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Abstract

The genus Bacillus and related genera are distributed vastly in nature and contain thermophilic, psychrophilic,
alkalophilic, acidophilic, and halophilic bacteria that utilize a wide range of carbon sources for autotrophs or
heterotrophic growth. A lot of bioactive metabolites have been detected, as bioactive compounds produced by
biocontrol agents such as the bacterial genus of Brevibacillus. In this review, we summarize the general
characteristics and properties of the Brevibacillus genus as biocontrol agents, taxonomy, phylogeny, identification
and the impact of Brevibacillus as a biological control agent of plant disease combat and soil bioremediation.
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Introduction
The agricultural is one of the most significant sectors in related to

productivity and economies around the globe in achieving food
security and to benefit directly from the natural resources, forestry, and
other benefits. In the same time, the agricultural sector suffers a lot of
challenges and problems for many reasons, including climate change,
water scarcity and excessive use of chemical pesticides, chemical
fertilizers. Population growth also is the severe challenge where in the
year 2050 it is estimated that the world’s population will have reached
9.7 billion, and worldwide crop production will need to increase two-
fold in order to cover the demand by this time [1,2].

A large number of phytopathogens are causal disease agents in all
plant types. Their effects range from low to higher impacts in large
areas planted to economical food crops. Phyto pathogens are
challenges to control because the pathogenic populations are variable
in time, space, and genotypic variations. At the scientific and political
stage, there is a need to know that there is a link between plant diseases
and food security [3,4].

The environmental stresses like soil salinity, drought, and lack or
increase nutrients, had also been affected plants with herbicides are
important challenges in plant production. An alternative to
conventional methods for improving plant disease resistance is
biological control methods [5]. Biological control of plant diseases can
be defined as the use of organisms to influence the activities of a plant
pathogen. Biocontrol organisms can be fungi, bacteria, and others.

Bacillus as a bacterial genus has a wide range of phenotypic strains
of Gram-positive or Gram-variable, aerobic, endospore-forming,
facultative anaerobic and rod-shaped [6,7]. Bacillus brevis was first
characterized in 1900 [8] and was taxonomies as the type species
Brevibacillus brevis of a new genus, Brevibacillus, with nine other

species [9]. Recently there are more than twenty two species with
validly published names under the genus Brevibacillus [9,10].
Determination the species is difficult because the poor reactivity of
strains in conventional identification tests strains have useful
differential phenotypic characteristics [10]. In Brevibacillus, the HV
region sequence is highly conserved within a species but has diverged
sufficiently between species to enable identification and grouping of
Brevibacillus species by sequence comparisons of the HV region
[10,11]. Brevibacillus is one of the most widespread genera of Gram-
positive bacteria, recorded from the diverse environmental habitats
[5,10,11]. The high growth rate, better transformation efficiency by
electroporation, production of the negligible amount of extracellular
protease, and the constitutive expression of heterologous proteins so
some strains of Brevibacillus genus are excellent as laboratory models.
For various applications, this genus continues to be a source of various
enzymes of effective bio control interest due to their ability to suppress
some different species of the phytopathogens, ability to act as bio
control agent [12,13,14]. This review article summarized the properties
of Brevibacillus spp. as biological agents in plant disease control and
bioremediation.

Morphology and Taxonomy of Brevibacillus
The genus Brevibacillus was originally proposed by Shida et al. [9]

based on 16S rRNA gene sequence analyses of eleven species, it has
belonged to the genus Bacillus and B. brevis was designated the type
species [9]. This genus is Gram-positive or Gram-variable [12].
Ellipsoidal endospores are in swollen sporangia. Most species of this
genus are aerobically on nutrient agar, yellowish grey, and smooth
colonies. The DNA G+C content ranges from 40.2 to 57.4 mol% this
description is according to Logan et al. [12]. Determine the phenotypic
like acid production from carbohydrates) of members of the genus
Brevibacillus is difficult [12]. Most species of Brevibacillus are difficult
to distinguish from each other based solely on routine phenotypic
tests.

The rod-shaped cells of Brevibacillus species are usually round-
ended, and occur singly, in pairs, and in chains. Cell diameters range
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from 0.7–1.0 μm and lengths from 3.0–6.0 μm, but the cells of a
particular strain are quite regular in size, and individual species
normally have dimensions within fairly narrow limits. Most of the
species of Brevibacillus do not have distinctive sporangial
morphologies; the spores are ellipsoidal, lie sub-terminally or perhaps
terminally, and swell the sporangia slightly or moderately The notable
exception is the unique sporangial morphology of Brevibacillus
laterosporus which produces Parasporal Bodies (PBs) which laterally
displace the spore in the sporangium, and which remain attached to
the free spore. The ellipsoidal spores of this species may lie centrally,
paracentrally, or subterminally, and they characteristically swell the
sporangia into spindle shapes this detailed characterization is
according to Logan et al. [12]. Characterization and features of
Brevibacillus spp. were mentioned in some previous studies
(Brevibacillus agri [15-17], Brevibacillus aydinogluensis [18],
Brevibacillus borstelensis [9,17], Brevibacillus brevis [8,9],
Brevibacillus centrosporus [16,17], Brevibacillus choshinensis [9,19],
Brevibacillus fluminis [20], Brevibacillus formosus [9,17], Brevibacillus
fulvus [19], Brevibacillus gelatini [18], Brevibacillus ginsengisoli [19],
Brevibacillus halotolerans [20], Brevibacillus invocatus [15],
Brevibacillus laterosporus [9,21], Brevibacillus levickii [11],
Brevibacillus limnophilus [22], Brevibacillus nitrificans [23],
Brevibacillus panacihumi [24], Brevibacillus parabrevis [9,25],
Brevibacillus reuszeri [9,17], Brevibacillus sediminis [26]).

Isolation and Identification of Brevibacillus Strains
Brevibacillus strains were isolated from the natural environment

such as soils, where they appear as saprophytes, while some isolates
also were isolated from human illness. Brevibacillus species also
isolated from heat treatment of specimens. The Brevibacillus spores in
different environments but does not necessarily indicate that the
organisms were able to metabolites production, but some isolates from
different habitats produce the metabolites to make the Brevibacillus
cells active.

In order to identify the unknown bacteria, examination of seven
characteristics are necessary, e.g. (1. cell morphology, 2. colony
morphology, 3. oxygen requirements for growth, 4. Gram stain
reaction, 5. presence of endospores in a culture, 6. carbon source
utilization, and 7. Motility), finally comparison according to Bergy’s
manual. According to [27] gramicidin A and gramicidin S, the first
linear and cyclic peptide antibiotics used clinically. After reclassifying
B. brevis classified into Brevibacillus, the genus remained a reliable
source for novel Antimicrobial Peptides (AMPs). AMPs produced by
Brevibacillus spp. and the B. brevis were classified based on
biosynthesis pathway and structural traits, where two groups of AMPs
are recognized: 1 AMPs that target cell-surface components, i.e., cell
wall, membrane and membrane-bound protein, and 2 AMPs that
target intracellular components such as ribosomes, and the synthesis
machinery for DNA and RNA [27]. The previous research reports
divided all AMPs into four groups: sidechain-linked, linear
polypeptide, sidechain-backbone linked, and backbone-backbone
linked circular group. It has been served as a biological controlling
agent with various biological activities [27].

Characterization and General Features of some
Brevibacillus Species

Brevibacillus thermoruber: Optimal growth at 45–48°C, high G/C
content (57 ± 0.8 mol %) and endocellular, nondiffusible pigment [9].

Brevibacillus agri: Non-pigmented Colonies, Catalase positive.
Strictly aerobic. Growth at pH 5.6–5.7. The growth temperature 28°C.
The DNA buoyant density 1.7055–1.7084 g/cm3; the G/C content 52–
55 mol% [16,17].

Brevibacillus borstelensis: Produces soluble brown-red pigment on
nutrient agar. Strictly aerobic. Catalase positive and oxidase negative.
Growth occurs at pH 5.5–5.6. Specific S-layer proteins present. High
G/C content [9,17].

Brevibacillus centrosporus: Non-pigmented colonies. Catalase
positive. Strictly aerobic.The optimum growth temperature 28°C. The
DNA buoyant density 1.7025–1.7045 g/cm3; G/C content 49–51 mol%
[16,17].

Brevibacillus choshinensis: Utilization the citrate, ammonium and
acid production. High G/C content [9,19].

Brevibacillus formosus: Smooth, flat, circular, and entire colonies.
Strictly aerobic. Catalase positive and oxidase negative. Growth occurs
at pH 5.5–5.6. Specific S-layer proteins present. High G/C content
[9,17].

Brevibacillus brevis: Strictly aerobic, produces gramicidin, 45–56
mol% as range of G/C values [8,9].

Brevibacillus parabrevis: Positive for reduction of nitrate to nitrite,
utilization of ammonium, hydrolysis of casein, gelatin, DNA, and
Tween 60. From 51.3 to 53.3 mol as % G/C content ranges [9,25].

Brevibacillus reuszeri: Strictly aerobic. Catalase positive and oxidase
negative. Growth occurs at pH 5.5–5.6. Specific S-layer proteins
present. 46.4 to 46.7 mol% as G/C content range [9,17].

Brevibacillus invocatus: Brownish-yellow colonies, positive in
catalase. from 15 to 35C as growth temperature, pH 6–8. Range of G/C
content is 49.1–49.8 mol% [15].

Brevibacillus limnophilus: Temperature for growth ranged from 20
to 45°C; optimum growth temperature 30–35°C. Optimum pH 7.0–7.5.
Main quinone MK-7.G/C content 51.9 mol% [22].

Brevibacillus levickii: Utilizes K antiport system and similar energy
systems for the uptake of L-glutamic acid [11].

Brevibacillus ginsengisoli: At 20–42 ℃ Growth temprature, pH 5.0–
8.5, iso-C15:0, iso-C14:0, and anteiso-C15:0 are the major cellular fatty
acids.G/C content 52.1 mol% [19].

Brevibacillus panacihumi: Aerobic, grow at 15–42°C (optimum
30°C) and at pH 5–9 while (optimum, pH 7). The major cellular fatty
acids iso-C15:0, anteiso-C15:0, iso-C14:0, and iso-C16:0. G/C content
50.1–50.5 mol% [24].

Brevibacillus fluminis: White pigment, strictly aerobic and motile.
The G/C content 52.4 mol% [20].

Brevibacillus aydinogluensis: Moderately thermophilic. The major
fatty acids iso-C15: 0 (39.30%), anteiso-C15: 0 (26.10%), and iso-C16:
0 (14.75%).The major isoprenoid quinone MK-7. G/C content 56.09
mol% [18].

Brevibacillus nitrificans: Grows at pH 5–8 growth temprature, with
optimum growth at pH 7. The major isoprenoid quinone MK-7. G/C
content 54.1 mol% [23].

Brevibacillus laterosporus: Rapidly lose their characteristic
appearance and assume a fusiform or spindle shape with a swollen
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middle and pointed ends. Flat, transparent, and irregular colonies
[9,21].

Biocontrol and Bioremediation
Brevibacillus brevis produced useful peptide antibiotic gramicidin S,

which attacks the lipid bilayer of the membranes of organisms [28].
Brevibacillus strains with antifungal properties are potentially valuable
biocontrol agents. These include a Bacillus brevis strain active against
fusarium wilt of pigeon pea [29] and a Brevibacillus laterosporus
effective against wheat foliar necrotrophic [30]. Edwards and Seddon
[13] found that gramicidin S produced by B. brevis, is sporicidal to
conidia of B. cinerea, and is less inhibitory towards growth of
mycelium. Omar and Ahmed [27] studied inhibitory and antagonistic
impact of some rhizobacteria against various isolates of Fusarium on
Sage plants, they concluded that, Rhizo-bacterial strains namely
Brevibacillus brevis Brevibacillus agri, and Brevibacillus formosus
which have high effects in suppression of Salvia officinalis wilt and root
rot diseases effectiveness probably due to the production of several
inhibitory metabolites like HCN, chitinase, and siderophore. Ahmed
[28] studied the effect of Brevibacillus formosus strain DSM 9885 and
Brevibacillus brevis strain NBRC 15304 as a biological control agent on
potato brown leaf spot disease caused by Alternaria alternata, the study
demonstrated that the use of the tested Brevibacillus strains could
enhance resistance to brown leaf spot in potato. The linear mycelial
growth and spore germination of A. alternata was inhibited by both of
tested bacterial isolates with reduction of disease symptoms, where the
effects were determined in vitro through detached leaves and under
greenhouse conditions. Protein profiling by SDS-PAGE revealed that
some bands of protein are produced due to the Brevibacillus as
biocontrol agents. So Ahmed [28] concluded that B. formosus strain
DSM 9885, and B. brevisstrain NBRC 15304 could be considered as
part of management tools for reducing the impact of A. alternata
causing brown leaf spot disease on potato [31,32].

Brevibacillus is playing an important role as bio-remediation factor
to combat the contamination resulted by toxic metals and reduce the
environmental pollution in agricultural soils, water, and the
atmosphere. Toxic metals can also have massive detrimental effects on
soil ecosystems and the environment [33]. Soil contamination by metal
is seriously problematic because of the strong adsorption of many
metals to the surfaces of soil particles. From a physiological point of
view, metals fall into three main categories: 1) basically non-toxic e.g.
Ca and Mg, 2) essential but harmful at high concentrations, typically
Fe, Mn, Zn, Cu, Co, Ni and Mo, and 3) toxic e.g. Hg, Pb or Cd [34].
Soil remediation contaminated with heavy metals also problem
because metals are difficult to degrade. Bioremediation, i.e. the use of
living organisms to manage or remediate heavy metal-polluted soils, is
an emerging technology. It is defined as the elimination, reduction or
transformation of polluting or contaminating substances through the
use of biological tools, and it is a genuine option for removing
industrial pollution from the environment [35]. Soil microorganisms
play important roles in bioremediation or biotransformation processes
[36]. Microorganisms can interact with metal contaminants and
transform these metals from one chemical form to another by
changing their chemical and physical states through addition or
removal of oxidation electrons [37-39], or by stimulating changes in
the microbial population balance, for instance by using it as a
biological control tools against plant pathogens [40]. Some
Brevibacillus spp. were able s synthesis 3.8 mg L-1 indole-3-acetic acid
(IAA) in vitro and this might have contributed to the beneficial effects

noticed, since the production of IAA or ethylene has been suggested as
a mechanism for plant growth promotion under heavy metal stress.
Mullen et al. [38] mentioned that soil bacteria associated with the clay
and organic fractions of the soil microenvironment and would be
expected to engage in the metal dynamics typically attributed to these
soil fractions as well as a strictly physical cellular interface should have
a great ability for sorbing metals from solutions. Another mechanism
by which Brevibacillus sp. could have contributed to the protection of
plants against Pb toxicity is by induction of root exudates which have a
variety of roles. Some previous research reports mentioned to the
valuable role of bacteria or mycorrhizal-colonization in plants growing
in metal-contaminated sites [41-44]. B. brevis behaved as a PGPR, but
its notable effect on root biomass was greater than that shown on the
shoot. B. brevis also played an effective role as a Mycorrhizae-Helper
(MH) bacterium [45-47].

Mycorrhizal root development, when related to B. brevis, was less
negatively affected by Ni stress conditions. These findings could be
relevant for improving growth of plant and nutrient. Different
strategies would be involved in prohibiting plant toxicity disadvantage.
Changes in uptake of metal and internal transportation storage could
give tolerance of metal to the host plant [48]. Applying the microbial
mixture (AM fungus and/or B. brevis) probably induce tolerance to Ni
by affecting metal availability and uptake. Changes in root exudates,
pH and physicochemical characteristics of the soil [49] may be
involved and such changes could decrease metal root uptake or
translocation from root to shoot tissue. The benefits that legume plants
obtain from the AM symbiosis under Ni stress are more relevant in co-
inoculations with B. brevis. The B. brevis strain studied has a cellular
mechanism as bio-sorption and bioaccumulation that involved in the
detoxification of Zn in the medium of growth. Metabolic abilities may
be related to the Zn tolerance and also to the Zn reduction in the
medium Burd et al. [47] suggested that this bacteria used to plant
protection against the inhibitory effects of high concentrations of Zn is
related to their ability to encourage plant growth by synthesis of Indol,
as has been shown for many PGPRs [50-52], so, PGP bacteria can
facilitate plant growth by modifying the plant hormonal balance.
Another study aimed to investigate the effect of B. brevis on the axenic
development of G. mosseae in related to the rate of spore germination
and hyphal development under different levels of Zn added to a water
agar medium. Vivas et al. [50] reported that G. mosseae spores
provided a 56% increase in growth of mycelium without Zn, and more
than 130% increase with 200 mg Zn/mL, when treated with the
bacterium inoculum, in comparison with uninoculated spores.
Moreover, in a subsequent study, the same bacterium not only
stimulated presymbiotic mycorrhizal fungal development but also the
quality and quantity as metabolic characteristics of mycorrhizal
colonization, with the improvement being for vitality of arbuscular and
its activity.

Ruíz-Lozano et al. [51] reported that the isolation of efficient metal-
adapted microorganisms could be a usefully bio-technological tool for
inoculation purposes in contaminated soils, they concluded that this
sustainable system can be an important strategy in order to promote
bio-remediation of heavy metal-polluted soils. A strain identified as
Bacillusbrevis was isolated from soil contaminated with
hexachlorocyclohexane where it degraded this polluting pesticide,
another strain of this species was found to degrade the insecticide
teflubenzuron reported that B. borstelensis gain a great ability to
degrade the fungicide carbendazim from agricultural fields at high
rates, especially when mixed with Streptomyces albogriseolus found
that Brevibacillus agri strain CAT37 was able to degrade the thiols,
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decanethiol and dodecanethiol, and their corresponding autoxidation
products, effectively after 30 days of incubation at 37 ℃ [52,53].
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