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Editorial
Stimulant abuse, particularly cocaine abuse is an important public

health concern, as according to 2013 National Survey on Drug Use and
Health (SAMHSA, 2013) [1], there are 1.5 million current cocaine
users in the United States and costs to the society for drug abuse
including cocaine abuse are calculated to be $62 billion (NDCS, 1997)
[2]. Utilizing brain imaging techniques and neuropsychological tests,
earlier studies have shown reduced anterior and posterior cingulate
activation, attenuated inferior frontal and dorsolateral prefrontal
cortex activation and altered posterior parietal activation, and
impaired learning, memory, attention, reaction time and cognitive
executive function in chronic cocaine users [3-5]. Long-term stimulant
abuse has been associated with brain’s structural abnormalities [6,7], as
well as functional abnormalities characterized in terms of an enhanced
neural reactivity to appetitive drug cues [8-12] enhanced neural
response during craving [10], and an impaired neural response in
paradigms that measure cognitive control [13-16]. A continuing
problem with cocaine dependence is that the majority of cocaine users
will frequently resume drug use after a period of abstinence [17].
However, there is relatively little empirical research on how the brain’s
structural and functional abnormalities change while a stimulant user
maintains drug abstinence.

Studies using Diffusion Tensor Imaging (DTI; Beaulieu, 2002) [18]
technique have shown that current users of cocaine have reductions in
white matter (WM) integrity compared to controls [19,20]. However a
fundamental question is whether these white matter differences are
present following abstinence from cocaine use. To address this
question, a limited number of DTI studies have been conducted that
utilized a cross sectional design [21-23]. For example, Bell et al. [21]
examined WM integrity in cocaine-abstinent individuals and non-
using controls. Cocaine-abstinent individuals showed lower fractional
anisotropy (FA) in the left anterior callosal fibers, left genu of the
corpus callosum, right superior longitudinal fasciculus, right callosal
fibers and the superior corona radiata bilaterally compared to controls.
Differences between the cocaine abstinent sub-groups were observed
bilaterally in the inferior longitudinal fasciculus, right anterior
thalamic radiation, and right ventral posterolateral nucleus of the
thalamus, left superior corona radiata, superior longitudinal fasciculus
bilaterally, right cingulum and the WM of the right precentral gyrus.
Similarly, Xu et al. [23] found that the long-term abstinence group had
significantly higher FA than the short-term abstinence group in corpus
callosum, frontal, parietal, temporal, occipital and cerebellar regions.
Using structural MRI analyzed with voxel based morphometry (VBM),
Hanlon et al. [22] showed that the one-month abstinent cocaine users
had significantly higher gray matter density than current cocaine users
in neocortical areas including the frontal and temporal cortex. Using a
VBM technique, a reduced gray matter volume in the prefrontal

cortex, lateral and medial aspects of the orbitofrontal cortex and right
cingulate gyrus in 20-day abstinent cocaine users compared to controls
was reported by Matochik et al. [24]. Thus, although a limited number
of cross sectional studies have examined structural changes in
abstinent cocaine users, no longitudinal data exist on this topic. The
cross sectional studies are limited in that they fail to reveal if the
structural and functional brain changes in substance users during
abstinence are due to dynamic intra-individual changes that
characterize successful abstinence, or if they manifest pre-existing
differences between substance users.

A more recent focus of neuroimaging studies is understanding not
just which individual brain areas are activated by a cognitive task, but
how individual brain regions are integrated, i.e., functional
connectivity. Functional connectivity has been examined in current
cocaine users in the resting state [25-28] as well as while they
performed a finger-tapping and an attention task [22,29]. However,
earlier studies on functional connectivity in individuals who have
abstained from cocaine use are limited with only a handful of imaging
studies examining this topic [30-32]. For example, Adinoff et al. [30]
assessed alterations in regional cerebral blood flow (rCBF) and related
resting state functional connectivity (rsFC) to prospectively predict
relapse in cocaine users following treatment for cocaine use disorder.
Results showed an enhanced rCBF only in the left posterior
hippocampus in the group who relapsed compared with the early
remission (Individuals who did not use cocaine within 30 days
following discharge) and control groups. Also, the left posterior
hippocampus had an increased rsFC strength with the posterior
cingulate cortex/precuneus in the relapsed versus early remission
subgroups. Differences in measures of intrinsic connectivity during
functional magnetic resonance imaging (fMRI) stroop performance
were examined by Mitchell et al. [32]. Results demonstrated a relatively
greater intrinsic connectivity in the ventral striatum, putamen, inferior
frontal gyrus, anterior insula, thalamus and substantia nigra for
abstinent cocaine users compared to controls.

To date, only two fMRI effective connectivity studies which reveal
the influence that one brain region exerts over another have been
conducted with cocaine users. Effective connectivity studies provide
enhanced information on the consequences of chronic drug use on the
brain compared to functional connectivity studies. My colleagues and I
have assessed effective connectivity among brain regions while chronic
cocaine users viewed cocaine-related picture cues (Ray et al. [33]). And
Ma et al. [34] examined effective connectivity in cocaine users during
an immediate and delayed working memory task. I am not aware of
any effective connectivity study involving abstinent cocaine users.
Thus, although a few studies have examined functional connectivity in
cocaine-dependent individuals who are abstinent, no studies
implemented a longitudinal design.
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In order to move the field forward, I propose that a longitudinal
fMRI study should be conducted to examine dynamic structural and
functional changes in treatment-seeking abstinent cocaine dependent
individuals by scanning them at multiple time points during
abstinence. Structural and functional brain changes should be
examined using structural, functional and effective connectivity
analysis approaches. Specifically, the focus should be on the cognitive
control network (CCN) [35] which has been associated with impulsive
drug seeking behavior. This study may have implications to develop
therapies that have potentials to change the neuroplasticity within the
CCN which may promote abstinence from cocaine use.
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