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List of Variables
B = Formation volume factor, dimensionless

c = Total compressibility, LT2M-1

D = Mass fractal dimension, dimensionless

d = Euclidian dimension, dimensionless. d=2 in this study

FE = Flow efficiency, dimensionless

h = Thickness, L

k = Permeability

wk = Permeability at the wellbore, L2

PI = Productivity index, L4TM-1

nPI = Normalized productivity index

p = Pressure, M L-1 T-2

avgp = Average pressure

q = Flow rate, L3 T-1

r = Distance, L

Dr = Dimensionless distance

er = External radius of drainage area, L

wr = Radius of wellbore, L

S = Skin factor, dimensionless

u = Heaviside step function

pDV = Porev olume of drainage area

Greek Letters

β= Flow coefficient, dimensionless, see eq.(2)

ϕ = Porosity, Dimensionless

θ =Connectivity index, dimensionless

µ = Viscosity, L-1T-1M

Introduction
Power-law rock properties may be due to an inconsistency 

between the computational space and the flow path. An actual flow 
domain may not fill the Euclidian space. The space excluded may be 
thought about as matrix and the fractional space filling property as 
embedding. A trivial example is a single vertical fracture or channel 
embedded in cylindrical computational space. More relevant, is 
a sparse fracture network. In both cases, the flow path fills only a 
fraction of the computational space. The degree of space filling may 
be characterized spatial dimension, D, which is a real number. For a 
fractal drainage area, the space filling dimension is the mass fractal 
dimension. Consider a Euclidian space of dimension d . The spatial 
dimension, d , is 1 for linear, 2 for cylindrical and 3 for spherical flow. 
The model depends on a single space variable, r.

The fracture network may or may not be characterized by fractal 
topology. We refer to a flow path as fractional when the spatial variable 
shows up as single term power-law functions in the diffusivity equation. 
This definition includes both the fractal and non-fractal case. In this 
study, all equations are formulated by use of fractal nomenclature.

Barker [1] proposed a generalized radial flow model (GRF) for 
geometries of any integer or non-integer space dimension. The concept 
was developed for a fracture network. Doe [2] pointed out that the 
fractional flow model includes non-fractured porous media.

Chang and Yortsos [3] proposed a fractal model to analyze 
reservoir behavior. Constant production in a fractal drainage area leads 
to pseudo-steady flow, Flamenco and Camacho-Velázquez [4]. 

The fractal methodology is attractive since it provides a reasonably 

Abstract 
Sometimes a fractional model based on the assumption of power-law trends, may be more realistic than a 

traditional one. Steady state and pseudo-steady state flows are dominated by the external boundary conditions. We 
refer to these flow periods as boundary dominated. 

A generalized inflow performance relationship has been proposed. The theory is based on the assumption of 
rock properties of single term power-law type. Power-law functions are easy to integrate and analytical solutions are 
available. We find that the resulting equations, for all practical purposes, include the corresponding homogeneous 
solution as a special case. 

The sensitivity of the productivity index, PI, and the flow efficiency, FE, to stimulation and densification of wells are 
investigated. The proposed methodology may be of interest in petroleum engineering, groundwater hydrology and for 
geothermal reservoirs. 

Jo
ur

na
l o

f G
eolo yg  & Geophysics

ISSN: 2381-8719



Citation: Jelmert TA (2015) Boundary Dominated Flow, the Effect of Power-Law Trends. J Geol Geosci 4: 194. doi:10.4172/2329-6755.1000194

Page 2 of 5

Volume 4 • Issue 2 • 1000194J Geol Geosci
ISSN: 2329-6755 JGG, an open access journal

simple algorithm to construct random fracture networks based on 
reservoir statistics, Acuna and Yortsos [5]. A realization may be 
used for visualization of the fracture network or for detailed local 
simulations by the finite element method. Deterministic simulations 
require detailed information which may impossible to achieve. Many 
realizations may be used for analysis by geostatistics. This technique is 
time consuming. An analytical model predicts the expected behavior 
quickly in an approximate way. The analytical solution gives insight 
into the interaction of the variables that a numerical one cannot 
provide. A disadvantage is that the analytical approach is restricted to 
simplified problems. Sometimes a simple model may be appropriate. 
For a new reservoir, there is not much information available. Hence 
a complex reservoir model may be of little value. Still wells have to be 
designed and drilled based on limited information. The main objective 
at this stage may be to establish a reasonable plateau period, production 
rate for the field and negotiate contracts.

Mathematical Model
A fractional reservoir model may be thought of as a generalization 

of the traditional homogeneous one. A space dimension may fall 
between the Euclidian space dimensions, 1, 2 and 3. We formulate the 
equations by use of fractal nomenclature. Suppose a fractal drainage 
area is embedded in a Euclidian space of dimension, 2=d , which 
correspond to cylindrical geometry. 

For pseudo-steady flow we have, Jelmert [6]:
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2 1 2

β θ

π β θ
− + 

= + − − − +  − + 
w D DD

w eD

qµBp r p r r Su
k h r

(1)

and for steady state flow, Jelmert [7]:
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Where:

1β θ= − −D    (3)

u is the Heaviside step function.

The difference between pseudo-steady and steady state flow rests
with the second term on the right hand side of eq.(1).The boundary 
term is negligible when  >>De Dr r . As a result, the equations for steady 
and pseudo-steady flow will usually coincide in the near wellbore 
region. Also, the pressure vs. distance profile has little sensitivity to the 
flow coefficient, â , in the near wellbore region, since 1≈Dr . 

Equation (1) and (2) has a singularity for 1β = . From L’Hospital’s 

rule we find that: 
( )
( )
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−  

eD
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r
r . This result leads to flow 

equations, for pseudo-steady state and steady state, that are akin to the 
classical solutions for radial flow.

The skin factor, S, depends on the shape of the well. A line source 
(pseudo-cylindrical) well has been assumed. The skin may be visualized 
as a thin coating around the well. Pressure, at the wellbore side of the 
skin, is either decreased or boosted when fluid pass. 

For steady state flow, the productivity index becomes, Jelmert [7]:           
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The characteristics of steady state flow have been extensively 
discussed in the above mentioned study.

The productivity index, PI, for pseudo-steady flow becomes:
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The productivity index is constant during steady- and pseudo-
steady flow. As a result, the production rate is proportional to PI. 
Improvements of the productivity index are of obvious importance. 
The traditional ways to accelerate production are stimulation and/or 
addition of wells (densification). The external radius, re, may be reduced 
by densification (infill drilling). The skin factor, S, may be reduced by 
stimulation: hydraulic fracturing, acid injection or explosives. 

Normalized Productivity
The productivity index depends on the unit system. Use of a 

normalized index will remove this inconvenience. The flow efficiency 
is defined as the ratio of the productivity indexes of a well with and 
without skin (Appendix B).

0=

=
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(6)

Combination of the above eq. (5) and eq. (6) yields:
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Hence 1<FE  for a well with damage, S>0, 1>FE  for stimulation, 
S<1, and 1=FE  for 0=S . The above equation may be used in the 
same way as for a homogeneous reservoir.

The flow efficiency is well suited to study the effect of the skin 
factor. To study the effect of β  and θ , it may be better to normalize the 
productivity to the homogeneous reservoir productivity since the latter 
is independent of the fractal variables. The normalized productivity 
index is a measure of how much the actual reservoir deviates from the 
equivalent radial ideal homogeneous one (without skin). 

=n
Homogeneous

PIPI
PI

                                                               

(8)

Index n denotes normalized. The rock properties at the reference 
distance are the same. In addition we assume that the fluid properties 
are characterized by a constant µB -product. The normalized 
productivity index will simplify to:

( )
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The coefficient U is:

11
2 2

β
θ θ

− = − + + + 

DU
D

(10)

Pseudo-Steady State Average Pressure
Under the assumptions of pseudo-steady state flow and that the 

external radius is large in comparison to the wellbore radius, it can be 
shown that, Jelmert [6]:



Citation: Jelmert TA (2015) Boundary Dominated Flow, the Effect of Power-Law Trends. J Geol Geosci 4: 194. doi:10.4172/2329-6755.1000194

Page 3 of 5

Volume 4 • Issue 2 • 1000194J Geol Geosci
ISSN: 2329-6755 JGG, an open access journal

( ) ( )
11 1 1

2 2 1 2 1
β

π θ β θ β
−

   ≈ + − − +   + − + + −   
avg w eD

w

qµB Dp p r S
k h D

 

(11)
 

Furthermore:
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Integration of the above equation yields:
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Where
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For the value 2=D  eq. (14) will simplify to the pore volume of a 
homogeneous reservoir.

Due to the assumption of constant derivative of pressure with 
respect to time, the difference between the average pressure and the 
wellbore pressure does not depend on time.

Substitution of eq. (13) into eq. (11) yields:

( ) ( )
11 1 1

2 2 1 2 1
β

π θ β θ β
−

   ≈ − + − − +   + − + + −   
w i eD

pd w

qB qµB Dp p t r S
cV k h D   

(15)

Equation(15) will plot as a straight with a slope that is inversely 
proportional to the compressibility-pore volume product. The 
slope gives rise to one equation which may be used to solve for one 
unknown, D or D

eDr . If one is known, the other may be estimated. 
The intercept with the vertical axis yields an additional equation 
which may be used to solve for another unknown. Determination of 
the variables: D , θ , and eDr , could also be estimated by data from 
other sources, well testing, logs outcrops etc. 

Results and Discussion
We assume that the distance out to the outer boundary is, er , is 320 

m and the radius of the well, wr , is 10 cm. Figures 1 and 2 shows the 
pressure vs. distance profile for a positive and negative skin factor, S. 
Both plots are based on eq. (1).

The steady state solution, which is for perfect pressure support, is 
plotted as a broken line in Figure 1. The flow coefficient is less than unity,

0.9β =  and 0.05θ = . From eq. (3) we obtain the fractal dimension,
1.95=D . This case falls in the upper end of the region between the 

Euclidian dimensions 1=d  and . These values correspond to 
linear and radial flow respectively. There is a discontinuity in pressure 
at the wellbore, 1=Dr . The wellbore pressure, pw, is located at the end 
of the vertical line. Note that the pressure in the reservoir plots as a 
straight line in the majority of the drainage area. The boundary term is 
important close to the external boundary.

Figure 2 shows the pressure vs. distance profile for 1.05β =  and 
0.05θ = . The fractal dimension is 2.10=D . This case falls between 

the Euclidian dimensions 2 and 3 which correspond to radial and 
spherical flow respectively. This case is possible, but rare. Note that the 
radial distance is increasing to the left. This is because the spatial term 
shows up with a negative exponent. The pressure profiles in Figures 1 
and  2 are on the upper and lower side of the singularity at 1β =  eq. 
(3).

There is little difference between the pressure profiles during 
pseudo-steady and steady state flow for this case. There is an important 
difference, however. The wellbore pressure, pw, will remain constant 
for steady state flow but will decline according to eq. (15) for pseudo-
steady flow. Partial pressure support, which may be expected for an 
actual reservoir, will fall somewhere in between the ideal cases.

Figure 3 shows how much a fractional reservoir deviates from an 
equivalent homogeneous reservoir, eq. (8). The values 1β =  and 0β =  
are akin to radial and to linear flow respectively. One may speculate 
that the value in between, 0.5β = , corresponds to bi-linear flow.

The poor performance at lower values of the flow coefficient, β , 
is striking. Doe’s areal interpretation may provide a straight forward 
explanation. In an equivalent traditional model the reservoir may be 
thought of as a single fracture of widthω . The source has the shape 
of a plane. 

Figure 1: Variation of pressure with distance, ( ) 1. . 1β β− <D Dp r vs r , eq. (1).

Figure 2: Variation of pressure with distance, ( ) 1. . 1β β− >D Dp r vs r , eq. (1).
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The steady state solution is given by eq.(2). For linear flow, 0β = , eq. 
(2) will reduce to:

( ) ( )
2π

= + −w w
w w

qµBp r p r r
k hr

 

(16)

Direct integration of Darcy’s law for a channel of width ω  and 
thickness h  yields:

( ) ( )
ω

= + −w w
w

qµBp r p r r
k h

 

            (17)

Equating the pressures under the assumption negligible skin 
factors yields the equivalent channel width:

2ω π= wr              
(18)

For a deep well the well bore radius is small, 10≈wr cm. Hence, the
equivalent width of the channel is 6.3ω ≈ cm. It is embedded in a circle 
which is large in comparison. The flow area of the channel is vanishingly 
small compared against the full circle. Poor performance must be expected. 
We believe that embedding a flow domain of low  β -values in a cylindrical 
space leads to unreliable predictions. A better approach may be to sink the 
domain into a linear space, that is with Euclidian dimension 1=d .

Another interesting feature of Figure 3 is that the normalized 
productivity index approach unity when the flow coefficient approaches 
one, 1→nPI  as 1β → . This suggests that the fractal solution includes 
a logarithmic productivity index as a limiting case. For 1β → we 
have 2θ→ +D , see eq. (3). A homogeneous reservoir has constant 
permeability and porosity. Hence, the traditional result depends on the 
additional requirement that 2=D  and 0θ = , see eq. (Appendix A). 
The interpretation is that the flow domain fills the Euclidian space with 
perfect connectivity. Under this assumption, the fractal model and the 
homogeneous one are identical. 

Figure 4 shows the effect of the skin factor on the normalized 
productivity index. The figure illustrates that the advantage of reducing the 
skin factor is better for a small drainage area than a large one.

The flow efficiency, FE, is given by eq. (6). Figure 5 shows the 
advantage of reducing the skin factor. For negative skin values, the effect 
of a reduction is better for higher values of the flow coefficient than lower 
ones. For positive skin factors, it is the other way around.

From eq. (4) obtain:

= −w avg
qp p

PI
(19)

A pressure vs. rate plot is a useful tool to analyze the behavior 
of wells. The productivity index, PI , show up as the slope between a 
straight line and the vertical axis. Figure 6 shows the inflow performance 
relationship for various values of β  and θ . The upper line is clearly the 
best since it will give the highest production rate for a given drawdown.

The straight line behavior in Figure 6 is the consequence of pseudo-
steady flow, not the actual reservoir model. Hence, observed behavior 
may be matched to any reservoir model under pseudo-steady flow. Use 
of a simplistic (homogeneous) model calibrated to observed behavior 
may be unproblematic as long as no changes in the operating conditions 
are needed. Once changes are required, the most realistic (embedded 
fracture network) model will provide a better understanding of the 
problem.

Conclusions
Generalized reservoir inflow equations based on the productivity 

index have been proposed. It is valid for, but not limited, to fractal 
reservoirs. The proposed model may highlight problems that may go 

Figure 3: Normalized productivity index, vs. the flow coefficient, nPI
vs. β , eq. (8).

Figure 4: Normalized productivity index vs. Skin, nPI vs. S , eq. (8).

Figure 5: Flow Efficiency vs. skin, FE  vs. S , eq. (6).
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undetected by the traditional one. The equations discussed are valid 
during pseudo-steady state flow.

It is possible to obtain the pore volume by reservoir limit testing.

The proposed model has two additional parameters when compared 
against the traditional one. The solution switches from power-law 
to logarithmic type when the flow unit parameter, 1β = . There is a 
smooth transition over the singularity. The generalized pseudo-steady 
state model will for all practical purposes reduce to the traditional one 
for 2=D  and 0θ = .

The productivity may be improved by infill drilling and stimulation. 
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