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Abstract 

Background: As the coverage of experimentally determined protein structures increases, fragment-based 

structural modeling approaches are expected to play an ever more important role in structural modeling. 
Here we introduce a structural modeling method by which an initial structural template can be extended by 
the addition of structural fragments to more closely match an aligned query sequence. A database of pro-
tein fragments indexed by their internal coordinates was created and a novel methodology for their retrieval 
was implemented. After fragment selection and assembly, sidechains are replaced and the all-atom model 
is refined by restrained energy minimization. We implemented the proposed method in the program Span-
ner and benchmarked it using a previously published set of 367 immunoglobulin (Ig) loops, 206 historical 
query-template pairs and alignments from the Critical Assessment of protein Structure Prediction (CASP) 
experiment, and 217 structural alignments between remotely homologous query-template pairs. The con-
straint-based modeling software MODELLER and previously reported results for RosettaAntibody, were 
used as references. 

Results: The error in the modeled structures was assessed by root-mean square deviation (RMSD) from 

the native structure, as a function of the query-template sequence identity. For the Ig benchmark set, for 
which a single fragment was used to model each loop, the average RMSD for Spanner (3 +/- 1.5 Å) was 
found to lie midway between that of MODELLER (4 +/- 2 Å) and RosettaAntibody (2 +/- 1 Å). For the CASP 
and structural alignment benchmarks, for which gaps represent a small fraction of the modeled residues, 
the difference between Spanner and MODELLER were much smaller then the standard deviations of either 
program. The Spanner web server and source code are available at http://sysimm.ifrec.osaka-u.ac.jp/
Spanner/. 

Conclusions: For typical homology modeling, Spanner is at least as good, on average as the template-

free constraint-driven approach used by MODELLER. The Ig model results suggest that when gap regions 
represent a significant fraction of the alignment, Spanner’s efficient use of fragment libraries, along with 
local sequence and secondary structural information, significantly improve model accuracy without a dra-
matic increase in computational cost. 

Background 

Homology-based protein structural modeling plays 

an important role in biomedical research by linking 

genomics and structural biology. As the number of 

known protein sequences and structures grows, so do 

the number of sequences that can be modeled. 

Knowledge of even an approximate three-

dimensional protein structure can provide valuable 

information about its structural neighbors. This 

knowledge can, in turn, shed light on the protein’s 

evolutionary history, biochemical and biological 

functions. For example, structural modeling was re-

cently used to predict the Mg-dependent RNase ac-

tivity of Zc3h12a, a protein essential for regulating 

inflammatory cytokines in toll-like receptor 4 signal-

ing[1]. Here, we introduce a novel structural model-

ing method using a wider range of protein targets,  

including a representative set of all known antibody 

structures. 

 Currently, the most accurate methods for mod-

eling protein structure are extensions of the fragment 

assembly method originally implemented in the pro-

gram Rosetta [2], and now found in the successful 

TASSER program [3]. In this class of methods, short 

fragments of known structure are mapped on to the 

query sequence and then assembled by combinatorial 

optimization using structure-dependent scoring 
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functions to create a hybrid template model. The 

strength and drawback of this approach, at least in 

current implementations, is that the size of the 

effective conformational space is very large. In 

practice, this means that the optimization procedure 

takes a long time. Waiting times on the most popular 

servers can be weeks to months, and users are usu-

ally limited to one query at a time. 

For this reason, single-template threading, 

using profile-based scoring functions, is more widely 

used for routine homology model building. Results 

can be computed in minutes to hours, which fits well 

with a typical researcher’s timeframe.  Unfortu-

nately, the single-template methods typically result 

in a significant number of insertions and deletions 

for query-template pairs with low sequence homol-

ogy. Large insertions present challenges for con-

straint-based modeling software, such as MODEL-

LER [4], since the inserted sequence is effectively 

unconstrained within the gaps and can appear as a 

random coil in the final model, even when the inser-

tion is predicted to be structured. 

Here we introduce a novel modeling method, 

implemented in the program Spanner, which uses 

fragment assembly to extend an initial single tem-

plate such that there are no insertions or deletions 

with respect to the query. Because Spanner starts 

with an initial ‘anchor’ template, the search for frag-

ments is constrained by the geometry of the gap end-

points, resulting in an efficient optimization proto-

col. Crucially, the use of internal coordinates as a 

database index allows fragments matching the  

Figure 1 - Spanner Pipeline 

The three main phases of the Spanner pipeline are shown. In the hybrid template assembly phase, the selection of one fragment is illustrated. In the 

threading phase, dark regions indicate parts of the structure that undergo energy minimization. 

Figure 2 - Insert selection 

Inserts are selected from an alignment of the query sequence (bottom 

line) with the template (top line). A small margin (in this case one 

residue) is added each gap boundary, and a four-residue anchor on 
each side is used to search the fragment database for suitable replace-

ment candidates. 
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anchor regions within a given tolerance to be re-

trieved efficiently using a single PGSQL query. Fur-

thermore, since the fragments are selected based on 

sequence and secondary structure similarity to the 

query, the insertions are likely to be structured if the 

corresponding query segment is predicted to be so. 

Spanner makes use of native and 3rd-party software, 

including utilities for populating and updating frag-

ment relational databases, fragment scoring and as-

sembly, sidechain replacement, and energy refine-

ment. A web interface that supports 3D graphical 

visualization and export of the resulting model to the 

SeSAW functional annotation server [5] is available, 

along with source code and data for local 

installation. 

Results 

In this section we describe results for the Ig and for 

the CASP and ASH data sets using the fragment  

retrieval module and the full Spanner pipeline, re-

spectively. 

Figure 3A contains results for the entire Ig 

set binned by loop length. From this figure we can 

see that, overall, the RMSD grows roughly linearly 

with the loop length, as has been reported before [7]. 

In general, the backbone (N, C , C, O) RMSDs of 

the Spanner loops lie below those of the loops built 

Figure 3 - Ig benchmark 

Errors were assessed using N, C , C, O RMSDs from native structures, superimposed on the 4 residues flanking the loop in question, as reference. 

(A) Results were averaged over bins determined by the loop lengths indicated on the X-axis. Each bin contained at least 3 models. (B) A subset of 

the Ig set for which previously reported errors for RosettaAntibody were available. Error bars represent the standard deviation from the mean within 
each bin. 
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with MODELLER.  The loops in the Ig set that have 

been assessed previously using the RosettaAntibody 

program are shown in Figure 3B. For this sub-set of 

loops, the mean and standard deviation of the Span-

ner backbone RMSD (3 +/- 1.5 Å) lies between that 

of MODELLER (4 +/- 2 Å) and RosettaAntibody (2 

+/- 1 Å). We note that the Spanner results in Figures 

3A and 3B are overall consistent with each other, so 

we can expect similar performance to that shown in 

Figure 3B on larger data sets. 

For the Ig results, MODELLER jobs required 

an average of 3 +/- 1 CPU hours, while the Spanner 

fragment retrieval module required 2.4 +/- 0.6 min-

utes.  

CASP and ASH sets: Spanner accuracy 

Here, we examine the accuracy of the full Spanner 

pipeline using the CASP set, which allows us to 

evaluate the performance of Spanner with actual 

alignments generated for a range of query-template 

pairs using typical alignment tools. For benchmark-

ing purposes we ran MODELLER using the auto-

model class with the same alignments. Note that in 

this exercise, we excluded any fragment from the 

DB if its sequence identity to the query was 30% or 

more, in order to make the comparison with MOD-

ELLER, which does not make use of existing struc-

tural fragments, as fair as possible. Figure 4 shows 

the average RMSD (C  and all-atom) within a range 

of sequence identity bins. From this figure we can 

see that, as expected, the average accuracy increased 

while the standard deviations decreased with se-

quence identity. There is a slight improvement in 

terms of RMSD for Spanner over MODELLER in 

some cases, but the differences are much smaller 

than the spread in the data. These results confirm 

that, on average, Spanner produces models that are 

at least as accurate as those of MODELLER, a state-

of-the-art structural modeling tool. 

The ASH set represents ‘perfect’ input for a 

set of low-homology query-template pairs. The re-

sults, shown in Figure 5, are consistent with the 

CASP alignment results. Here too, we see that the 

differences between Spanner and MODELLER are 

very small compared with the deviations for each 

program within a given sequence identity bin.  

We also assessed the CPU times for Spanner 

and MODELLER for the CASP and ASH sets. In 

this case, MODELLER average CPU times (17 +/- 

14 s) were over 20 times shorter than Spanner (377 

+/ 4 s). There are two reasons for the reverse trend 

here as compared to the Ig set. First, the MODEL-

LER automodel class is much faster than the 

dope_loopmodel class. Second, the fragment re-

trieval module (used in the previous section) is much 

faster than the full Spanner pipeline, which, in addi-

tion to fragment selection, performs sidechain re-

placement and energy refinement. 

Discussion and Conclusions 

In this article we present an approach for utilizing 

the strengths of both single and multiple-template 

protein modeling. The results clearly demonstrate 

that for gap regions, a fragment-based approach is at 

least as good, on average as the template-free con-

straint-driven approach, at a much lower computa-

tional cost; however, the performance is not yet 

equal to that reported for RosettaAntibody. Whether 

this is due to the superior sampling in the Rosetta 

program or the use of a specialized fragment data-

base and sequence rules to identify kinked confor-

mations is not known. Nevertheless, the contrast be-

tween the Ig model results and those for the CASP 

and ASH sets suggests that when gap regions repre-

Figure 4 - Accuracy of Spanner using CASP set  

The C  RMSD (A) and all-atom RMSD (B) are shown for Spanner 

and MODELLER using the CASP test set. Results were binned by 

sequence identity such that each bin contained at least 10 data values. 

The plots represent averages within each bin. Error bars represent the 

standard deviation from the mean within each bin. 
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sent a significant fraction of the alignment, local se-

quence and secondary structural information can be 

exploited to improve model accuracy.  When gaps 

represented a small fraction of the alignment (CASP 

and ASH sets), we found that the differences be-

tween Spanner and MODELLER were less than the 

deviations within either program. In such cases, 

Spanner performed marginally better, in terms of 

accuracy, but at a higher computational cost. The 

average computational cost for Spanner (approx. 6 

minutes) were, nevertheless, consistent with that of 

most profile-based threading methods, which typi-

cally finish within minutes to hours.  Taken together, 

these results suggest that Spanner represents a ra-

tional and scalable approach to fragment-based 

structural modeling. 

Methods 

The modules in Spanner are arranged as a pipeline, 

as illustrated in Figure 1. The inputs to this pipeline 

are the query-template alignment, and template 

structure. The output is a model structure of the 

query. There are two main phases in the calculation: 

hybrid template assembly and gapless threading to 

the hybrid template.  In the first phase, fragments are 

chosen based on their geometric similarity to the 

template at the anchor points and on their primary 

and secondary structural similarity to the query. The 

second phase involves sidechain replacement for the 

selected fragments and overall structural refinement. 

These individual steps are described in detail below. 

Inputs 

Spanner requires a template structure (in PDB for-

mat) and a template-query alignment (in FASTA 

format). In addition, the fragment selection process 

(described below) uses secondary structure informa-

tion for the query; the secondary structure can be 

specified as optional input, or computed automati-

cally using PSIPRED [8]. 

Definition of fragments 

Spanner replaces continuous sequence segments 

(indels) in the template for every gap in the query-

template alignment. The procedure is illustrated in 

Figure 2. First, the insertion point around each indel 

is established: for deletions (Figure 2A) in the align-

ment, the deleted residues are excised from the tem-

plate; for insertions (Figure 2B), the template se-

quence gap itself identifies the insert location. To 

allow for small geometrical differences between the 

template and the inserted fragment, a margin of 1 or 

more residues on each side of the insert location is 

also excised from the template. Adjacent insertion 

points separated by fewer than 4 residues—i.e., too 

short to support an anchor—are merged into one in-

sertion point with a larger insertion sequence. For 

greater user control, the indels and margins can be 

specified as optional input. 

The four residues on each side of the insert point (the 

anchors) are used to efficiently search a fragment 

database for suitable insertion candidates, as de-

scribed below.  

Hybrid template preparation 

Fragment storage 

A representative set of protein chains is maintained 

using the cd-hit program [9] at 100% sequence 

identity. All continuous fragments of length 8 or 

more are regularly extracted from this set of chains 

and stored in a PostgreSQL relational database 

(RDB), indexed by the internal coordinates of the 

fragment endpoints. The internal coordinates consist 

of C -C  distances between the following 4 resi-

due pairs: first, last; first+1, last-1; first+2, last-2; 

first+3, last-3.  In addition to the internal coordinates 

themselves, the PDB identifier, chain ID, sequence, 

secondary structure, as defined by STRIDE [10], and 

the beginning and ending atom indices of the frag-

ment in the corresponding PDB entry, are stored in 

Figure 5 - Accuracy of Spanner using ASH set 

The Ca RMSD (A) and all-atom RMSD (B) are shown for Spanner and 
MODELLER using the ASH test set. Results were binned by sequence 

identity such that each bin contained at least 10 data values. The plots 

represent averages within each bin. Error bars represent the standard 
deviation from the mean within each bin. 
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the RDB. As an example, the first 10 fragments of 

length 12 for PDB entry 1nag, chain A are stored as: 

 

A separate RDB is prepared for each fragment 

length. Currently, fragments of length 8-60 are 

stored. In addition to the fragment RDB described 

above, two additional types of RDBs are created to 

store fragments used to fill N and C-terminal gaps. 

For N-terminal (C-terminal) gaps, the internal 

coordinates consist of all unique C -C  distances 

pairs in the last (first) 4 residues of the fragment. 

Other fragment information is the same in the 

terminal RDBs. 

Fragment retrieval 

For a given fragment, a fragment index is generated 

from the template anchor residues.  A tolerance in 

the fit to the anchor residues is used to specify a 

range of index values. The index range is used to 

generate a PostgreSQL query to the appropriate 

fragment database and all fragments satisfying the 

range of indices are returned. PDB entries that 

should be excluded from the RDB search can be 

specified by the user, a feature that was utilized in 

the present work in order to screen out close 

homologs when benchmarking the program. Since 

the number of returned fragments is sensitive to the 

tolerance in the fit to the anchor residues, the 

retrieval step starts with a small value (0.5 Å by 

default), and incrementally increases the tolerance 

until the required number of fragments (1000 by 

default) or a maximum tolerance (2.5 Å by default) 

is reached. Each of the above parameters can be 

modified on the command line. 

 

The fragments returned from the RDB are then 

sorted by a simple score that is a function only of the 

primary and secondary structure similarities between 

the query and the candidate fragment 

 

        ( 1 ) 

 

where Sseq is proportional to a log-odds sequence 

substitution matrix score derived from a large 

number of structure alignments [11] and Ssec is pro-

portional to a secondary structure substitution matrix 

score [12]. A specified number of candidate frag-

ments (100 by default) is then retained. These re-

tained candidates are then re-scored using a more 

sensitive function that takes structure into account 

and is given by 

 

      ( 2 ) 

 

 

where Sclash is a weighted sum of clashes between the 

fragment and the rest of the template structure, 

excluding residues that are to be replaced by the 

fragment. Since side chains are not expected to fit 

perfectly at this point, the weight of sidechain-

sidechain and sidechain-backbone clashes is set to 

1/6 that of backbone-backbone clashes. Also, only 

severe clashes (interatomic distance < 2 Å) are 

counted at this point.  RMSDfit is given by the root-

mean square deviation of C  atoms in the fitted 

anchor residues. The user-specified number of top-

scoring fragments (1 by default) is then output. The 

weights and number of resulting models can be 

adjusted on the command-line. 

Threading to the hybrid template 

After the model’s backbone has been established by 

splicing in all of the indels, as described above, the 

query sequence is ‘threaded’ onto the template and 

the resulting structure is optimized via energy 

minimization. We use the term threading loosely, as 

the alignment is trivial (there are no gaps); the 

procedure involves only the sidechain replacement 

and relaxation steps of threading. 

 

First, the sidechains from the query sequence are 

placed on the template structure’s backbone and 

their rotamers optimized by using either the dead-

end elimination (DEE) algorithm [13, 14] or the 

SCWRL4 rotamer selection algorithm [15]. To allow 

the inserted fragments maximum flexibility, their 

sidechains are first replaced by amino-acids that do 

not have rotamers: prolines and glycines are used 

where they appear in the query sequence, and all 

other sidechains are replaced with alanines (A/G/P 

representation). Because the inserts will not exactly 

fit the backbone, they are next allowed to relax in the 

A/G/P representation via conjugate gradient energy 

minimization. The minimization is carried out using 

either the PRESTO ver 3 [16] molecular dynamics 

package with AMBER force field parameters 

(default) or Gromacs [17]. To close the gaps 

between the insert ends and the template backbone, 

Spanner freezes all residues in the model except the 

inserted fragments, and runs the minimization for 

1000 steps. Once the inserted backbones have been 

1

2

fit

clashD

frag
RMSD
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S

sec2 SSS seqD
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positioned, the A/G/P representation is replaced with 

the actual query sidechains and their rotamers cho-

sen using DEE or SCWRL4. Next, the entire struc-

ture is optimized in a three-step energy minimization 

procedure. The first step is similar to the backbone-

only step above, and aims to relax the inserted frag-

ments with the added sidechains: all residues except 

the inserts are frozen and the inserted fragments al-

lowed to relax by conjugate gradient minimization. 

In the second step, the non-insert residues are al-

lowed to move but their positions are restrained to 

their initial positions by a harmonic potential. In the 

third step, only the template backbone atoms are re-

strained and all sidechains are allowed to relax, pro-

ducing the final model structure. 

Web interface 

Spanner is available through the web at 

http://sysimm.ifrec.osaka-u.ac.jp/spanner/ 

The web server has the following functionalities. 
1. Job scheduling. Jobs are run on a 200 core PC cluster, so 

multiple submissions without need for logging in are allowed. 

2. Progress of each job can be monitored, and email notification 
is available but not required. 

3. Users may select the minimization engine (Gromacs or 

Presto) as well as key parameters (margin and maximum 
anchor tolerance). 

4. Structures can be visualized in 3D using the jV molecular 

viewer applet (http://www.pdbj.org/jv/index.html). 
5. Spanner results can be exported to SeSAW, a functional 

annotation tool that uses sequence-weighted structural 

alignments to identify similar motifs in PDB entries [5]. 
In addition, the source code for building a local copy of Spanner can be 

downloaded from the above address. 

Benchmark sets 

Spanner requires a template and a pair-wise query-template alignment.  

To test Spanner three benchmark sets were assembled as follows. 

 

Ig Set 
In order to test the fragment retrieval function of Spanner, we selected 

third complementary determining regions of immunoglobulin heavy 
chains (CDR-H3s) from a representative set of antibodies. The selection 

of antibody structures were as described previously [18] and 

supplemented with recently registered entries in the PDB as of Mar. 
2010. Briefly, all antibodies in the PDB with resolutions of 2.80 Å or 

better were extracted yielding a total of 776 structures having heavy and 

light chains. Then, structures with the highest resolution for each anti-

body were selected as representatives of free and complex structures, 

respectively, from the 776 structures. When more than one structure with 

the same high resolution was available, the structure with the best R-
factor was selected. Consequently, we obtained 367 non-redundant anti-

body structures with CDR-H3 loop lengths from 5 to 22 (Table S1). 

CASP Set 

206 query template pairs were taken from historical results from the 

Critical Assessment of protein Structure Prediction (CASP) experiment 

in cases where the query has been solved and deposited in the PDB. In 
cases where alignments were deposited by the authors, these were used 

directly; in cases where only a 3D model was deposited and a single 

template was used, the alignment was estimated by structural alignment 

of the model onto the template using the program ASH [11]. These 

alignments represent a range of methods and naturally include a realistic 
level of noise. All query-template pairs are listed in Table S2. 

ASH Set 

Structural alignments, which represent essentially perfect input, were 
computed between 217 low homology query-template pairs using the 

program ASH. All query-template pairs are listed in Table S3. 

Accuracy assessment 

We assessed errors in the structural models using the root mean square 

deviation (RMSD) from the native structure coordinates. 
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