the SWI/
SNF complex also seems to contribute to the activation of HIF 
target genes in the hypoxic response. More specifically, the catalytic 
subunits of SWI/SNF enhance HIF-mediated activation of two highly 
homologous ATPases, an erythropoietin (Epo)-driven promoter and 
a synthetic 6XHRE-driven reporter; with the recruitment of HIF-1, 
these ATPases form two distinct remodelling complexes and target 
the promoters of two different genes, Epo and VEGF [106,107]. Even 
though both enzymes are recruited, along with HIF-1, to the promoters 
of these genes in a hypoxia-responsive manner and they induce 
transcriptional activation of Epo, they do not seem to be essential for 
the transactivation of VEGF [107]. This further demonstrates that 
chromatin remodelling due to the hypoxic response may be sufficient 
for the transcriptional activation of one gene but not for the successful 
transactivation of another. Further analysis of the cellular pathways 
involved in chromatin remodelling due to hypoxia will help to define 
the mechanisms that recruit specific transcription factors and their co-
factors to specific hypoxia-responsive target genes. 

The Role of Hypoxia in Cancer Development
Cancer development is a multistep process that requires the 

acquisition of a certain number of genetic or epigenetic mutations, 
resulting from genetic instability in the dividing cell. This instability 
is usually caused by defects in the mechanisms that control the cell 
cycle and normal cell differentiation and usually include: cell cycle 
arrest, resistance to DNA repair and to growth inhibition, evasion of 
immune surveillance and apoptosis, unlimited replication potential, 
angiogenesis, invasion and metastasis [108]. In addition, the 
carcinogenic microenvironment employs unique strategies so as to be 
able to overcome the suppressive effects of the normal surroundings 
and to facilitate disease progression, whilst also becoming resistant 
to conventional cancer therapies [109]. Hypoxia plays a very 
important role in both triggering the malignant transformation 
process and promoting adaptive cell responses within the tumor 
microenvironment. Most solid tumors contain regions with extremely 
low oxygen concentrations, a necessary prerequisite for cancer 
progression. Hypoxia in the tumor microenvironment usually occurs 
as a result of rapid cell proliferation, which distances cells from blood 
vessels, often occurring at a distance of 100-200μm from them. The 
newly formed vessels are usually aberrant and cannot meet the high 
nutritional demands of the proliferating cancer cells, or may become 
compressed or obstructed by tumor growth [110]. This forces the tumor 
cells to develop adoptive responses that will allow them to survive and 

proliferate under hypoxic conditions. A central player in these adoptive 
responses is the HIF-pathway. 

The HIF-pathway in cancer development 

As mentioned in the previous section of this review, HIF-1 mediates 
the cellular adaptive response to hypoxia by increasing dramatically 
in transcriptional activity and inducing the transactivation of at least 
100 hypoxia-responsive target genes. Many studies have demonstrated 
that most of the genetic alterations in tumor cells are synergistically 
interconnected with HIF-1 transcriptional activity, further 
highlighting the critical role of HIF-1 in cancer development. Indeed, 
HIF-1 is prevalent in many types of solid tumours and high expression 
usually correlates with poor clinical outcomes [111,112]. HIF-1α 
expression is usually an aggressive marker for prostate, oropharyngeal, 
oesophageal, head and neck, lung, ovarian and breast cancer, whereas 
HIF-2α is more frequently up-regulated in hepatic cancer, gliomas 
and neuroblastomas [113-116]. Hypoxia may additionally induce the 
expression of various growth factors that synergise with HIF-1 and 
promote cellular proliferation. Examples include EGF (epidermal 
growth factor), insulin, IGF-1 (insulin-like growth factor-1), IGF-2 
and PDGF (platelet-derived growth factor) [117]. At the same time, 
in order to promote cancer cell proliferation and survival, certain 
growth-inhibitory events may also be mediated by the hypoxia-
responsive genes; for example, mutations in the PTEN gene, a marked 
tumor suppressor, have been shown to promote tumor growth in 
glioblastoma cell lines in an HIF-1-coordinated manner [118]. On the 
other hand, certain animal model studies have shown that inhibition 
of HIF-1 decreases tumor growth, thus further supporting HIF-1-
mediated cancer progression [119,120], while others have linked HIF-
1 expression to higher apoptotic rates and increased patient mortality 
[121]. The latter, as mentioned earlier, is attributed to mechanisms such 
as the functional cooperation between HIF-1 and p53, which causes the 
activation of pro-apoptotic genes such as Bnip3L and hence promote 
hypoxia-induced apoptosis [60,122]. Overall, the finding that genetic 
and epigenetic alterations leading to oncogene activation and loss of 
tumor suppressor genes are correlated with increased HIF-1 activity, 
suggests that HIF over-expression represents a final common pathway 
in tumor pathogenesis, even if HIF activation is caused by conditions 
mimicking the effect of hypoxia [123]. To summarise, many studies 
have demonstrated the role of HIF-regulated gene expression in cancer 
development, including proliferation (MYC), angiogenesis (VEGF, 
PDGF), apoptosis (BNIP3), metabolism (PDK1, LDHA), DNA damage 
response (GADD45A), microRNAs (MIR210), extracellular matrix 
remodelling (LOX, MMP1), cell migration and invasion (CXCR4, 
SDF1) [124-127]. 

Hypoxia on cancer stem cells

Hypoxia seems to play an important role in maintaining the tumor 
stem cell (TSC) niche in the development of invasive cancer phenotypes, 
as shown from studies with cell cultures derived from pediatric 
patients. More specifically, it has been demonstrated through studies 
on pediatric neuroblastoma and rhabdomyosarcoma cell lines that the 
tumor stem cells, similar to normal stem cells, may share the unique 
property of migrating to the area of hypoxia and necrosis, where their 
highly tumorigenic fraction may be maintained and expanded [128]. 
In other studies with cancer stem cells, it was observed that hypoxia 
promotes the self-renewal capability of both the stem and the non-stem 
cell population; interestingly, the stem-like phenotype is induced more 
profoundly in the non-stem cell population and is accompanied by 
the upregulation of important stem cell factors, such as Oct4, c-Myc 
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and Nanog. This effect of hypoxia on cancer stem cells seems to be 
primarily mediated by HIF-2α, since its loss seems to cause a decrease 
in the stem cell proliferation capacity and self-renewal [113,129]. All 
of these findings suggest that, in a restricted oxygen environment, the 
TSC fraction is enhanced via the acquisition of the stem cell state but 
at the same time it is critically dependent on the HIFs for survival, self-
renewal and proliferation. 

Metabolism in hypoxic cells 

Under physiological normoxic conditions (~ 5% O2), cells convert 
glucose into energy (in the form of ATP) via the consecutive processes 
of glycolysis and oxidative respiration. The glycolytic enzyme pyruvate 
kinase (PK) catalyses the final step of glycolysis, i.e. the production of 
pyruvate from phosphoenol pyruvate (PKP), which is then shuffled 
from the cytoplasm into the mitochondria for oxidative respiration 
to take place (Figure 3). In highly proliferating cells, such as cancer 
cells and in anaerobic conditions, pyruvate is converted to lactate 
and is actively excreted from the cells [130]. As a matter of fact, many 

cancer cells seem to prefer the much less efficient glucose fermentation 
and lactate production, instead of oxidative respiration and pyruvate 
production, as a means of meeting their energy demands, even in 
the presence of oxygen, a condition described as the Warburg effect 
[131,132]. Therefore, in the absence of oxygen, additional and highly 
inter-connected to the HIF-1 pathway in mediating tumorigenesis is 
the altered intrinsic glucose metabolism of the cell, i.e. the adaptive 
shift from oxidative to glycolytic metabolism [133,134]. In this 
procedure, carbonic anydrases and in particular CA9, seem to relieve 
hypoxic tumor cells from intracellular acidosis that has been caused 
by the increased glycolysis and lactate production, hence contributing 
to their survival [135]. In particular, HIF-1 seems to mediate this 
metabolic switch via inhibition of pyruvate dehydrogenase, which 
in turn down-regulates cell-cycle activity and mitochondrial oxygen 
consumption [136,137]. More recently, evidence has come forward 
demonstrating that inhibition of PK, apart from down-regulating 
pyruvate production, also mediates redox balance in cells by activating 
the pentose phosphate pathway (Figure 3); this activation consequently 
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Figure 3: The cellular metabolic response to hypoxia. Under normal oxygen levels, glucose is converted into pyruvate through the process of glycolysis and then 
enters the mitochondrion and generates energy (in the form of ATP) through the process of oxidative respiration. Under hypoxic conditions, and in highly proliferating 
cells, however, pyruvate is converted into lactate which is actively secreted from the cell. In cancer, the reduced activity of the catalytic enzyme pyruvate kinase 
induces the pentose phosphate pathway which in turn limits ROS accumulation, diminishes oxidative damage and so promotes tumour growth. Adapted by Grüning 
and Ralser (2011).
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limits the accumulation of mitochondrial reactive oxygen species (ROS) 
and oxidative stress, thus saving cancer cells from death due to oxidative 
damage and facilitating tumor growth [138]. In addition, it was also 
recently revealed that in human lung cancer cells, the activation of PK 
splice variant M2 (or PKM2) is inhibited via the oxidation of PKM2 
residue Cys358 by acute increases in the production of intracellular ROS 
and diverts the glucose flux into the pentose phosphate pathway [19]. 
As a consequence, sufficient reducing potential is generated for the 
detoxification of ROS. However, when endogenous PKM2 was replaced 
by a PKM2 oxidation-resistant mutant that had Cys358 replaced by 
Ser358, the cells exhibited increased sensitivity to oxidative stress and 
impaired tumor formation in a xenograft model, further highlighting 
the therapeutic potential of this metabolic reconfiguration [19]. More 
importantly, this latest finding adds new understanding to the Warburg 
effect (i.e. that cancer cells prefer the inefficient glycolysis even in the 
presence of oxygen), as it appears that the maintenance of the redox 
balance can be more limiting to tumor growth than insufficient 
energy levels. Interestingly, another recent report has demonstrated 
that PKM2 acts as a co-activator of HIF-1, interacting directly 
with the HIF-1α subunit and greatly enhancing its transcriptional 
activity [139]. In particular, it was shown that the PHD3-mediated 
phosphorylation of PKM2 promotes the transactivation of HIF-1 
target genes by enhancing HIF-1α DNA binding and p300 recruitment 
to hypoxia-responsive elements. Even more specifically, it was shown 
that the PKM2-HIF-1α interaction is mediated by exon 10 of PKM2 (a 
region not present in the PKM1 variant), which contains the specific 
sequence motif responsible for the hydroxylation of HIF-1α by PHD2 
and another two hydroxylated proline residues that appear mutated 
when the PKM2-HIF-1α interaction is lost [139,140]. In addition, 
a link was established between PHD3, PKM2 and HIF-1-mediated 
glycolysis from the observation that depletion of either PHD3 or 
PKM2 downregulates the transcription of HIF-1 metabolic target 
genes and reverses the Warburg effect [139,141]. Therefore, PKM2 
expression in tumors appears to participate in a positive feedback loop 
that promotes alteration of gene expression via HIF-1 transactivation 
and reprograms glucose metabolism in cancer cells. This metabolic 
response to hypoxia is also accompanied by an increased expression 
of the genes coding for glycolytic enzymes and glucose transporters, 
which permits tumor cells to maintain a sufficient level of ATP energy 
for survival and proliferation [142,143]. Furthermore, HIF-1α induces 
over-expression of many glycolytic protein isoforms, such as glucose 
transporters GLUT-1 and GLUT-2 which, under hypoxic conditions, 
suppress apoptosis via inhibition of the stress-activated protein kinase 
pathway and promote cell migration [144,145]. In particular, it has 
been reported that, via the induction of GLUT-1, hypoxia protects 
rhabdomyosarcoma and Ewing sarcoma cells from apoptosis due to 
glucose deprivation in an HIF-1a-dependent manner [146]. Glycolysis 
may also be increased via repression of c-Myc, as shown by studies 
with VHL-deficient renal cell carcinoma [147], with the functional 
collaborations of HIF-1α with both c-Myc and mTOR having well-
established roles in cancer [78,148]. In relation to pediatric cancer, 
experimental data from Wilms’ tumors have shown over-expression 
of CA9 and HIF-1α, with concomitant high expression of VEGF 
and GLUT-1, further highlighting the importance of the functional 
relationship between the four hypoxia markers in cancer development 
[149]. 

Evasion of immune surveillance 

Tumor cells commonly escape elimination by innate and adaptive 
immune responses using strategies such as the active suppression 

of effector immune cells. Under hypoxic conditions, through the 
activation of HIF-1 and HIF-2, tumor cells produce chemoattractants 
and soluble factors (eg. CSFI, VEGF and TGF-β) that stimulate 
and recruit monocytes and macrophages to tumor sites [150]. 
Following recruitment, macrophages mature into tumor-associated 
macrophages (TAMs) and hypoxia induces the secretion of potent 
immunosuppressive factors, such as prostaglandin E2

 and IL-10; 
these inhibit the TAMs immunosuppressive effect by repressing their 
ability to present antigens to T-cells and to phagocytose dead cells 
[114,151,152]. HIF-1α in particular, inhibits T-cells from undergoing 
activation-induced cell death and thus protects tumor cells from 
immune attack in the hypoxic environment [153,154]. A recent 
study has linked the hypoxia-induced transactivation of HIF-1α with 
an increase in the expression of metalloproteinase ADAM10 and a 
decrease in the surface MHC class I chain-related (MIC) levels, further 
highlighting the resistance of tumor cells to innate immune-mediated 
lysis [155]. Expression of HIF-2α, on the other hand, is associated 
with an unfavourable prognosis when found in the TAMs of breast 
and cervical cancers, whereas HIF-2α deletion from the myeloid cells 
in animal models of hepatocellular carcinoma and colitis-associated 
colon carcinoma correlates with a decreased recruitment of TAMs to 
tumor sites and a reduced tumor grade [156-158]. 

Evasion of apoptosis 

To date, the exact mechanisms of apoptosis regulation under 
hypoxic conditions are not fully elucidated. Hypoxia is however known 
to induce apoptosis in both normal and cancer cells, with the latter 
developing mechanisms that allow them to increase their resistance and 
escape HIF-1-mediated apoptosis. More specifically, hypoxia has been 
found to increase the transcriptional activity of anti-apoptotic genes 
IAP-2, Bcl-2 and Bcl-XL, to activate the PI-3k/Akt survival pathway, 
a major regulator of cell survival and proliferation and to increase 
cell resistance to apoptosis via over-expression of the p53 negative 
regulator MDM2 [10,18,159]. Experimental data have also shown that 
hypoxia-induced apoptosis can be mediated by tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL), a potent apoptosis inducer 
that specifically limits tumor growth without damaging normal cells 
and tissues in vivo [159]. In particular, hypoxia dramatically inhibits 
TRAIL-induced apoptosis by blocking Bax translocation from the 
cytosol to the mitochondria, hence blocking a pivotal signaling molecule 
for the effective induction of apoptosis [159]. Last but not least, human 
cancer cells may acquire the property of immortalization through the 
maintenance of telomere lengths, which is dependent on expression 
of the hTERT and hTR telomerase genes [160]. Indeed, several studies 
have demonstrated that cells with increased telomerase activity can 
divide beyond the Hayflick limit (the number of times a normal cell 
population can divide before it stops) without entering senescence or 
apoptosis and this leads to unlimited proliferative capacity, i.e. cellular 
immortalization [161-163]. It has also been shown that telomerase can 
synergize with certain oncogenes and convert normal human epithelial 
cells and fibroblasts into cancer cells [164] and hypoxia may contribute 
to the immortality of cancer cells by increasing telomerase activity 
via transcription in the promoters of both gene variants, with active 
involvement of HIF-1α [165,166]. 

Genomic instability and hypoxia

Several reports have linked hypoxia to increased genomic 
instability, which may also contribute into cancer formation. More 
specifically, it has been reported that hypoxia is responsible for 
increasing mutagenesis via down-regulation of the DNA mismatch 
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repair (MMR) system, which normally maintains genomic integrity by 
correcting replication errors [167,168]. In other words, the genomic 
destabilization seen in tumor cells is responsible for the cellular changes 
that confer progressive transformation on cancer cells and is further 
promoted by the hypoxic stress in the tumor microenvironment 
[169]. According to recent experimental evidence, hypoxia down 
regulates the expression of key genes within the MMR and homologous 
recombination (HR) pathways, such as MLH1 and MSH2, leading to 
increased mutagenesis, while suppressing the transcription of many 
critical HR-mediators, such as BRCA1, BRCA2 and RAD1, leading 
to down-regulation of recombinatorial repair and hence genomic 
instability [170,171]. In addition to this, a link has been made between 
genetic instability and HIF-1α, with HIF-1α inhibiting the expression 
of genes responsible for recognizing and repairing DNA base 
mismatches (such as MSH2, MSH6 and NBS1), despite notions from 
previous reports that repression of MMR and HR is HIF-independent 
[172,173]. On the other hand, several reports support the notion that 
“physiological” normoxia (O2 levels about 5%, similar to natural niches), 
is protecting cells from falling into “genomic instability”, as compared 
to the atmospheric oxygen level (about 20%), also enhancing stem cell 
clonal recovery and reducing chromosomal abnormalities [174,175]. 
Others have also shown that neural stem cells (NSCs) exist within a 
“physiological” hypoxia (1-5% O2) in both embryonic and adult brains 
and that hypoxia can promote the growth and survival of NSCs in vitro 
(Figure 1) [176]. In addition, in vivo studies have shown that hypoxia 
can positively influence the production and differentiation of NSCs, as 
well as that of other types of stem cell [176-179]. Furthermore, there 
is enough evidence to suggest that hypoxia can initiate and promote 
the process of malignant transformation when a low percentage of 
cells overcome and escape cellular senescence [180]. As hypoxia causes 
the progressive elevation in mitochondrial ROS production (chronic 
ROS), this leads to oxidative DNA damage due to the continuously 
accumulating ROS; HIF-2α expression represses the DNA repair 
mechanisms in the hypoxic cells, enabling them to survive with 
sustained levels of elevated ROS along with the mutations that drive 
the malignant transformation [181]. In addition, it has recently been 
speculated that optimal “physiological” ROS levels confer minimal 
DNA damage due to adequate DNA repair, whereas both reduced and 
excessive ROS levels lead to genomic instability due to deficient DNA 
repair and oxidative DNA damage, respectively [182]. 

Angiogenesis

Hypoxia can promote angiogenesis via the activation of a number 
of angiogenic factors, such as VEGF, VEGF receptor-1, IL-8, platelet-
derived growth factor (PDGF), adrenomedullin, angiopoietin-2, 
cyclooxygenase-2, endothelin-1 and -2, fibroblast growth factor-3, 
hepatocyte growth factor, histone deacetylase, monocyte chemotactic 
protein-1, nitric oxide synthase, osteopontin, placental growth factor, 
Tie-2 (an angiopoietin receptor) and transforming growth factors 
[110]. Since VEGF is a major component of the blood vessel formation 
procedure in hypoxic tissues, it is only logical to accept that it also plays a 
major role in the pathological angiogenesis of tumor development. It has 
long been reported that the hypoxia-mediated HIF-1α activation leads 
to VEGF up-regulation, which in turn triggers angiogenesis while at the 
same time suppressing angiogenic inhibitors, such as thrombospondin 
1 [183,184]. Others support the notion that hypoxia is not responsible 
for the initiation of angiogenesis, that the initiation takes place via 
non-hypoxia-mediated mechanisms such as the activation of certain 
oncogenes and that hypoxia only contributes in accelerating the process 
[10]. Experimental data from glioblastoma mouse models show that 

HIF-1α, the direct effector of hypoxia, promotes neovascularization in 
glioblastomas via activation of VEGF; notably, when VEGF activity is 
impaired by ablation of either HIF-1α or matrix metalloproteinase-9 
(MMP-9) and angiogenesis is disabled, tumor cells invade deeper into 
the brain in the perivascular compartment, thus being characterized 
by a more invasive phenotype [185]. Up to date, no studies have been 
conducted exclusively on pediatric cancers so only a few referrals exist 
on the role of hypoxia-promoted angiogenesis in childhood tumors or 
tumors found in both adults and children. Nonetheless, significantly 
elevated levels of VEGF secretion have been found in hypoxic tumor 
stem cells from malignant gliomas, including a pediatric glioblastoma 
xenograft [186]. Recently it was reported that in the highly vascularized 
human rhabdomyosarcoma tumors, in addition to VEGF, hypoxia 
induces the up-regulation of IL-8 both at the mRNA and protein level, 
thus highlighting its implication in promoting angiogenesis [187]. 
Last but not least, another group demonstrated that HIF-1α activity 
is a necessary prerequisite for hypoxia microRNA-16 (mir-16) down-
regulation, which in turn induces VEGF expression in anaplastic 
lymphoma kinase (ALK)-positive anaplastic large-cell lymphomas, 
thus strongly suggesting the importance of mir-16 in regulating VEGF 
expression and angiogenesis [188]. 

Invasion and metastasis 

As already mentioned in previous sections of this review, 
hypoxia induces the activation of a number of genes responsible for 
increased aggressiveness, invasion and metastasis of tumors, which 
subsequently leads to poor patient prognosis. Semenza [123,189] has 
already summarized the HIF-1 target genes, whose products actively 
contribute to cancer invasion and metastasis and regrouped the 
immunohistochemical studies in which increased levels of HIF-1α (or 
HIF-2α) protein in diagnostic tumor biopsies were associated with a 
decrease in patient survival. In search of data linking HIF expression to 
childhood cancers, we have found that HIF-1α protein accumulation 
has been associated with poor patient survival in oligodendroglioma, 
whereas HIF-2α over-expression is linked to increased patient mortality 
in childhood neuroblastoma and astrocytoma [124,190]. In a study 
conducted on both children and adult patients with osteosarcoma, HIF-
1α expression significantly correlated with surgical stage, percentage of 
dead cells and microvessel density (MVD), as well as with shorter overall 
survival (OS) and disease-free survival (DFS) [191]. More recently, still 
in the context of pediatric tumors, the effects of hypoxia on primary 
Ewing’s sarcoma family tumor (ESFT) cells were studied in vitro and 
were found to enhance the cells’ malignant properties by stimulating 
the invasiveness and soft-agar colony formation; as expected, the 
Ewing’s sarcoma oncoprotein EWS-FLI1 was up-regulated by hypoxia 
in a HIF-1α dependent manner [192]. Generally speaking, the recent 
literature supports the notion that the hypoxia-induced tumor 
aggressiveness is associated with the expansion of the cancer stem cell 
marker CD133+ in pancreatic cancer cells in a predominantly HIF-1α-
dependent manner and that this might also play a key role during the 
transition from in situ to invasive breast cancer [193,194]. In explaining 
how hypoxia favors metastasis, it has been described that, through HIF 
activation, hypoxia facilitates the disruption of tissue integrity through 
the repression of the transmembrane molecule E-cadherin, therefore 
promoting tumor invasion and metastasis [195]. In the same study, it 
was also concluded that hypoxia enhances proteolytic activity at the 
invasive front, through upregulation of urokinase-type plasminogen 
activator receptor (uPAR) and alters the interactions between integrins 
and components of the extracellular matrix, thereby enabling cellular 
invasion through the basement membrane and the underlying stroma 
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[195]. It is believed that epithelial-mesenchymal transition (EMT), 
referring to the conversion of well-polarized, adhesive epithelial cells 
to non polarized mesenchymal cells, may be one of the initial steps 
involved in metastasis; both hypoxia and HIF-1α overexpression have 
been shown to promote EMT [10]. In addition, it has been observed that 
neuroblastoma cells can adjust to a hypoxic environment by losing their 
differential gene expression patterns and by developing stem cell-like 
phenotypes [196]. Seeing that there is a correlation in neuroblastoma 
between low stage of differentiation and high (aggressive) clinical stage, 
it can easily be assumed that hypoxia-induced dedifferentiation of 
neuroblastoma cells in hypoxic tumor regions contribute to the tumor 
heterogenicity and increased malignancy [196]. Finally, hypoxia-
induced hepatocyte growth factor (HGF)-MET is known to increase 
cell motility, promoting cell migration towards the blood or lymphatic 
microcirculation, while hypoxia-induced VEGF promotes angiogenesis 
and lymphangiogenesis in the primary tumor and induces changes in 
vascular integrity and permeability, providing the necessary routes for 
dissemination [195,197]. 

Drug resistance 

As mentioned at the beginning of this section, tumor hypoxia, 
acting through direct and indirect mechanisms, has long been 
recognized as a major factor involved in the resistance to radiotherapy 
and many chemotherapeutic agents and is thus linked to a poorer 
clinical outcome [198]. Radiosensitivity rapidly declines when tumor 
pO2 is <25–30 mmHg and it has been found that radiation therapy 
is about two to three times less effective in destroying hypoxic cells 
than normoxic cells [199,200]. Oxygen increases DNA damage either 
through the formation of oxygen-derived free hydroxyl radicals, after 
the interaction of radiation with intracellular water, or by enhancing 
the stabilization (“fixation”) of the highly reactive hydroxyl radicals 
that cause DNA damage. Since oxygen contributes in reducing the 
ability of the tumor cells to repair their damaged DNA after radiation 
therapy, it is believed that hypoxia can protect some malignant cells 
from radiation damage, subsequently causing local disease recurrence. 
Interestingly, this may occur after even a single fraction of radiation 
treatment but it may also explain to a certain extent the radioresistance 
following fractionated therapy. Taking into consideration that between 
the radiotherapy sessions the patterns of re-oxygenation of tumor 
cells are variable, it is possible that some cells remain hypoxic and are 
thus still protected. In addition, hypoxia may promote radioresistance 
indirectly, by inducing proteomic and genomic changes. Hypoxic stress 
can lead to the selection of a number of tumor cells with diminished 
apoptotic potential and influence the cell cycle, slowing proliferation 
and increasing the number of cells in the Go phase, thus reducing 
tumor radiosensitivity. It also leads to the increased transcriptional 
production of repair enzymes or resistance-related proteins, such 
as heat shock proteins, allowing cells to survive otherwise lethal 
conditions [200]. Radiotherapy is an important component of the 
treatment of many pediatric tumors, but very few studies refer to 
the role of hypoxia in radioresistance in children. Experimental data, 
however, have shown that both non-interrupted and cycling hypoxia 
pre-treatment significantly increases cell resistance to ionizing 
radiation compared with normoxic controls in U87 glioma xenografts 
and that cycling hypoxia treatment, through increased HIF-1 synthesis 
and stabilization, has a greater effect in increasing radiation resistance 
compared with non-interrupted hypoxia treatment [201]. Other groups 
have documented that the antitumor activity of ionizing radiation 
in U87 glioma xenografts is enhanced by improving intra-tumoral 
oxygenation [202]. On the other hand, acute hypoxia, resulting from 

poor and fluctuating blood flow in irregular newly formed tumor blood 
vessels, as well as chronic hypoxia, which is due to increased diffusion 
distances, can result in the diminished and uneven distribution of 
chemotherapeutic agents, subsequently affecting their therapeutic 
efficacy [198]. Hypoxia can also directly limit the chemotherapy 
induced DNA damage by reducing the generation of free radicals 
and this has been proposed as the mechanism of chemoresistance 
for agents such as bleomycine and anthracyclines. In particular, 
hypoxia induces the elevation of glutathione levels and DNA-repair 
enzymes seem to favor resistance to alkylating agents, bleomycin and 
platinum compounds [200]. Others have shown that hypoxia is able 
to induce 4-HPR (the chemopreventive retinoid N-(4 hydroxyphenyl)
retinamide) resistance in Molt-4 cells (ALL cell line) and the potential 
mechanism may be the inhibition of 4HPR-induced regulation of 
mitochondrial pathway-related proteins associated in signaling 
apoptosis [203]. In addition, hypoxia mediates cycle cell modification 
and especially G1/S-phase arrest can be incriminated for the resistance 
to vinca alkaloids and methotrexate [204]. Increased glycolysis with 
extracellular acidosis, a common feature in hypoxic tumor regions, 
may also favor chemoresistance by affecting the transport of drugs 
across the cell membrane, the intracellular drug accumulation 
(e.g.anthracyclines, bleomycin) and drug activity (e.g. vinblastine, 
doxorubicin, bleomycin). Some chemotherapeutic agents, such as 
cyclophosphamide, carboplatin and doxorubicin have been shown to 
be oxygen dependent under both in vivo and in vitro conditions [200]. 
In recent years, the contribution of HIF-1 to drug resistance has been 
observed in a wide spectrum of neoplastic cells [20]. One of the first 
reported molecular mechanisms explaining this contribution was that 
HIF-1α is able to activate the multidrug resistance 1 (MDR1) gene in 
response to hypoxia, coding for a membrane glycoprotein and finally 
leading to the decrease of intracellular concentration in a range of 
chemotherapeutic drugs, such as vinca alkaloids, anthracyclines and 
paclitaxel [205]. HIF-1- mediated changes in drug efflux have been 
shown to promote chemoresistance in many tumor cell lines, including 
glioblastoma cell resistance to adriamycin [205]. As mentioned earlier, 
HIF-1α is also linked to defective apoptosis and/or changes in cell 
cycle regulation, a phenomenon initially attributed to the HIF-1α 
anti-apoptotic target genes, but recent data have proposed additional 
mechanisms such as the suppression of p53 apoptosis by HIFs [206]. 
Overall, apoptosis inhibition is highly related to drug resistance in many 
adult tumor studies, but again little is known about the importance 
of hypoxia in pediatric tumors. However, a group have reported that 
hypoxia, in an HIF-1α-dependent manner, promotes resistance to 
apoptosis by etoposide and vincristine in neuroblastoma cells derived 
from pediatric patients [207]. As for the changes in cell cycle control 
promoting chemoresistance, more in vivo data are needed, since the 
functional importance of HIF appears to be variable, depending on 
the cell-type and the context. HIF activation due to hypoxia may, 
however, lead to chemoresistance through gene mutations that lead to 
the inhibition of DNA damage, as well as through the suppression of 
mitochondrial activity, which is strongly connected to the activation of 
cellular death pathways [20]. 

Implication of hypoxia in childhood cancer 

In contrast to the well-investigated impact of hypoxia and HIFs in 
adult malignancies, their role in pediatric tumors has remained largely 
unaddressed. A great portion of our knowledge comes from tumors 
affecting both adults and children but the studies referring to cancer 
types that occur mostly among pediatric patients are scarce. We sought 
to collect the available data regarding the implication of hypoxia and 
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dehydrogenase 5 (LDH5), the major LDH isoenzyme sustaining the 
anaerobic transformation of glycolysis, is highly upregulated in B-cell 
non-Hodgkin lymphomas, in direct relation to the expression of HIFs 
[210]. With angiogenesis being regarded a very important step in tumor 
development, VEGF is the most studied hypoxia-related factor in 
childhood malignancies. Patients with osteosarcoma, Ewing’s sarcoma, 
neuroblastoma, rhabdomyosarcoma and Wilms’ tumor were found 
to have increased serum levels of VEGF and the highest levels were 
associated with metastatic disease [210]. Evidence of elevated VEGF 
levels is linked to hypoxia and/or HIF activation in Wilms’ tumor 
[149,211], rhabdomyosarcoma, [187], anaplastic large-cell lymphoma 
[188], neuroblastoma [212,213], as well as in cell lines and in hypoxic 
tumor stem cells from malignant gliomas and a pediatric glioblastoma 
xenograft [186]. Evasion of apoptosis as directly related to hypoxia 
has been shown in rhabdomyosarcoma and Ewing sarcoma cell lines, 
where it was speculated that the HIF-1α-mediated increase in glucose 
uptake plays an important role in conferring apoptosis resistance and 
indirectly in hepatomas, where inhibition of hexokinase II (found 
to be upregulated by hypoxia) led to apoptotic cell death [146,208]. 
More extensive appear to be the pediatric data linking hypoxia 
to tumor aggressiveness, invasion, metastasis and, consequently, 
prognosis. Degradation of the extracellular matrix implicated in tumor 
invasion is achieved partly through the proteolytic activity of matrix 
melloproteinases (MMP), found to be up-regulated in an HIF-1α-

HIF activation in childhood cancer and, from our point of view, its 
clinical significance is becoming increasingly apparent. (Available data 
summarized in Table 1). First of all, hypoxia is a significant regulator 
at the level of the TSC niche. Researchers have found that a highly 
tumorigenic fraction of neuroblastoma and rhabdomyosarcoma cell 
lines is localized in the hypoxic zones in vivo and that this fraction is 
further increased by hypoxia [128]. Others report elevated levels of 
VEGF secretion, further induced by hypoxia, by TSC from malignant 
gliomas, including a pediatric GBM xenograft, while conditioned 
medium from the TSC increases endothelial cell migration in vitro 
[186]. Moreover, several studies highlight the importance of hypoxia as 
an adverse feature in almost every step of the cancerous procedure in 
pediatric tumours, mainly suggested by the presence of hypoxia-related 
markers/surrogate markers, such as HIF-1α, VEGF, the facilitative 
glucose transporter Glut-1 and carbonic anhydrase IX (CA IX). In 
relation to cellular adaptations, hypoxia has been shown to induce 
glycolytic activity in hepatomas. Gwak et al report an HIF-1α-dependent 
induction of hexokinase II expression and others an almost 3-fold 
increase in hexokinase II promoter activation [208,209]. Experimental 
data from Wilms’ tumours has shown over-expression of CA9 and 
HIF-1α, with concomitant high expression of VEGF and GLUT-1 
[149], whereas GLUT-1 and aldolase induction are also reported to 
take place in an HIF-1α-dependent manner, in rhabdomyosarcoma 
and Ewing sarcoma cells [146]. Finally, the expression of lactate 

Tumorigenic implication Cancer type HIF mediation Effect Reference

TSC niche
Neuroblastoma

↑Tumorigenic fraction Das et al. [128]
Rhabdomyosarcoma

GBM xenograft ↑ Endothelial cell migration Bao et al. [186]

Cellular adaptations

Hepatoma HIF-1a  ↑Hexokinase II Gwak et al. [208]
Mathupala et al. [209]

Wilms tumors HIF-1α ↑GLUT-1, CA9 Dungwa et al. [149]

Rhabdomyosarcoma HIF-1α
↑ GLUT-1, aldolase Kilic et al. [146]

Ewings’ sarcoma HIF-1α

B-cell non-Hodgkin lymphomas HIF1α, HIF2α ↑ LDH5 Giatromanolaki et al. [210]

Angiogenesis

Wilms’ tumor HIF-1α ↑ VEGF Karth et al. [211]
Dungwa et al. [149]

Rhabdomyosarcoma no ↑ IL-8 Wysoczynski et al. [187].

Anaplastic large-cell lymphoma HIF-1a ↑ VEGF Dejean et al. [188]

Neuroblastoma ↑ VEGF Rössler et al. [212]
 Jögi et al. [213]

GBM xenograft TSC ↑ VEGF secretion Bao et al. [186]

Apoptosis evasion

Rhabdomyosarcoma HIF-1α
↑ Glucose uptake Kilic et al. [146]

Ewings’ sarcoma HIF-1α

Hepatoma HIF-1a  ↑ Glucose uptake Gwak et al. [208]

 Invasion and metastasis

Glioma HIF-1a ↑Proteolytic activity of matrix melloproteinases 
degradation of the extracellular matrix

Fujiwara et al. [214]

Hepatoma Miyoshi et al. [215]

Glioma HIF-1a ↑ Cell migration Zagzag et al. [216]

Ewings’ sarcoma HIF-1a ↑ Invasiveness and soft-agar colony formation Aryee et al. [192]

Neuroblastoma Cell dedifferentiation, tumor heterogenicity , 
increased malignancy Jogi et al. [196]

Medulloblastoma HIF-1 a Activation of the Notch signaling pathway,↑ 
stem cell viability and expansion Pistollato et al. [217]

Table 1: Summary of pediatric data linking hypoxia to childhood malignancies.

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Giatromanolaki A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22R%C3%B6ssler J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22J%C3%B6gi A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Pistollato F%22%5BAuthor%5D
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dependent manner in gliomas and hepatomas [214,215]. In addition 
to this, in glioma cells, inhibition of HIF-1α by geldanamycin has been 
found to reduce cell migration in vitro, thus hinting at a potential 
role for HIF-1α in glioma cell invasion [216]. In osteosarcoma, HIF-
1α expression significantly correlates with surgical stage, percentage 
of dead cells and microvessel density (MVD), as well as with shorter 
overall survival (OS) and disease-free survival (DFS) [191]. In primary 
Ewing’s sarcoma family tumor (ESFT) cells hypoxia has been found to 
enhance the cells’ malignant properties by stimulating the invasiveness 
and soft-agar colony formation through an HIF-1α-mediated manner 
[192]. In neuroblastoma cells, the hypoxia-induced de-differentiation 
of hypoxic tumor regions has been found to contribute to the tumor 
heterogenicity and increased malignancy [196]. In medulloblastoma 
cells, hypoxia, through HIF-1α and by activation of the Notch 
signalling pathway (maintaining Notch1 in its active form) has been 
found to promote stem cell viability and expansion [217]. It has also 
been reported that HIF-1α protein accumulation is associated with 
poor patient survival in oligodendroglioma, whereas HIF-2α over-
expression is linked to increased patient mortality in childhood 
neuroblastoma and astrocytoma [124,190,218]. Finally, hypoxia has 
been reported to contribute to chemoresistance and radioresistance 
in some pediatric malignancies. For example, hypoxia has been shown 
to protect rhabdomyosarcoma (A204 RMS) and Ewing’s sarcoma 
(A673ES) cells against doxorubicin-, vincristin-, actinomycin D- 
induced apoptosis in a time- and dose-dependent manner [146]. In 
neuroblastoma cell lines (SH-EP1 and SH-SY5Y) short periods of 
hypoxia (1% O2) of up to 16 hours appears to have no effect on drug-
induced apoptosis to the clinically relevant drugs vincristine, etoposide 
and cisplatin, whereas prolonged hypoxia of 1 to 7 days results in 
the reduction of vincristine- and etoposide-induced apoptosis [207]. 
HIF-1-mediated chemoresistance to adriamycin has also been found 
in many tumor cell lines, including glioblastoma cells [205]. Certain 
experimental data have shown that both non-interrupted and 
intermittent hypoxia contribute to cell resistance to ionizing radiation 
in U87 glioma xenografts, while others have documented that the 
antitumor activity of ionizing radiation in U87 glioma xenografts is 
enhanced by improving intra-tumoral oxygenation [201,202].

Hypoxia Targets as New Cancer Chemotherapeutics
Hypoxic cells are genetically unstable, resistant to apoptosis, 

invasive and metastatic. These properties make them more resistant 
to ionizing radiation and chemotherapy, so the way we regard cancer 
diagnosis and treatment today is highly associated with approaches 
that target tissue hypoxia [219]. At the same time advances in 
hypoxia research are beginning to unravel the molecular mechanisms 
responsible for the hypoxic tumor microenvironment, so the signalling 
molecules of the hypoxic cascade are becoming potential targets for 
cancer therapy. 

General hypoxia-based therapeutic strategies

The most logical strategy to employ in enhancing radio- and 
chemo-sensitivity is the administration of high pressure oxygen. At 
the same time, the development of hypoxia-based radio-sensitizers 
is proving very promising in targeting tumor cells in their hypoxic 
microenvironment. 

Hyperbaric Oxygen Therapy (HBO): This is the administration 
of pure oxygen at a pressure higher than 1 atmosphere to the tumor 
sites; studies have shown that intermittent HBO therapy increases the 
radio-curability and life expectancy in many cancers, especially head 

and neck cancer, but it also sensitizes chemotherapy by increasing 
tumor perfusion and cellular sensitivity, as seen in in vitro studies with 
doxorubicin and taxol [220-222].

Radio-sensitizers: These are agents that simulate the action 
of oxygen, thus compensating for the low oxygen concentration 
and the increase in radiation-induced damage. Despite the initial 
disappointment in the use of nitroimidazoles as active compounds, 
it was later shown that, in association with radiotherapy, nimorazole 
induces a higher cancer-related survival in head and neck carcinomas, 
whereas misonidazole increases 1-year survival by 8% in astrocytomas 
[223,224]. More recently, molecular research has focused on the 
development of bi-functional hypoxic cell radio-sensitizers, thus 
allowing for the simultaneous inhibition of certain tumor hypoxia 
responses, such as angiogenesis and metastasis. Many new agents, 
including p53-inhibiting agents, are currently being tested in clinical 
trials in the hope that they can be effectively used in the development of 
bi-functional radio-sensitizers for cancer therapy [225-229]. 

ARCON (Accelerated Radiotherapy with Carbogen and 
Nicotinamide): This is a method additional to radio-sensitizing, 
in which radiotherapy is administered in association with inhaling 
hyperoxic gas so as to decrease diffusion-limited hypoxia and 
nicotinamine so as to decrease perfusion-limited hypoxia [222]. Despite 
the lack of response in clinical studies with non-small cell lung cancer, 
ARCON has shown some promising results in xenograft models of 
breast cancer and preliminary studies of bladder cancer [230-232].

Hypoxic cytotoxins: With tirapazamine being the most widely 
studied compound of this group, hypoxic cytotoxins are bio-reductively 
activated in tumor cells and give rise to cytotoxic DNA breaks, thus 
potentiating the anti-tumor effects of radiation and chemotherapy 
[233,234]. Despite having no effect when administered together 
with paclitaxel and carboplatin, the combination of tirapazamine 
and cisplatin has been shown to increase response rate and overall 
survival in clinical trials of non-small cell lung cancer; in addition, 
the combination with cisplatin and radiation in locally advanced 
squamous cell carcinoma of the head and neck has proved far more 
effective in terms of survival rates than fluorouracil, cisplatin and 
radiation together [235-237]. 

Recombinant anaerobic bacteria: This is essentially the injection 
of non-pathogenic strains of bacteria, such as Clostridium, in the form 
of spores, in tumor areas. These spores only become activated and grow 
in the hypoxic environment, exerting either direct anti-tumor activity 
or carrying enzymes that can be manipulated for anti-tumor activity. 
The strain C.oncolyticum, in particular, has been genetically modified 
to express cytosine deaminase, an E.coli enzyme able to metabolise the 
non-toxic 5-fluorocytosine to the toxic anti-tumor 5-fluorouracile and 
shows potent activity in many animal studies [238,239]. 

Erythropoietin (Epo): Recombinant human Epo (rHuEpo) has 
shown great potential as a therapeutic tool in cancer patients, as many 
studies have shown that it may improve the radio- and chemo- tumor 
sensitivity by increasing oxygenation, as well as oxygen-sensitization of 
other chemotherapeutic drugs [240,241]. 

HIF-based therapeutic targets

Since HIF-1 is such an important regulator of the cellular response 
to hypoxia, two strategies really stand out when it comes to targeting 
hypoxia for therapeutic purposes: 
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Inhibition of the signalling pathways that regulate HIF-1 
function 

mTOR inhibitors: Rapamycin is well-known for its anti-
proliferative effect in many human and animal cell lines, as well as 
for its strong inhibitory effects on tumor growth and angiogenesis 
[242-247]. Temsirolimus, or CCI-779 (Wyeth), an ester analogue 
of rapamycin, has been shown to inhibit HIF-1α-mediated VEGF 
endothelial proliferation in a breast cancer line, as well as mTOR-
dependent angiogenesis and tumor growth in rhabdomyosarcoma 
xenograft models under hypoxic conditions [248,249]. Everolimous, 
or RAD001 (Novartis), an orally available rapamycin analog, was 
found to inhibit cell proliferation in lymphoid and smooth muscle 
cells, whilst at the same time exhibiting immunosuppressive effects 
in human T-cell clones; hence it is now clinically used both as an 
immunosuppressant in autoimmune disorders and as a tumor 
suppressor drug in cancer treatment [250-252]. Deforolimus, or 
AP23573 (Ariad Pharmaceuticals), a phosphorous rapamycin analog, 
has shown strong anti-proliferative effects in tumor cell lines in vitro 
and mouse xenografts in vivo [253]. Current efforts are focusing on the 
development of selective mTOR inhibitors, i.e. ones that compete with 
ATP in the catalytic site of mTOR, in the hope that these will be more 
effective in blocking cell proliferation than rapamycin; these include: 
PP242, PP30, Torin1, Ku-0063794, WAY-600, WYE-687 and WYE-
354 [254]. Finally, dual specificity inhibitors of both mTOR and PI3K 
signaling pathways are also being investigated for their potentiality 
as cancer therapeutics and include: GNE477, NVP-BEZ235, PI-103, 
XL765 and WJD008 [254].

EGFR inhibitors: Gefitinib (Iressa) and Erlotinib (Tarceva) are 
both small molecule inhibitors already used in the treatment of non-
small cell lung cancer but they have also been found to inhibit VEGF 
expression in squamous cell carcinoma in vitro [255]. Cetuximab, or 
C225 (Erbitux), a monoclonal antibody that was shown to inhibit HIF-
1α protein levels, has been approved for the treatment of metastatic 
colorectal carcinoma and squamous cell carcinoma of the head 
and neck [256]. Trastuzumab (herceptin), on the other hand, is a 
humanized monoclonal antibody that targets the human EGF receptor 
2 (Her2) and prevents it from inducing activation of HIF-1α and VEGF 
in breast cancer cells, hence promoting anti-angiogenesis [257-259]. 

VEGF inhibitors: Bevacizumab, an anti-VEGF neutralizing 
antibody currently in clinical use for cancer therapy, has shown strong 
anti-angiogenic activity in vivo and the ability to suppress the growth of 
xenografts derived from stem cell-like glioma cells [186].

Tyrosine kinase inhibitors: Imatinib mesylate, or Gleevec 
(Novartis), the small molecule inhibitor of the oncogenic fusion BCR-
ABL used in the treatment of leukemias, has also been found to inhibit 
induction of HIF-1α and VEGF expression in small cell lung cancer 
cell lines [260]. 

Microtubule disrupting agents: Being a natural estrogen 
metabolite, 2ME2 (2-methoxyestradiol) promotes microtubule 
disruption via inhibition of tubulin polymerisation and causes mitotic 
arrest [261]. In pre-clinical models 2ME2 has shown increased anti-
tumor activity in association with decreased HIF-1α protein levels 
and a newly formulated version, Panzem™, already approved in the 
treatment of rheumatoid arthritis, is currently in phase II clinical trial 
for cancer patients [262,263]. 

Targeting the HIF-1α-responsive genes and transcription 
factors 

Topoisomerase-I inhibitors: Topotecan, the best characterized 
molecule of this group, is a potent inhibitor of HIF-1α that causes 
DNA damage and cytotoxicity by reversibly binding and stabilising 
the Topoisomerase-1 enzyme on the DNA [264]. Whilst already 
approved for second line therapy of small cell lung cancer and ovarian 
cancer, topotecan has also been show to inhibit tumor growth with 
a concomitant HIF-1α protein level reduction in glioma xenograft 
models [222,265]. Furthermore, a recent study has demonstrated that 
topotecan inhibits VEGF-mediated angiogenic activity induced by 
hypoxia in human neuroblastoma cells [266].

PX-478: being one of the most potent HIF-1α inhibitors, PX-478 
has shown anti-tumor activity which positively correlates with HIF-
1α levels in both cell lines and large xenograft models [267]. PX-478 
has completed Phase I clinical trial for advanced solid tumours and 
lymphomas, where it was associated with stable disease and dose-
dependent inhibition of HIF-1α [268]. 

YC-1 (3-(5′-hydroxymethyl-2′-furyl)-1-benzylindazole): This is 
a pharmacological agent initially formulated for circulatory disorders, 
acting as an inhibitor of platelet aggregation and vasodilation via 
activation of soluble guanylate cyclise (sGC) [269,270]. YC-1 has shown 
significant anti-tumor activity with concomitant reduction of HIF-1α 
protein levels in hepatoma cells and five xenograft models [271,272]. 

Heat-shock protein 90 (Hsp90) inhibitors: Hsp90 is a chaperone 
protein involved in the conformation, stability, maturation and 
function of many other proteins, mainly transcription factors and 
signalling kinases, including regulation of HIF-1α activation and cell 
cycle control [273]. Galdanamycin (GA) is a naturally occurring Hsp90 
inhibitor that works by competing with Hsp90 for its ATP binding 
site, causing ubiquitination and proteasome-mediated degradation of 
the associated proteins; interestingly, GA has been found to cause the 
degradation of HIF-1α in renal cell carcinoma and prostate cancer cell 
lines, so GA analogs are currently being tested in clinical trials for their 
efficacy in treating renal tumors, metastatic breast cancer, malignant 
melanoma, thyroid carcinoma and lymphoma [222,274,275]. Similarly, 
other Hsp90 inhibitors have shown promising results in xenograft 
models and clinical trials of hypoxia in that they inhibit HIF-1α 
activity and VEGF expression; examples include radicicol, KF58333, 
SCH66336 and apigenin [275-279]. 

Histone deacetylase inhibitors (HDACI): Studies have shown 
that HDACI (especially HDAC-6 and HDAC-4) are actively implicated 
in the proteasome-dependent degradation of HIF-1 α, either by a 
VHL- and ubiquitin-independent pathway mediated by an HDAC-6-
dependent hyperacetylation of Hsp90, or by an increased acetylation 
and poly-ubiquitination pathway mediated by the direct interaction 
between the HDACI and HIF-1α [280,281]. Vorinostat (ZOLINZA™, 
Merck) is an FDA-approved HDACI for the treatment of cutaneous 
T-cell lymphoma (CTCL), while several other HDACI are currently 
being tested in phase I/II studies for their efficacy as cancer therapeutics; 
examples include: valproic acid (also used as an anticonvulsant and 
mood stabilizing drug in epilepsy and bipolar disorder), MGCD0103, 
FK228, LBH589, Trichostatin A, AR-42 and CUDC101 [282]. 

Thioredoxin inhibitors: Since redox protein thioredoxin (Trx-1) 
over-expression has been found to correlate with increased HIF-1α 
protein levels and VEGF production in many human cancers, the next 
logical step is to design inhibitors that will prevent Trx-1 signalling 
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[283]. Examples include PX-12 and pleurotin, already showing 
encouraging results in decreasing HIF-1α levels and expression of HIF-
1α-responsive genes in vitro [284]. 

Chetomin: Being a metabolite of the fungus Chaetomium with 
anti-microbial properties, chetomin has also shown strong potency 
in disrupting the interaction of HIF-1α with p300, hence inhibiting 
hypoxia-mediated transcription and tumor growth in xenograft 
models [285]. 

Echinomycin: Despite disappointing results when extensively 
tested in phase I/II clinical trials in the 1990s, echinomycin, essentially 
an antibiotic, has shown strong potency in inhibiting HIF-1α activity in 
vitro, paradoxically hinting at a possible therapeutic efficacy if exploited 
accordingly [286-288].

Miscellaneous: Ascorbate, Fara-A (nucleotide analog) and certain 
anti-inflammatory drugs such as ibuprofen and indomethacin have 
been found to inhibit HIF-1α activity and angiogenesis in both normal 
and cancer cells in vitro [289-292]. On the other hand, flavopiridol, a 
protein kinase inhibitor, has demonstrated strong potency in inhibiting 
VEGF and HIF-1α expression in human monocytes and glioma 
cells [293,294]. Recently, the development of a synthetic polyamide 
especially designed to inhibit the binding of the HIF-1 α/ARNT 
heterodimer to its cognate DNA sequence and its successful delivery 
in mammalian cells has shed new light in the mechanisms regarding 
HIF-1α inhibition [295,296]. Considerations are also being made for 
the development of proteasome inhibitors as HIF-1α transcriptional 
inhibition-mediated tumor therapeutics [297], whereas natural 
products such as curcumin (component of spice tumeric), berberin 
(Chinese herb component), resveratrol (found in grapes) and certain 
flavonoids such as genistein are also being screened for their ability 
to inhibit HIF-1α activity in certain human cell lines and xenograft 
models [298-302]. Finally, recent studies have demonstrated that zinc 
supplementation downregulates HIF-1α activity and protein levels in 
highly invasive and angiogenic prostate cancer and glioblastoma cells, 
resulting in the inhibition of VEGF expression and in the prevention 
of angiogenesis and tumor invasiveness, thus indicating that zinc could 
become a useful HIF-1α inhibitor in anti-cancer therapies [303,304]. 

PHD-based therapeutic targets

Since PHDs are actively implicated in the proteasome-mediated 
degradation of HIF-1α in the normoxic environment, as discussed at 
the beginning of this review, strategies employing their activation are 
well under consideration. Examples include: 

Cyclosporin A: Essentially an immunosuppressive agent used in 
organ transplantation, cyclosporine A has also been found to inhibit 
the HIF-1α-mediated cellular response to hypoxia via induction of 
PHD activation in glioma cells in vitro [222,305]. 

R59949: This agent has shown potent activity in inhibiting HIF-1α 
protein accumulation via activation of PHD in vitro and therefore is a 
promising candidate for further in vivo testing [306]. 

Antioxidants: Such as ascorbic acid, N-acetylcysteine and vitamin 
C have been shown to decrease HIF-1α protein levels, possibly by 
maintaining the reduced active state of the catalytic ferrous ion of PHD 
and by inducing VHL-mediated HIF-1α degradation [307]. 

Clinical setbacks in the field of anti-angiogenic cancer therapy 

Despite the FDA approval of several VEGF blockers for cancer 
therapy and the reported prolonged survival of the responsive cancer 

patients, recent findings show that progression-free survival (PFS) is 
very short, usually in the order of a few months and not always followed 
by overall survival (OS) [308,309]. Similarly, approvals of oral small 
molecule anti-angiogenic receptor tyrosine kinase inhibitors (TKIs) 
have also been associated with a number of failures in randomized 
phase III trials, whether administered alone or with chemotherapy 
[310,311]. The anti-VEGF neutralizing antibody bevacizumab, in 
particular, has produced extremely disappointing results in preclinical 
testing and in colorectal cancer phase III trials, with worse clinical 
outcomes appearing in patients who received bevacizumab plus 
chemotherapy compared to just chemotherapy [312,313]. Even though 
such therapeutic strategies may initially elicit a beneficial response 
by reducing tumor size, they can also result in hypoxia and hence 
eventually enhance tumor aggressiveness by reducing drug efficacy 
due to HIF-1α expression. As a result, hypoxia might select for the 
malignant metastatic cells that expand to more invasive metastatic 
disease, ultimately leading to shorter life expectancy [312,314,315]. 
Several mechanisms have been proposed to explain the aforementioned 
setbacks, mostly regarding changes in the tumor cells, as is for example 
the tumor microenvironment, where VEGF blockade induces hypoxia 
as a result of reducing tumor microvascularity, tumor vessel blood 
flow and blood perfusion [315,316]. Should other angiogenic factors 
be upregulated at a more advanced tumor stage, as for example 
PIGF, FGFs, chemokines and ephrins, not only will VEGF-blockade 
as cancer therapy no longer be effective, but tumor vascularisation 
will be rescued, leading to tumor invasiveness and metastasis [317]. 
Notably, depending on the cell type affected, certain tumor types 
may be less sensitive to VEGF blockade, as is for example pancreatic 
cell carcinoma, due to its hypovascular stroma structure [315]. As 
a consequence, there is an urgent need for devising strategies that 
will allow the anti-angiogenic drugs to be effectively combined with 
chemotherapy in targeting tumor hypoxia and HIF-1α expression. One 
such strategy could be metronomic chemotherapy, i.e. repetitive, low 
doses of chemotherapeutic drugs designed to minimise toxicity and 
target the tumor stroma, as opposed to targeting the tumor itself. It 
has already been shown that combining anti-angiogenic drugs with 
metronomic chemotherapy produces more potent anti-tumor effects 
in vitro, whereas a randomized phase II clinical trial of metronomic 
cyclophosphamide/capecitabine in combination with becavizumab 
for the treatment of metastatic breast cancer has shown a significant 
enough overall clinical benefit so as to move the treatment forward to 
phase III clinical trial testing [318-321]. 

Conclusions/Future Perspectives
To summarize, hypoxia induces the activation of many pathways 

within the cell, some being HIF-mediated and some HIF-independent, 
which interconnect and cooperate with each other in response to the 
hypoxic stress. Chromatin remodelling, changes in gene expression and 
altered translational processes are all aspects of the cellular response to 
hypoxia and are actively involved in cancer formation. The research and 
development of novel chemotherapeutic targets based on these features 
of the hypoxic response has been the subject of intense scrutiny in the 
past 20 years. Despite the fact that many hypoxia-based therapeutic 
agents show promising results in vitro and in vivo, with some of 
them having successfully passed onto Phase I/II clinical trials, we still 
haven’t fully deciphered the molecular mechanisms interconnecting 
the various signalling pathways involved in the hypoxic response or 
gained enough insight into how gene expression affects the malignant 
phenotype. In addition, very little data exists on the effect of hypoxia on 
childhood tumorigenesis, so current therapeutic modalities are almost 
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exclusively based on data acquired from studies in adults. Future 
research in this area will lead to a better understanding of how the 
hypoxic cascade affects cancer progression in this particularly fragile 
patient population and hopefully lead to better and more effective 
therapeutic and prognostic outcomes. 
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