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Introduction
Electrochemical reduction and oxidation (redox) processes as a 

synthetic tool in chemistry are growing areas via either a direct redox 
reaction with electrode materials [1,2] or an electron transfer (ET) 
mediator [3-5]. A basic idea is that a cathodic reduction process of 
high oxidation state but stable organometallic compound is used to 
produce putative anionic radical compound. This resulting anionic 
radical compound could produce highly reactive species which will be 
used to catalyze the activation of organic substrates such as alkynes. 
Metal-catalyzed hydration and oligomerization of alkynes provide 
important processes in organic chemistry to aldehydes, ketones, and 
conjugated olefin compounds since they are the carbon–oxygen [6-10] 
and –carbon [11-19] bond forming reactions which produce a variety 
of new inexpensive starting materials. 

Over the last few decades, there has been considerable interest in 
aqueous and biphasic homogeneous water-soluble metal catalysis [20-
26]. Among water-soluble ligands, PAr3 (P(m-C6H4SO3Na)3) is the most 
commonly used ligand to prepare water-soluble metal compounds [27-
32]. Iridium-Cp* (C5Me5

-) compounds have been investigated and have 
drawn much attention due to their diverse and interesting reactivity 
with alkynes [11-18,27-37]. 

No electrochemical studies, however, for new water-soluble 
metal compounds have been explored thus far, to the best of our 
knowledge; therefore, we became interested in exploring the hydration 
and dimerization of alkynes by electrochemical reduction process 
mediated by the water soluble bis-acetonitrile iridium-Cp* compound 
[Cp*Ir(NCMe)2(PAr3)](OTf)2 (1) (OTf = -OSO2CF3) in two immiscible 
liquids (H2O/CH2ClCH2Cl) by micro-scale electrochemical techniques 
as one of the newest experimental methods. This is the first example 
of combination of cathodic reduction mediated reactions and 
water-soluble (i.e. Green Chemistry) organoiridium catalysis. This 
straightforward method described in this study of thin aqueous layer 
containing redox active catalyst (1) on electrode is not only useful to 
monitor catalytic activity of water-soluble compounds with organic 
substrates, but also easy to separate catalyst and organic products.
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During our investigation on the activation of alkynes by electro-
reduction of 1 in biphasic electrochemical system, we found 
corresponding aldehydes, ketones, and enynes from the electrochemical 
reactions of compound 1 (electrochemically reduced form) with 
alkynes via the H2O/CH2ClCH2Cl interface on a gold electrode. Here 
we wish to report that a new method of electrochemical intermolecular 
C-C and C-O coupling reactions which are based on the introduction
of a thin layer of water phase containing electron transfer mediator
compound 1 between the surface of a gold electrode and organic
phase (CH2ClCH2Cl). The resulting experimental setup is depicted
schematically in (Figure 1). Dry and polished gold electrode (4 mm
diameter, area = 0.13 cm2) exhibits sufficient hydrophilic character to
adhere micro volume (3 micro L, thickness: ca. 250 micro meters) of
water.

Results and Discussion
Di-cationic water-soluble bis (acetonitrile) compound 

[Cp*Ir(NCMe)2(PAr3)]2+ (1) has been prepared by replacing one 
MeCN of [Cp*Ir(NCMe)3]

2+ with PAr3 (Equation 1) and unequivocally 
characterized by detailed NMR spectral (1H, 13C, 31P NMR), IR, and 
elemental analysis data (see Experimental Section). Water-insoluble 
complex [Cp*Ir(NCMe)2(PMe3)]2+ was previously reported [38]. 

Since it is well-known that terminal alkynes can be activated by 
organoiridium compounds [11-18], this voltammetric observation 
prompted us to look into details of reduced-metal catalyzed activation 
of alkynes in biphasic (H2O/CH2ClCH2Cl) solution. The biphasic 
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electrochemical experimental system was designed because terminal 
alkynes are insoluble in water. A water soluble electron transfer 
mediator stays in aqueous solution on the electrode surface while 
terminal alkynes are in organic solution. The cathodic reduction of 
1 was investigated by cyclic voltammetry (CV) which shows a single 
and irreversible wave at Epc = -620 mV vs Ag/AgCl at a gold disk 
electrode in H2O (containing 0.1 M KCl)/CH2ClCH2Cl (containing 0.1 
M [NBu4]-[SO3CF3]) (Figure 2). The reduction of compound 1 in an 
aqueous phase is diffusion limited process since the current height is 
linear to the square root of the scan rate. 

Observed cyclic voltammogram is proposed on the basis of the 
results of controlled-potential electrolysis, as discussed later. Four 
different terminal alkynes (R-C≡CH, R = C6H5, C6H4-CH3, C6H9 and 
CH2C6H5) were examined in the absence and presence of compound 
1 at the interface between water solution containing 1/KCl and 
dichloroethane containing alkynes [NBu4][SO3CF3]. A direct reduction 
approach is not possible for terminal alkynes examined in this research, 
due to the fact that these compounds show no voltammetric response 
prior to the cathodic background. No redox activity of terminal alkynes 
was observed in the absence of compound 1 at the same potential 
range. The addition of alkynes, however, in organic phase affected the 
voltammograms of 1 in aqueous solution layer such as enhancement 
of the cathodic reduction current height. The voltammetic responses 
of this alkyne/Ir system are consistent with classic electron transfer 
catalysis [3-5], where Ir(II) produced at the electrode, gives an electron 
to alkynes, thereby returning the organo-Ir(III) compound to its 
oxidized form of Ir for rereduction. Compound 1 did not show the 
catalytic activities for the hydration and dimerization of alkynes unless 
it is activated by electrochemical cathodic process.

Controlled-potential electrolyses were performed to determine 
the nature of the product by electrochemical activation. When the 
20:1 (PhC≡CH:1, mol/mol) interfaced solution was bulk electrolyzed 
at (Eappl) -650 mV at an Au disk, the concentration of PhC≡CH 
(monitored by sampling for gas chromatographic (GC) analysis) fell 
to nearly zero after ∼30 min, with a total coulomb count of ∼0.036 
F/equiv of PhC≡CH. Both hydrated (C-O coupling) and dimerized 
(C-C coupling) products of alkynes (Equation 2) in organic phase 
were characterized by GC-MS analysis. Product distribution of 
phenylacetylene reaction products was confirmed by external standard 
method with GC-MS calibration curves for each product. Selectivity 
study is under investigation because non-electrochemical dimerization 
of phenylacetylene to enynes catalyzed by the Pd(OAc)2/Imidazolium 
Salt/Cs2CO3/dimethylacetamide solvent system has been provided 
of a good regio- and stereocontrolled enyne products. In which case, 
the product ratio of trans- and cis-1,4-diphenyl enynes was 97:3 [19]. 
According to GC-MS analysis, alkyne conversions to enyne isomers, 
ketones, aldehydes and some unknown products are ca. 60-90% (see 
Table 1 in experimental sections).

A very small amount of charge was passed during the electrolysis. 
This probably indicates that after initial reduction of 1 to form 1·− in 

the aqueous phase, a radical chain mechanism is involved in the real 
conversion of alkynes into products through an electrocatalytic process. 

The increase of steady state current during electrolysis upon 
addition of larger amount of terminal alkynes shows that the interaction 
between 1·− and alkynes is the rate limiting process. The steady state 
currents at 10 minutes for 1 with alkynes of 10/20 equiv (v/v) can be 
arranged as follows: 2.84/5.11 mA (for HC≡CCH2C6H5) > 1.84/3.53 
mA (for HC≡CC6H5) > 1.02/1.37 mA (for HC≡CC6H9) > 0.64/0.94 mA 
(for HC≡C-p-C6H4CH3).

Cathodic reduction mediated reaction pathways for the 
formation of hydrated and dimerized products from terminal 
alkynes

The following steps of the reaction pathway at the interface of two 
immiscible liquids can be proposed: 1) reduction of 1 to form reactive 
radical anionic species 1·− via electron transfer from the electrode, 2) 
diffusion of 1·− through the aqueous thin layer to the interface, and 
3) electron transfer from 1· to alkynes through water/dichloroethane 
interface to initiate the alkyne activations. 

Possible pathways for the C-O coupling from alkyne 
hydrations

It has been known that terminal alkynes react with water in the 
presence of organometallic compounds to produce aldehyde, ketone 
and carboxylic acids [6-10]. Hahn and Wakatsuki recently carried 
out detailed mechanistic studies for the alkyne hydration mediated by 
metal compounds in homogeneous solutions [6-10,39]. 
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Figure 1: Schematic depiction of the experimental setup with thin layer 
formation of an aqueous phase between a gold electrode and organic phase.
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Figure 2: Cyclic voltammogram of 5 mM 1 at the interface of H2O/0.1 M KCl and 
CH2ClCH2Cl/0.1 M [NBu4][SO3CF3] at room temperature: gold disk electrode (4 
mm diameter), scan rate: v = 50 mV s-1.
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The formation of aldehyde and ketone seems to be initiated by the 
cathodic reduction of the water-soluble iridium compound 1, because 
compound 1 did not demonstrate any reactivity for the hydration of 
alkynes unless it is activated by cathodic reduction process. At the stage 
of generation of a putative 19 e- Ir(II) species has to be kinetically driven 
either by releasing labile ligand (NCMe) or by a fast radical substrate 
reaction with alkyne. This reaction stage could provide a formation 
of either Ir-(π-alkyne), Ir-(σ-alkynyl) intermediate or equilibrium 
between these two forms. Terminal alkynes are known to coordinate 
toward metal center to give stable π-alkyne or σ-alkynyl compound 
[6-10]. In fact, it has been well-documented that metal vinylidene is 
obtained directly from the rearrangement of π-coordinated terminal 
alkynes [6-10,11-19,39,40]. It seems reasonable to include the direct 
attack of H2O on the carbon of the Ir-(HC≡CR) to produce ketones 
and on the α-carbon of the vinylidene moiety (Ir=C=CHR) to yield 
a hydroxyl carbene compounds followed by reductive elimination to 
give aldehydes. 

Possible pathways for the C-C coupling from alkyne 
dimerization

The dimerization of alkynes catalyzed by a variety of transition 
metal compounds has been extensively studied and suggested the 
elaborated mechanism [11-18]. The key step of alkyne coupling 
reaction has been commonly proposed to involve the rearrangement 
of metal π-alkyne to metal vinylidene form [11-18]. In this case, the 
following steps of the reaction pathway for the formation of dimerized 
enyne products could be proposed: i) electrochemical reduction of 
water soluble iridium compound, ii) ligand switching from acetonitrile 
to alkyne, iii) rearrangement of alkyne to vinylidenyl-iridium (II), iv) 
oxidative addition of another alkyne to give iridium (III)-alkynyl, and 
v) migratory insertion of vinylidene into iridium-alkynyl bond, and vi) 
reductive elimination of enynyl ligand. Oligomers or higher than the 
dimers were not observed. Since each alkyne displayed different product 
distribution, in terms of mechanistic aspects and regioselectivity for 
product distribution, further investigation will be performed. 

In summary, preliminary experiments have shown that aqueous/
nonaqueous interfaced reaction media can be utilized for electrocatalytic 
C-C and C-O coupling reactions. It is clear that under Ir(II)-based 
ET-mediator conditions in thin layer micro-scale reaction system can 
catalyze the dimerization and hydration reactions of terminal alkynes. 
Based on the data we obtained, we cannot rule out the possibility 
of a regioselectivity role played by an Ir(II)-alkyne intermediate in 
these reactions, we assume it likely that the geometries of the organic 
products are determined basically by the radical/substrate reaction. 
We will investigate this new synthetic method with internal alkynes 
(R-C≡C-R’) as well as with unactivated olefins. 

Experimental Section 
General Information

Deionized water from Milli Q water purification system was used 
for preparing aqueous solution. Solvents were reagent grade and were 
purged by Ar prior to use. All synthesis and product isolations were 
carried out under Ar using standard vacuum system, Schlenk and 
glovebox techniques. Phosphine oxide (OP(m-C6H4SO3Na)3) seems 
to be produced when the water-soluble PAr3 complexes are handled 
under air for a prolonged period of time. Electrochemical experiments 
were carried out under Ar. The experimental reference electrode was 

a silver/silver chloride wire separated from the working electrode 
compartment by a vycor glass (Bioanalytical Systems, BASi). It was 
prepared by deposition of AgCl onto silver. Standard three-electrode 
cells were used, with Pt wire counter electrodes as depicted in (Figure 
1). The working electrode for voltammetry was a 4 mm diameter gold 
disk (BASi), which had been progressively polished with Metadi II 
diamond polishing compounds, rinsed with nanopure water, and dried 
under vacuum prior to use. Bulk electrolyses were conducted using the 
same setup. BAS 50W and EG&G 273 and 362 potentiostats interfaced 
to a personal computer were used for voltammetry and electrolysis. 
The supporting electrolyte was 0.1 M [NBu4][SO3CF3] which was an 
electrochemical grade purchased from Aldrich. The NMR spectra were 
recorded on a Varian 500 MHz spectrometer for 1H and 126 MHz for 
13C, and 121.3 MHz for 31P. Infrared spectra were obtained on a Nicolet 
205. Gas chromatography/ mass spectra were measured by Hewlett-
Packard HP 5890A and VG-trio 2000 instruments or Agilent 6890 
N-Agilent 5973 (MS). Elemental analysis was carried with a Carlo Erba 
EA1108. 

PAr3, P(m-C6H4SO3Na)3 [27-32], [Cp*IrCl2]2 [41] and 
[Cp*Ir(NCMe)3](SO3CF3)2 [41] were prepared by the literature 
methods. 

Synthesis of [Cp*Ir(NCMe)2(P(m-C6H4SO3Na)3)](SO3CF3)2·3H2O 
(1)

A 0.11 g (0.18 mmol) of P(m-C6H4SO3Na)3)·3H2O was added into 
a solution of [Cp*Ir(NCMe)3](SO3CF3)2 (0.15 g, 0.2 mmol) in H2O (5.0 
mL) under N2 at 25oC and the reaction mixture was stirred for 3 hrs 
before it was distilled under vacuum to remove solvent. The yellow 
solid was washed with CH2Cl2 twice and recrystallized in H2O/MeOH/
Me2CO. The yield was 0.24 g and 89% based on [Cp*Ir(NCMe)2(P(m-
C6H4SO3Na)3)](SO3CF3)2·3H2O (1). 1H NMR (D2O): δ 1.59 (d, 15 H, J 
= 2.4 Hz, C5(CH3)5), 2.56 (s, 6H, NCCH3), 7.53 - 8.05 (m, 12 H, P(m-
C6H4SO3Na)3). 13C NMR (D2O): δ 3.17 (NCCH3), 8.34 (C5(CH3)5), 99.6 
(d, J = 1.4 Hz, C5(CH3)5), 126.1 (N≡CCH3), 126.8 (d, J = 57 Hz), 130, 
131.0 (d, J = 9.6 Hz), 131.1 (d, J = 16 Hz), 136. 2 (d, J = 6.3 Hz) and 
144.5 (d, J = 13 Hz) P(m-C6H4SO3Na)3. 

31P NMR (D2O): δ 11.2 (P(m-
C6H4SO3Na)3). IR (KBr, cm-1): 2322, 2294 (w, ν(C≡N)). Anal. Calcd 
for C34H33O15N2S5F6PNa3Ir·3H2O: C, 30.70; H, 2.95; S, 12.05; N, 2.10. 
Found: C, 30.52; H, 2.77; S. 11.97; N, 1.99. 

Typical conditions

 A 3 µL-aqueous solution of 1 (1.0 µmol) from 0.33 M 1/0.1 M 
KCl was placed on gold disk electrode prior to voltammetric analysis 
or electrolysis. A 2-mg (20 μmol) of PhC≡CH was added to 200 mL 
CH2ClCH2Cl/0.1 M [NBu4][SO3CF3] under nitrogen; electrolyze at 
293 K for 30 min. The electrolysis was then performed at -650 mV (vs. 
Ag/AgCl). Mass: cis and trans PhCH=CH-C≡CPh, M+ at m/z = 204; 
Acetophenone, PhC(=O)CH3, M+ at m/z = 120; Phenylacetaldehyde 
(PhCH2C(=O)H), M+ at m/z = 120. The retention times of cis- and 
trans-PhCH=CH-C≡CPh isomers are not the same. All four products 
were verified by running GC-MS of commercially available authentic 
samples. After the reaction was completed, the product yields were 
determined directly by GC-MS and GC calibration curves. Product 
distribution of alkyne reactions was provided in Table 1.
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