
,

Review Article Open Access

Journal
of

 In
fo

rm
at

ion

 Technology & Softw
are Engineering

ISSN: 2165-7866

Keywords: Applied research lab; Fast convergence algorithm (FCA)

Introduction
Brook Iyengar algorithm

The current internet world consists numerous automated systems
that must communicate with dynamic atmospheres. Because these
environments are undeterminable, the systems depend on sensors for
the delivery of information in order to perform the computation. The
Sensors are unenviable interface across computer systems and internet
real world for the communication of data.

The smart intelligence development and deployment into these
automated control systems is arduous because of limited sensor
accuracy, and the noise in data readings recurrently corrupts the
accuracy of data. The Brooks-Iyengar algorithm is widely known as
Brooks-Iyenger Hybrid algorithm [1,2], this algorithm acclaimed for
its betterment in the accuracy of interval measurement engaged by a
distributed sensor network.

The key merits of this algorithm is, even with the faulty sensor
presence the smart intelligence of sensor network swaps the measured
value and precision value at each node with every peer node and
performs accuracy in measured range and value for all nodes of the
network [3]. The resilient point of algorithm is that it is a fault-tolerant
and distributed and it does not malfunction even if some sensors
transmit faulty data, because of this key feature it is used as sensor
fusion method. Further, accuracy and precision assurance are proved
in 2016 [4]. The algorithm Brooks-Iyengar integrates with Byzantine
agreement with sensor fusion to control the presence of noise in sensor
data.

The algorithm is designed to channel the space between Byzantine
fault tolerance and sensor fusion. Further this algorithm is identified as
the first algorithm to amalgamate these dissimilar fields [5]. Principally,
it syndicates algorithm of Dolev’s [6] for an imprecise contract with
fast convergence algorithm (FCA) by Mahaney and Schneider’s. The
core of algorithm pretends processing elements (PEs) as N and t of
them are assumed to be faulty and perform malevolently. It accepts
both real and unreal values with noise and uncertainty. However,

Brooks-Iyengars Real-Time Sensing Algorithm for Future
Latesh Kumar KJ*
Department of CSE, Siddaganga Institute of Technology, India

Abstract
The article primarily benevolences a two-decade longstanding and most influential Brooks Iyengar’s Hybrid

algorithm known as Robust Distributed Computing and Sensing Algorithm. The algorithm has established a foundation
mark across various real time operating systems, application areas and fault tolerant schemes. The crucial contribution
of the algorithm is majorly found in enhancing the features of MINIX real-time operating system, the hybrid architecture
and scalability of the algorithm is proficient enough to encounter the unreliable and distributed sensors data using the
Byzantine agreement and distributed decision-making process methods. This article emphasises on inclusion and
adoption of most persuasive long running Brooks Iyengar’s algorithm in MINIX real-time operating system and their
recent enhancement of incorporating the fault tolerant schemes. Further, the richness of algorithm has acclaimed
by millions of vivid category of users around the globe in their research and tasks. Most significantly the algorithm is
beneficial to DARPA, Open Source - Linux, IT Industry - Bae Systems and BBN technologies, Academics – Universities
of Maryland, Georgia Tech, Purdue, Clemson and Wisconsin etc., and Research Labs like Penn State Applied
Research Lab (ARL), USC/ISI. Additionally, the scalability of algorithm proved to be beneficial to other domains like
cyber physical systems, robot merging, high-performance computing, reliability of software and hardware appliance
and artificial intelligence systems. In this paper, we attempt to showcase the use cases and real-time deployments
of Brooks-Iyengar algorithm in various aspects of physical world. Finally, the influence of algorithm across real-time
MINIX operating systems.

the output produced by the algorithm is real value with appropriate
stipulated accuracy. The algorithm is further customised to resemble
crusader’s convergence algorithm (CCA) [7], this adoption increases
the bandwidth requirement in processing of algorithm. The benefits
of algorithm are wide spread across domain like high-performance
computing [8], distributed control, software reliability and real time
MINIX operating systems.

The use of algorithm is not restricted to specific domains and
applications we’ve cited. In general, all floating-point computations
produce inaccuracy and this varies from machine to machine. This
hybrid algorithm offers increased scientific consistency on a distributed
system encompassing assorted components. This offers a novel method
of resistance in rounding and skewing the errors generated by hardware
limitations. Today’s cloud based software development and customer
requirements are inconsistent, the cloud based various services like
software, platform, data, network, security and recovery are different in
domain but targets produce a common service to customer.

In these environment fault tolerance and accuracy of services must
be assured from end to end terms. The Brook-Iyengar’s algorithm
is useful and effective in these instances by achieving robust and
distributed accuracy because of the novel intelligence of algorithm.
The cluster computing involves the critical data and service modules
that are important systems which demands the additional strength and
accurateness.

Regrettably, data, service and security are compromised often
between them. Nevertheless, the usage of algorithm increases the by not

*Corresponding author: Latesh Kumar KJ, Department of CSE, Siddaganga
Institute of Technology, India, Tel: 9900550607; E-mail: latesh.kj@hotmail.com

Received June 13, 2019; Accepted January 28, 2021; Published 28, 2021

Citation: Kumar KJL (2021) Brooks-Iyengars Real-Time Sensing Algorithm for
Future. J Inform Tech Softw Eng. 11: 250.

Copyright: © 2021 Kumar KJL. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Journal of Information Technology &
Software Engineering

Research Article

January

J Inform Tech Softw Eng, Vol.11 Iss.1 No:250

 Kumar KJL

Page 2 of 7

sacrificing accuracy with data, service and security. The fault-tolerance
mechanism defined in the algorithm is highly beneficial in both active
and passive cluster computing in primary and disaster computing
sites. With this algorithm, sincerely robust distributed computing
applications can be developed and deployed seamlessly. Today’s
world is Internet of Things (IoT) and cloud based services, sensors are
vital part of the IoT systems and cloud readers. The amount of data
communication across current dynamic environments are leading to
errors, mechanical failures and uncertainties in sensors. To avoid this
backup mechanism are plugged but fault-tolerance and accuracy can’t
be managed. Hence the Brooks-Iyengear’s algorithm has lower bound
and upper bound, using this technique inaccuracy are dealt smartly
and specifically.

The algorithm is not limited to a specific domain neither restricted
to set of computing and hence the wide spread smartness of algorithm
is encashed from last 20 years in by various researchers, computing
labs and university training materials. In illustrating an example, a
robust fault tolerant rail door state monitoring systems is developed
using the brooks-iyengar sensing algorithm to transportation
applications [9], in this paper the author Buke Ao clearly listed the
implementations of brooks-iyengar algorithm in variety of redundancy
applications by various research studies [10,11], this comprised a
program demonstration through the US Defense Advanced Research
Projects Agency (DARPA) with BBN using the Sensor Information
Technology for the War Fighter (SensIT) program. This group is
committed to develop software’s for networks of distributed micro
sensors and especially in collaborating the signal and information
processing and fusion of sensor data. In specific, the algorithm is
extensively incorporated to create practical and survivable sensor
network applications developed by Penn State University Applied
Research Laboratory (PSU/ARL). The key identification is Brooks-
Iyengar algorithm has prominently extended seamlessly by connecting
the legacy and edge cutting trends of technology variants in software
applications and hardware control systems in cloud and non-cloud
systems [9].

The major contribution of algorithm is identified with relevance to
Linux and Android operating systems effectively. Truly, tons of various
software applications and hardware control systems have encapsulated
the brooks-iyengar algorithm to offer fault-tolerant fusion data across
billions of users accessing the various services through internet and
other sources of digital media. Further, algorithm indirectly benefits
across to 99% of world’s top supercomputers and 89% of smart phones
around the globe.

Real Time Minix Operating System

The Real Time Minix operating system is an enhanced version of
MINIX operating system, this was originally programmed by scientist
Andrew Tanenbaum for teaching operating system on x86 computer
system. The research study and implementation by the author Gabriel
Wainer changed the MINIX operating system to support RT-processing
named it “RT-MINIX” by adopting Brooks-Iyengar algorithm in the
areas like Scheduling Algorithms Selection, Scheduled Queues, Real
Time Metrics Collection and fault-tolerant systems [12,13].

Before we explain the deep impact of Brooks-Iyengar algorithm
on MINIX operating system, we intend to detail about the MINIX
operating system. The detailed understanding on MINIX operating
system sets a platform for understanding the Real Time MINIX (RT-
MINIX) for various applications services and control systems. The
MINIX operating systems drivers, user and system specific servers runs
on highest level on the miniature kernel architecture, as illustrated in

figure [2]. The SYS and CLOCK are the two major tasks responsible to
support the user-mode sections of the operating system at higher levels.
Apart from this programming the MMU, CPU, interrupt handling and
IPC are the other privileged operations of the MINIX kernel. Just like
any other operating system the functionalities like File system (FS),
Memory Management (MM), User Management (UM) and Process
management (PM) is offered by MINIX. The key and unique feature
of MINIX over other operating system is, stealthily this RS server
monitors all the device drivers and various servers inside the operating
systems at all time and fixes it automatically when any failure is noticed.

All system calls are focused blatantly by system libraries to
right server to manage the kernel communication. Let us consider a
user requests a process to run an application task, usually a process
is initiated by fork () library function when the process manager
approves it by verifying with the memory manager on the process slots
availability. If any slot available, then process manager instructs the
kernel to produce a copy of the process, all these happens transparently
without the notice of the user application task. Just like UNIX the
MINIX kernel is responsible of managing hardware and device drivers.
This involves process scheduling, interrupt management, memory,
device I/O and CPU management. The two major core components
of kernel space SYS and CLOCK are explained here because in later
sections we illustrate how the Brooks-Iyengar algorithm is seminal for
the RT-MINIX enhancement. The SYS control is known as system task,
this is vital for all kernel mode operations for the device drivers and key
heartbeat channel for user segment servers. Any user request to process
internally sends a signal to kernel through the library function, each
request is passed to SYS. There are various categories based on the SYS
management on kernel calls, to copy data between process SYS calls
SYS_VIRCOPY and to configure an alarm SYS_SETALARAM etc. Few
new systems call defined in the MINIX are listed in Tables 1-4.

The second core object is CLOCK by which kernel manages the
process scheduling, timers, cron services, hardware clock and CPU
usage. The interrupt handler will initiate a timer moment when a
MINIX system is power on, since then each tick is countered using
this interrupt timer. In general, the cooperating servers are created by
modulating the operating system, the native MINIX operating system
allows third party device drivers untrusted code to run and communicate
with kernel, the MINIX is smart and manages the spreading of failures.
A tight coupling of devices and library functions are created to intact
the seamless communication in the low-level kernel operations. In
this paper we are describing MINIX operating system in deep to prove
how the brooks-iyengar algorithm is influencing the fault tolerant and
robust distributed control systems in RT-MINIX. The Figure 1 below
illustrates the architecture of the failure-resilient operating system.

The Figure 2 shows how user space in managed by microkernel on
file systems and device drivers for higher level user applications and
process threads. In this architecture reincarnation server on right side
tracks and monitors the device drivers and services all time to power
the auto-fixing procedures.

Influence of brooks-iyengar algorithm

Brooks-Iyengar? the name is all over the globe from last two
decades, this algorithm is considered to be the all-time best robust

Kernel Call Purpose
SYS_VIDEVIO Read or Write a vector of I/O ports
SYS_VIRCOPY Safe copy between address spaces
SYS_GETINFO Get a copy of kernel information

Table 1: Privileged SYS Calls to Kernel.

J Inform Tech Softw Eng, Vol.11 Iss.1 No:250

 Kumar KJL

Page 3 of 7

Figure 1: The MINIX operating system core components with IPC Architecture.

Data Structure Parameters Description
struct rt_globstats {
int actpertsk;
int actapetsk;
int misperdln;
int misapedln;
int totperdln;
int totapedln;
int gratio;
clock_t idletime;
};

Acrta_petsk, Act_pertsk

Mis_perdln, Mis_apedln

Tot_pertsk, Tot_petsk
Gratio
Idletime

Period and aperiodic real time tasks, total running tasks.
Total missed deadlines

Total real-time task scheduled instance

Guarantee ratio between deadline and instances
Computing Time in Second (clock Tick)

Table 2: Updated MINIX data structure.

OpenMPI Methods Description
Isend and Ireceive Non-blocking sends and receives were used to communicate from sensor to sensor. In order to process the data each sensor needs

the data from every other sensor in the network. This means there are a worst case of N^2 messages being passed at any given point.
Due to this large number, it is best to use non-blocking communications.

Barrier This acts as a sync step for all sensors. Barrier merely acts as a join for processes in the context of OpenMPI. It is very useful for a
simulation as this to stop one process from being a front runner.

Broadcast Seeing as this is a timed excution program, it is necessary for each sensor to kill itself after a fixed period of time. However, it is
possible for one process to keep running if it gets to the check before all the others. To get around this one thread was designated with
the resposibility to check the runtime, and then broadcasted the result to all others.

Table 3: OpenMPI methods implemented using Brooks-Iyengar.

S.N Area/Technology User
1 Operating System– MINIX Andres Tanenbaum
2 IT Industry – Software Systems BBN, BAE Systems, Sense-IT
3 Research Labs Penn State Applied Research Lab(ARL)USC/ISI
4 Research Communities – RT:MINIX Pablo J. Rogina and Gabriel Wainer
5 Transportation – Railway Buke Ao, BYD Company
6 Education- Training/Journal/Conference Duke, Wisconsin, UCLA, Cornell, Purdue, Georgia Tech, Clemson, Maryland and LSU University
7 Defense- Thale Groups UK Defense Manufacturer
8 Navy-Software Maritime Domain Awareness Software
9 Technology Cyber-physical systems, Data Fusion, Robot Convergence, High-Performance Computing, Artificial Intelligence Systems
10 Open Source RT Linux, KURT, YARTOS, Spring

Table 4: Brook-Iyengar algorithm live use cases.

J Inform Tech Softw Eng, Vol.11 Iss.1 No:250

 Kumar KJL

Page 4 of 7

algorithm for precision, fault-tolerance and isolation of errors across
software applications and hardware control systems.

In this segment we narrate the Brooks-Iyengar algorithm’s influence
in various domains like MINIX operating system, sensor networks,
software application development, real time extensions, virtualisation,
cloud computing and physical cyber systems. To begin with we explain
the development and deployment of a distributed sensing algorithm
that has major influence on computing systems.

Brooks-Iyengar’s algorithm on MINIX operating system

The Minix operating system powered by Tanenbaum’s was
enhanced to Real-Time (RT) Minix operating system and services by
Wainer and it is identified as RT-MINIX [12-15]. Further few noveler
features were added to shape up an academic real time operating
system called as MINIX v2. This architecture of design was proposed to
train the RTOS with few major topics:

•	 System Architecture

•	 Handling Interrupt

•	 Process Management

•	 Scheduling of Process

•	 Fault-Tolerance

•	 Isolation of Errors

The research study by Gabriel Weiner also mentioned that many
other control systems, computer application and real-time systems are
created based on the services offered by Brooks-Iyengar algorithm. The
services provided by the algorithm on real-time systems, computer
applications and various systems are vaguely different from traditional
systems. is unique and different from the native operating system.

The Figure 3 describes novel features added to MINIX operating
system by Gabriel and Team in creation of RT-MINIX by using the
intelligence of Brooks-Iyengar Algorithm. The programming of the
MINIX source code was dedicated to provide the real-time controls
on various services. Many real-time services were added, to begin with
rate-monotonic scheduling [12,16], Earliest Deadline First processor
and fault-tolerance are programmed. To make these new changes in
the source code of the kernel, the code flow and data structures are
slightly modified based on the new updates. Specifically, sensor, timers,
schedule and criticality. Further, to adapt live-tasks with interactive
CPU bound tasks a multi-queue is developed. The below listed data
structure is modified in lieu of RT-MINIX evaluation.

All these changes are tested with various feasibility of MINIX for the
real world challenges for real-time development. Numerous work was
done using Brooks-Iyengar robust distributed computing alogrithm
from the testing of novel scheduling procedures to kernel alterations.

Figure 3: Block Structure View of Brooks-Iyengar Algorithm Influence.

Figure 2: Architecture of Failure-resilient operating system.

J Inform Tech Softw Eng, Vol.11 Iss.1 No:250

 Kumar KJL

Page 5 of 7

In the mean time new version of MINIX was released and hence to sync
the RT-MINIX version with MINIX version, some changes were made.
The analog to digital conversion, in this update the target was to acquire
data from analogic environment as many real-time systems are employed
to handle the real process like chemical and a production line [17]. In
this requirement the Brooks-Iyengar algorithm’s sensor management
intelligence is effectivley used for sensing the real world data, to control the
noise and to manage the faulty sensors. The interface used for game ports
were used to provide the signals from the sensors, this was considered
and a device driver for port is developed. The changing environment
rely on poor performance of integral systems of RT-MINIX with novel
techniques. The Brook-iyengars’s algorithm adopted fast convergance
algorithm (FCA) to increase the convergance ratio [8].

According the Pablo Ragina and Gabrile Weiner, the algorithm
is used extensivley to extend RT-MINIX with posiblity of several
sensors from a fault-tolerance perception [15]. At the outset, the
complete coding was performed based on the all the four algorithm’s
of hyrbid brook-iyengar. The next immediate phase was to integrate
the smart capability to make use of the real-time data, to do this four
potentiometers were used to sense the signals/data from analogic inputs
from the joystick port. These sensor positions are arranged with actual
positions for a simulation based robotic arm. An accurate and precise
functionality of algorithm was noticed by provividing a exclusive value
from the simulated sensors inspite of faulty, at the same time users were
offered open chance to modify the data by varying the potentiometers.
At last, all the updated code is test for various feasibility and real-time
constraints and then the novel algorithm intelligence is united into
MINIX kernel.The Figure 4 shows the RT-MINIX Kernel and new
feature additions with Brook-Iyengar Algorithm.

The software developers were given a set of functions to work with
intellectual sensors, using these it was possible to generate many new
services and devices like /dev/js0 and after that smart sensors were
able to read data in the presence of faulty sensors. Once the operating
system is enhanced with RT services, the demand asceded for various
computing tools and applications. The Brook-Iyengar’s algorithm
needed a test on the novel techniques applied on kernel, in order to
evalute the data structure through vivid system and library calls.

Case Study
OpenMPI+virtualisation

The Brooks-Iyengar algorithm was further implemented on Linux
using the OpenMPI [18], this is an open source project created to pass
message through interface. This is a collaborative consotium of industry
partners, reseach community and groups of academic. Hence, the
OpenMPI is powerful and smart because the knowledge, technology
and resources are shared from various community.

The libraries of MPI provides support to software developers and
researchers of computer science and operating researchers. The below
Figure 5 shows the hard coded c code in implementing the OpenMPI
by using the Brooks-Iyengar algorithm for fault tolerance.

A classical problem in distributed computing is Byzantine Generals'
Problem, introduced in the 1982 white paper of the same name. It
attempted to formalize a definition for faulty (traitorous) nodes in a
cluster and how for the system to mitigate it. Solutions such as majority
voting or signed messages were suggested. Majority voting requires that
all generals have the same information, a suggestion that isn't always
possible. Signed messages are a good to verify that it was the correct
node in communication, even if it doesn't verify that the content itself
is correct. Both are good suggestions, but it would be more interesting
to have an algorithm that can survive a traitorous order every now and
then.Enter the Brooks-Iyengar algorithm as an attempt to solve this
problem. This algorithm uses sensor fusion to mathematically eliminate
the faulty sensors. In short, this is achieved by taking measurements
over an interval, the measured interval is then shared between all
sensors on the network. The fusion step then happens, by creating a
weighted average of the midpoints of all the intervals. At this point you
can eliminate any sensors with high variance or use heuristics to choose
the reliable nodes. It runs in O(NlogN) time and can handle up to N/3
faulty sensors [19-21].

The Figure 6 illustrates the recorded output from OpenMPI
implementation for eliminating faulty sensors. The figure depicts three
colored output curves ranging from o to 6 across the X and Y axis.
The analytical results are displayed in blue color, the brooks-iyengar’s
100% accuracy in faulty sensor elimination is displayed in green color
and the red color curve denotes the discarded lower weights intervals
in the last step of pseudocode for eliminating the faulty sensor. The
output respresentation from the figure is included with faulty sensors
and overall an average value is considered across all sensors. Because
of high activity in the sensor the data represented in the graph is not
ideal to visulaise the realistic output of each sensor. Overall, the faulty
sensors are controlled from ruining the measurements by benefiting
from payback error distribution.

To conclude the obtained results it is better to consider the dumb
average because, noise generated from real and faulty sensors are
from undeviating distribution. If the algorithm has not performed
better then the noise would have been twisted and tremendous in one
direction causing the red line curve aggressive over the green line. Overall,
the algorithm is very difficult to implement as there were no framework/
library and demands precision of coding and adequate infrastructure to
achieve best results. The results prooved that Brook-Iyengar’s algorithm
is smart and scalable across various domains like cyber physical system.

User Process Shell Commands Daemons

Server Process File System Process Manager

Network Server Information Server

Device Drivers

Kernel System Task Clock Task

U
SE

R

M
O

DE

Kernel
Mode

Brooks-Iyengar
Algorithmm

Figure 4: MINIX Kernel and Brooks-Iyengar Algorithm.

J Inform Tech Softw Eng, Vol.11 Iss.1 No:250

 Kumar KJL

Page 6 of 7

Figure 5: Open MPI Implementation for Fault-Tolerance using Brook-Iyengar.

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0
0 1 2 3 4 5 6

f(t
)

Brooks Iyengar Results

Figure 6: OpenMPI with Brook-Iyengar Fault-Tolerance Results.

Virtualization

The team found that the hardware support fails to provide an
unambiguous performance advantage for two primary reasons: first, it
offers no support for hardware fault detection; second, it failsto co-exist
with existing software techniques for distributed sensor networks. They
look ahead for emerging techniques as shown in Figure 7 for addressing
this sensor virtualization problem in the context of software-assisted
distributed fault-tolerance.

A real-time operating system can be modified to host the abstract
fault-tolerant sensor layer with its own dynamic interval estimator,
which is a mapping of the real-sensors. An Abstract Sensor is a sensor
that reads a physical parameter and gives out an abstract interval-
estimate I, which is bounded and connected subset of the real line
R.A Correct Sensor is an abstract sensor where the interval estimate
contains the actual value of the parameter being measured. If the
interval estimate does not contain the actual value of the parameter
being measured, it is called Faulty sensor.

J Inform Tech Softw Eng, Vol.11 Iss.1 No:250

 Kumar KJL

Page 7 of 7

Conclusion
In this article the acceleration, effectiveness and liveliness of two

decade old Brooks-Iyengar Algorithm is illustrated. Since today’s
technology does not guarantee success and safety in all situations, the
Brooks-Iyengar algorithm can significantly improve the fault tolerance
of systems by providing a greater margin of safety for operations. This
algorithm provides the robust implementation and seamless scalability
under faulty sensor conditions for various domains. Finally, the
algorithm “Stand The Test of Times” from last two decades and hope it
continues the successful journey further.

References

1. Dolev D (1982) The Byzantine Generals Strike Again. J Algorithms 3: 14-30.

2. Richard Brooks R, Sithrama Iyengar S (1996) Robust Distributed Computing
and Sensing Algorithm. Computer 29: 53-60.

3. Ilyas M, Mahgoub I (2004) Handbook of sensor networks: compact wireless
and wired sensing systems (PDF). CRC Press, p: 672.

4. Buke A, Yongcai W, Lu Y, Richard RB, Iyengar SS (2016) On Precision Bound
of Distributed Fault-Tolerant Sensor Fusion Algorithms. ACM Computer Surv
49: 5: 1-5.

5. Dolev D (Jan 1982) The Byzantine Generals Strike Again. J Algorithms 3: 14-30.

6. Lamport L, Shostak R, Pease M (1982) The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Systems 4: 382-401.

7. Dolev D, Nancy Al, Shlomit SP, Eugene WS, William EW (1986) Reaching
Approximate Agreement in the Presence of Faults. Journal of the ACM 33:
499-516.

8. Mahaney S, Schneider F (1985) Inexact Agreement: Accuracy, Precision,
and Graceful Degradation. Proc Fourth ACM Symp Principles of Distributed
Computing, pp: 237-249.

9. Buke AO (2015) Robust Fault Tolerant Rail Door State Monitoring Systems:
Applying the Brooks-Iyengar Sensing Algorithm to Transportation Applications.
International Journal of Next-Generation Computing 8: 108-114.

10. Kumar V (2012) Computational and compressed sensing optimizations for
information processing in sensor network. International Journal of Next-
Generation Computing 3: 328-332.

11. Ao B, Wang Y, Yu L, Brooks RR, Iyengar SS (2016) On precision bound of
distributed fault-tolerant sensor fusion algorithms. ACM Compute Surv 49: 1-5.

12. Pablo JR, Gabriel W (1999) New Real-Time Extensions to the MINIX operating
system. Proc of 5th International Conference on Information System Analaysis
and Synthesis (IASS’99).

13. Gabriel AW (1995) Implementing Real-Time services in MINIX. ACM Operating
System Review 29: 75-84.

14. Tanenbaum Andrew S, Woodhull Albert S (1999) Sistemas operativos: Diseno
e Implementacion 2da Edicion, ISBN 9701701658, Editorial Prentice Hall.

15. Brooks R, Iyengar S (1996) Robust Distributed Computing and Sensing
Algorithm. IEEE Computer 29: 53-60.

16. Chakrabarty KI, Qi SSH, Cho EC (2002) Grid Coverage of Surveillance
and Target Location in Distributed Sensor Networks, IEEE Transactions on
Computers 51: 1448-1453.

17. Krishnamachari B, Iyengar S (2004) Distributed Bayesian Algorithms for Fault-
Tolerant Event Region Detection in Wireless Sensor Networks. IEEE Tran
Comp 53: 241-250.

18. Warrenedgar (2019) An implementation of the Brooks-Iyengar algorithm using
OpenMPI.

19. Penn State University (2013) Reactive Sensor Networks, AFRL-IF-RS-
TR-2003-245, Directorate, Public Affairs Office (IFOIPA) and is releasable
to the National Technical Information Service (NTIS), Defense Advanced
Research Laboratory.

20. Junkil P, Radoslav Ivanov P, James W, Miroslav Pajic Sang HS, Insup L (2017)
Security of Cyber-Physical Systems in the Presence of Transient Sensor
Faults. Journal ACM Transactions on Cyber-Physical Systems.

21. Kumar V (2013) Impact of brooks-Iyengar distributed sensing algorithm on real-
time systems. IEEE Transactions on Parallel and Distributed Systems (TPDS),
p: 1.

Figure 7: Real-Time extension of Brook-Iyengar algorithm showing virtual sensor implementation.

J Inform Tech Softw Eng, Vol.11 Iss.1 No:250

https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.1109/2.507632
https://doi.org/10.1109/2.507632
https://doi.org/10.1080/15501320701260840
https://doi.org/10.1080/15501320701260840
https://doi.org/10.1145/2898984
https://doi.org/10.1145/2898984
https://doi.org/10.1145/2898984
https://doi.org/10.1016/0196-6774(82)90004-9
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/5925.5931
https://doi.org/10.1145/5925.5931
https://doi.org/10.1145/5925.5931
https://doi.org/10.1145/323596.323618
https://doi.org/10.1145/323596.323618
https://doi.org/10.1145/323596.323618
https://doi.org/10.1145/323596.323618
https://doi.org/10.1145/323596.323618
https://doi.org/10.1145/323596.323618
https://pdfs.semanticscholar.org/4829/542ed3e6d1694f922f0c2038a0231a2b69b0.pdf
https://pdfs.semanticscholar.org/4829/542ed3e6d1694f922f0c2038a0231a2b69b0.pdf
https://pdfs.semanticscholar.org/4829/542ed3e6d1694f922f0c2038a0231a2b69b0.pdf
https://doi.org/10.1145/2898984
https://doi.org/10.1145/2898984
https://pdfs.semanticscholar.org/090b/ba47d74d18937fb4b45196f32fafcb97b05d.pdf
https://pdfs.semanticscholar.org/090b/ba47d74d18937fb4b45196f32fafcb97b05d.pdf
https://pdfs.semanticscholar.org/090b/ba47d74d18937fb4b45196f32fafcb97b05d.pdf
https://doi.org/10.1145/206826.206846
https://doi.org/10.1145/206826.206846
https://dl.acm.org/citation.cfm?id=620469
https://dl.acm.org/citation.cfm?id=620469
https://pdfs.semanticscholar.org/029f/28073ac385973c59331fc417e4178836182e.pdf
https://pdfs.semanticscholar.org/029f/28073ac385973c59331fc417e4178836182e.pdf
https://pdfs.semanticscholar.org/029f/28073ac385973c59331fc417e4178836182e.pdf
http://people.cis.fiu.edu/iyengar/wp-content/uploads/sites/2/2016/11/Distributed-Bayesian-algorithms.pdf
http://people.cis.fiu.edu/iyengar/wp-content/uploads/sites/2/2016/11/Distributed-Bayesian-algorithms.pdf
http://people.cis.fiu.edu/iyengar/wp-content/uploads/sites/2/2016/11/Distributed-Bayesian-algorithms.pdf
https://github.com/warrenedgar/brooks-iyengar
https://github.com/warrenedgar/brooks-iyengar
https://apps.dtic.mil/dtic/tr/fulltext/u2/a419219.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a419219.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a419219.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a419219.pdf
https://doi.org/10.1145/3064809
https://doi.org/10.1145/3064809
https://doi.org/10.1145/3064809
https://doi.ieeecomputersociety.org/10.1109/TPDS.2013.25
https://doi.ieeecomputersociety.org/10.1109/TPDS.2013.25
https://doi.ieeecomputersociety.org/10.1109/TPDS.2013.25

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Brook Iyengar algorithm
	Real Time Minix Operating System
	Influence of brooks-iyengar algorithm
	Brooks-Iyengar’s algorithm on MINIX operating system

	Case Study
	OpenMPI+virtualisation
	Virtualization

	Conclusion
	Table 1
	Table 2
	Table 3
	Table
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	References

