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Abstract
Transplantation of bone marrow-derived mesenchymal stem cells (MSCs) is a promising therapy for spinal cord 

repair. Its potential, however, is limited by poor survival of the cells in the damaged nervous tissue. A number of studies 
have tried to improve MSC transplant survival, yet often with limited or short-term effects. Survival enhancing strategies 
include optimizing timing of transplantation, suppressing the immune response, transplantation within a scaffold to limit 
anoikis, reducing reactive oxygen species and/or macrophages, genetically modifying MSCs, and electrical stimulation of 
the spinal cord. This review provides an overview of studies that have investigated MSC survival after transplantation into 
animal models of spinal cord injury. 
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Introduction 
Traumatic spinal cord injury results in immediate functional 

impairments below the level of injury caused by the loss of neural cells 
and axons due to the initial impact. Following this primary injury, a 
secondary pathophysiological cascade causes progressive tissue loss for 
weeks to months after the insult, leading to the formation of fluid-filled 
cysts surrounded by scar tissue [1]. The endogenous response within 
the injured spinal cord fails to reorganize spinal cord tissue in a way 
that leads to functional repair. Currently no treatments exist that can 
effectively restore lost motor, sensory and autonomous function after 
spinal cord injury. 

Mesenchymal stem cells (MSCs), derived mostly from bone 
marrow, but also from adipose tissue and umbilical cord, are being 
studied as a potential repair strategy for spinal cord injury. Typically, 
MSCs can be easily isolated, cultured and prepared for transplantation 
into a spinal cord lesion. MSCs secrete numerous molecules that are 
known to exert paracrine effects resulting in repair. After spinal cord 
injury, MSCs have the potential to decrease secondary tissue loss after 
spinal cord injury and this neuroprotective effect has been shown to be 
correlated with moderate functional improvements [2]. MSCs secrete 
neurotrophic factors, such as brain-derived neurotrophic factor, glial-
derived growth factor and nerve growth factor that have the potential to 
decrease neuronal apoptosis and/or promote axonal regeneration [3]. 
In addition, MSCs secrete factors that have proliferative and stabilizing 
effects on blood vessels, including vascular endothelial growth factor 
and angiopoietin-1, respectively [4]. However, survival of MSCs in the 
injured spinal cord is poor, limiting the availability of these trophic 
factors to the nearby nervous tissue and thus their effects that lead to 
repair. Because it has been shown that improved survival of MSCs is 
associated with improved anatomical and/or functional repair [5-13], it 
is important to understand mechanisms of transplanted cell death and 
to develop strategies to improve MSC survival. This review provides 
an overview of studies that have investigated MSC survival in the 
injured spinal cord and summarizes current MSC survival promoting 
strategies, specifically focusing on bone marrow- derived MSCs.

MSC Survival Rates
MSCs can be tracked after transplantation by virally transducing 
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the cells to express green-fluorescent protein (GFP) or isolating cells 
from a GFP-transgenic donor. Most reports on MSC transplantation 
after spinal cord injury provide only qualitative or semi-quantitative 
data on MSC transplant survival. Table 1 provides an overview of 
studies that have reported on bone marrow-derived MSC survival after 
transplantation into animal models of spinal cord injury. Studies that 
provide quantitative data on MSC survival after SCI report survival 
rates between 0 [14,15] and 52% [8] one week after transplantation 
and between 0 [6,16-20] and 8% [21] one month after transplantation 
without survival enhancing therapies. In some cases, presence of MSCs 
up to two months [2,13,22-25] and even three months [11,26,27] was 
reported after transplantation into models of spinal cord injury, but 
usually no or very few cells survive at these time points. The large 
variation in survival rates can in part be explained by the model system 
used. Interestingly, in spinal cord transection models, cells are usually 
reported to be present at the end point of the study, with reported 
survival rates up to 7% at eight weeks after transplantation [28]. In 
the transected spinal cord, a piece of gelfoam is often used to fill the 
injury gap and/or to provide a scaffold for the MSCs. Alternatively, 
cells are injected directly in the lesion penumbra, i.e., the nervous 
tissue adjacent to the actual transection. The environment in the lesion 
penumbra is different from the lesion epicenter in terms of immune 
cell presence, scar tissue and blood supply [29]. Together, this may 
explain why survival seems to be better in transection models than in 
contusion models in which the cells are mostly injected into the lesion 
environment. Because contusion models are clinically more relevant, 
in more than 70% of the cases a contusion is the mechanism of injury, 
it is imperative to understand the low and variable survival rates in 
contusion models of spinal cord injury. 
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 Donor/
recipient

Timing 
(days psci)

Dose (# 
MSCs) Sci model Delivery 

method Survival enhancing therapy
Cell survival 
(times point post-
injection)

Ukegawa et al. 2014 [46] Fischer rMSC/ Fischer rat 0 3 × 104 hemi il (honeycomb collagen sponge 
scaffold) 4wk: +

Ding et al. 2014 [23] Wistar rMSC/ Wistar rat 9 5 × 105 trans il -
2wk: many
8wk: very few

Torres-Espin et al. 2014 [16] SD MSC / SD rat 0 vs. 7 4.5 × 105 cont il acute >7d-delayed
14d: +
21d: 0

Chen et al. 2014 [47] SD rMSC/ SD rat 0 5 × 105 hemi il (acellular spinal cord scaffold) 8wk: +

Ritfeld et al. 2014 [6] SD rMSC/ SD rat 3 5 × 105 cont il poly-urethane based biogel: ↑
1wk: 20-70%
4 wk: 0

Tan et al. 2013 [12] C57BL6 mMSC/ C57BL6 mouse 3 1 × 105 cont il IL-6/IL-6R blokkade: ↑ 28d: 1.2% - 17.8 %

Nakano et al. 2013 [15] SD rMSC/ SD rat 7 vs. 14 
vs. 28 5 × 106 cont it 7d > 14d = 28d-delayed

2d: 0 - a few
7d: 0

Edalat et al. 2013 [10] SD rMSC/ SD rat 7 5 × 105 cont il P75-siRNA MSC: ↑ 3wk: +

Mitsuhara et al. 2013 [9] Fischer rMSC/ Fischer rat 0 3 × 105 cont iv microgravity culture conditions: ↑ 21d: +

Aizawa et al. 2013 [48] Wistar rMSC/ Wistar rat 9 3 × 105 trans il (genetic neural induction) 7wk: 5.9%
Quertainmont et al. 2012 
[14] Wistar rMSC/ Wistar rat 7 1 × 106 cont il (medium-induced neural 

induction) 7d: 0

Hodgetts et al. 2013 [17] hMSC/ CBH-rnuArc (nude) rat 7 5 ×105 cont il CsA: ↑
2wk: +
4wk: 0 - a few

Ding et al. 2013 [41] SD rMSC/ SD rat 0 1 × 105 trans il (gelfoam, TrkC/Lacz-
overexpressing MSC) 10wk: +

Boido et al. 2014 [49]
C57BL6J 
mMSC/ 
C57BL6J mouse

0 1 × 105 cont il  26d: <1%

Kang et al. 2012 [33] SD rMSC/ SD rat 1 1 × 106 cont iv vs. il
il > iv

6wk: +
(CsA)

Ritfeld et al. 2012 [2] SD rMSC/ SD rat 3 1 × 106 cont il  8wk: <1%

Yazdani et al. 2012 [50] Wistar rMSC/ Wistar rat 7 1 × 106 cont il (medium –induced neural 
induction) 5wk: +

Kang et al. 2012 [28] hMSC/ Fischer rat 0

1 × 105 
vs. 2 × 
104 vs. 4 
× 103

trans il

dose: no effect 4wk: 8%
(PLGA scaffold) 8wk: 7%

  

Liu et al. 2012 [40] SD rMSC/ SD rat 7 7.5 × 103 cont il electroacupuncture: ↑ 7wk: +

Zhilai et al. 2011 [22] SD rMSC/ SD rat 7 2 × 105 cont il
NOGO-66R antagonist 

9wk: 0.09 - 0.24 % 
(neural induction)

Zeng et al. 2011 [51] SD rMSC/ SD rat 0 1 × 105 trans il (gelatin sponge scaffold)
1wk : +
8wk: ?

Wu et al. 2011 [42] SD rMSC/ SD rat 7 5 × 105 cont il electrical stimulation: ↑ 7wk: +

Alexanian et al. 2010 [44]
mMSC/ 
SD rats
 

7 1 × 105 cont il neural induction: no effect

1wk: 37%
2wk: 2%
3wk: 0.5%
4wk: < 0.5%

Fang et al. 2010 [52] hMSC/ 
SD rats 7 2 × 105 cont il  2wks: a few

Xu et al. 2011 [45] C57B6Kr15mMSC/ C57B6Kr15 
mouse 7 3 × 104 cont il coculture with Schwann cells pre-

injection: no effect
2wk: 3-4 %
6wk: 1%

Cizkova et al. 2011 [31] Wistar rMSC/ Wistar rat
3 vs. 7 vs.
3,4,5 vs. 
7,8,9

5 × 105 cont it repeated 7d-delayed injections: ↑ 28d: 0 - 5%

Zhang et al. 2010 [53] SD rMSC/ SD rat 0 5× 105 trans il (pretreatment with retinoic acid, 
gelfoam) 67d: +

Ritfeld et al. 2010 [35] SD rMSC/ SD rat 3 1 × 106 cont il MC vs. CsA vs. MP: no effect 7d: 21-33%

Luo et al. 2009 [13] SD rMSC/ SD rat 0 3 ×106 trans il G-CSF ↑ 8wk: +

Ding et al. 2009 [54] SD rMSC/ SD rat 0 5 × 105 trans il
electroacupuncture: ↑ 

8wk: +
(gelfoam)

Itosaka et al. 2009 [39] mMSC/ 
SD rat 0 3 × 105 hemi il

fibrin matrix: ↑ 
4wk: +

(CsA)

Samdani et al. 2009 [55] hMSC/ 
SD rat 0 1.5 × 105 cont il (CsA) 3wk: 1.3%
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injected in the spinal cord away from the injury site [30], intrathecally 
[7,15,19,20,31,32] and intravenously [9,33,34]. A direct comparison 
of cell survival after an intralesional injection or intravenous injection 
of MSCs revealed that the former approach resulted in better survival 
[33]. Studies of direct comparisons between the other delivery modes 
are absent. After intrathecal delivery up to 5% of MSCs can survive 
28 days after transplantation after repeated weekly injections starting 
7 days post-injury [31]. With intrathecal delivery, three-day-delayed 
[19,31] or late injection (≥ 14-day-delayed) [7,15] seems less beneficial 
for cell survival than 7-day-delayed injection. However, a 5-day-delayed 
injection was shown to lead to better survival than a 7-day-delayed 
injection [19]. Given the current data, it seems reasonable to conclude 
that the optimal time point for intralesional transplantation is three days 
post-lesion. Although less data is available about the beneficial effects 
of intrathecal MSC injections and differences in methodology between 

Effect of Timing, Dose and Delivery Method on MSC 
Transplant Survival 

One important factor that should be accounted for is the timing 
of cell transplantation. Table 2 gives an overview of studies that have 
studied the effect of timing of transplantation on MSC survival in spinal 
cord injury models. Of the four studies that so far looked at survival 
after intralesional transplantation, three report better or similar survival 
after acute or 3-day-delayed transplantation than after 7-, 14- or 
21-days-delayed transplantation [8,12,16]. The fourth study described 
better survival after 7-day-delayed transplantation than after acute 
transplantation. However, here the survival rate was reported at 28 days 
after the injury, implicating that the transplant was in fact quantified 
after 21 days, which could account for the discrepancy. MSCs seem to be 
able to migrate to the injury site and survive to some extent both when 

Nandoe Tewarie et al. 2009 
[8] SD rMSC/ SD rat 0 vs. 3 vs. 7 

vs. 21 1 ×106 cont il 0 or 3d-delayed > 7d- or 
21d-delayed)

7d: 9 - 52%
28d: 0 - 2%

Hollis et al. 2009 [56] Fischer rMSC/ Fischer rat 0 2 × 105 dcl il  4wk: +

Parr et al. 2008 [26] Wistar rMSC/ 
SD rat 0 2 × 105 cont il (CsA) 12wk: +

Parr et al. 2008 [21] Wistar rMSC/ 
SD rat 9 1.25 

×105 cont il CsA high dose > CsA low dose 
= no CsA 28d: 8-11%

Sheth et al. 2008 [57] hMSC/ nude SD rat 7 6 × 105 cont il (nude rats) 6wk: a few

Bi et al. 2008 [43] SD rMSC/ SD rat 7 1 × 106 cont il Salvianolic acid B: ↑ 28d: +

Yano et al. 2006 [30] SD rMSC/ SD rat 7 7.5 × 104 cont
8 mm 
rostral to 
injury

 4wk: +

Yoshihara et al. 2006 [27] Fischer rMSC/ Fischer rat 9 1 × 106 cont il (Vitrogen matrix, CsA) 3month: +

Cizkova et al. 2006 [34] Wistar hMSC/ Wistar rat 7
1 (or 
2?)* × 
106

cont iv  3wk: 4%

Shi et al. 2006 [32] rabbit MSC/ rabbit -2 1 × 108 ischemia it  14d: +

Himes et al. 2006 [58] hMSC/ 
SD rat 7 0.5-1 × 

106 cont il (CsA) 11wk: a few

Bakshi et al. 2006 [7] Fischer rMSC/ 
SD rat

<14d vs. 
>14d#

2 × 106 

vs. 1 × 
106 vs. 4 
× 106 

cont it

 [<14d] > [>14d]#

6wk: +dose: no effect

(CsA)

Yano et al. 2005 [59] mMSC/ Wistar rat 7 7 × 104 cont il (CsA) 4wk: +

Lu et al. 2005 [11] Fischer rMSC/ Fischer rat 0 2 × 105 dcl il BDNF-overexpressing MSC ↑
1month: many
3month: many

Ankeny et al. 2004 [25] Wistar rMSC/ Wistar rat 2 3 × 105 cont il  8wk: +

Satake et al. 2004 [19] Lewis rMSC/ Lewis rat 3, 5, 7 1 × 106 cont it (repeated injections)
14d: +
28d: 0

Ohta et al. 2004 [20] SD rMSC/ SD vs. Wistar rat 0 5 × 106 cont it
inbred = outbred 2wk: +
no CsA = CsA 3wk: 0

Lee et al. 2003 [60] C57BL6 mMSC/ C57BL6 mouse 7 3 × 103 cont
il + 
penumbra 
(2mm)

 4wk: +

Hofstetter et al. 2002 [5] Lewis rMSC/ Lewis rat 0 vs. 7 3 × 105 cont
il + 
penumbra 
(2mm) 

7d-delayed > acute 
4wk: 1% (delayed) 

5wk: 0.2% (acute)

Chopp et al. 2000 [61] Wistar rMSC/ Wistar rat 7 2.5 × 105 cont il  4wk: +

psci, post-spinal cord injury; MSC, mesenchymal stem cell; sci, spinal cord injury; rMSC, rat mesenchymal stem cell; SD, Sprague-Dawley; mMSC, mouse mesenchymal 
stem cell; hMSC, human mesenchymal stem cell; hemi, hemisection; trans, transection; cont, contusion; dcl, dorsal column lesion; il, intralesionally; iv, intravenously; 
it, intrathecally; CsA, Cyclosporine A; PLGA, poly(D,L-lactide-co-glycolide); MC, minocycline; MP, methylprednisolone; G-CSF, granulocyte-colony stimulating factor; ↑, 
increased MSC survival compared to control; +, MSCs are present, but report lacks absolute numbers or percentages; #, <14d includes transplantation 4d-, 9d-, or 
13d-delayed and >14d includes transplantations 20d- or 27d-delayed; *, report inconsistent. When a range of numbers of surviving cells is given, the higher number 
represents the observed survival with the survival enhancing strategy and the lower rate represents the observed survival without the survival enhancing strategy. Therapies 
in parenthesis represent treatments/factors that likely have had an effect on MSC survival, but that were not compared to a control group to study its effect on MSC survival.

Table 1: Overview of studies that have investigated bone marrow-derived MSC survival after transplantation into the injured spinal cord.
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thought to be low [24]. In allogeneic transplantation, i.e. cells from an 
outbred strains and transplanted into individuals from another strain, 
immunosuppressants were shown to be effective by some investigators 
[21,24] but not by others [20,35]. Cyclosporine A (CsA) dose may partly 
explain these differences. Indeed, Parr et al. [21] studied the effect of 
CsA dose on MSC survival after 28 days and showed no effect of low 
dose CsA treatment (10 mg/kg/day) but a small statistically significant 
effect of high dose CsA treatment (20 mg/kg/day) on MSC survival 
28 days after injection (8% vs 11%) in an allogeneic model system. 
Similarly, Swanger et al. [24] showed increased graft volumes, which 
were interpreted as larger cell numbers, with high dose CsA treatment 
(30 mg/kg/day for three days prior to transplantation, followed by 15 
mg/kg/day for the duration of the study), compared to low dose (10 
mg/kg/day) CsA treatment at 4 and 8 weeks post-transplantation. This 
difference was seen in an allogeneic model using MSCs from transgenic 
Fischer (inbred) rats transplanted into Sprague-Dawley (SD; outbred) 
rats without a spinal injury. In another study, in which MSCs from 
SD rats were transplanted into SD rats, this same dose regimen did 
not result in improved MSC transplant survival [35]. Aside from the 
strain difference, the fact that the latter study used spinal cord injured 
rats whereas the former study used uninjured rats likely explains the 
difference, since MSC death mechanisms in the injured spinal cord are 
different from those in the uninjured spinal cord. Xenotransplantation 
of MSCs, in which cells from one species (typically humans) are 
transplanted into another species (typically rats), usually results in poor 
survival even when using nude rats or CsA after injection into a spinal 
cord contusion [17]. This kind of rejection, however, is less relevant 
from a translational point of view, since a projected MSC therapy for 
human spinal cord injury would optimally be autologous and at the 
least allogeneic. 

Deprivation from Oxygen, Nutrients and Growth 
Substrates 

After spinal cord injury, there is a shortage of oxygen and nutrients 
resulting from rupturing of blood vessels and death of endothelial cells 
caused by the initial impact and subsequent inflammatory processes. 

studies make direct comparisons difficult, current data seem to suggest 
the use of intrathecal injections as a delivery method for MSC therapy 
for spinal cord injury [7,15,31]. For intrathecal injection the optimal 
time point seems to be five to seven days after injection. These time 
points are also favorable for clinical translation. Repeated deliveries 
(three deliveries at weekly intervals) seem to have beneficial effects on 
cell survival and associated anatomical and functional recovery after 
intrathecal delivery of MSCs [7,31]. A repeated injection regimen, 
however, seems problematic for intralesional injections where multiple 
surgeries will be necessary. Studies using single MSC injections did not 
find a dose-effect on MSC survival or associated recovery [7,28].

The Role of the Immune System in MSC Transplant 
Survival 

There are a number of plausible causes of death of MSCs after 
transplantation into the injured spinal cord. The overwhelming presence 
of neutrophils in the first days after injury, followed by activation of 
resident microglia and a massive influx of macrophages may cause MSC 
death by direct phagocytosis. However, simply reducing the presence 
of macrophages does not increase MSC survival [35]. Neutrophils and 
macrophages may also cause MSC death by the formation of reactive 
oxygen species that cause membrane damage leading to death. Indeed, 
transplanting the cells within a polyurethane-based biogel with anti-
oxidative properties increases short term (one week) survival of MSCs 
[6]. Longer term (4 week) survival however, is unaffected by this gel, 
probably due to biodegradation of the gel. The adaptive immune 
response may also play a role in MSC death after transplantation, the 
extent of which, however, is debated. MSCs have low expression of 
MHC class I molecules and absence of co-stimulatory molecules and 
have been reported to suppress the function of T-cells, B-cells, natural 
killer cells and dendritic cells [36]. The effect of immunosuppressants 
on MSC survival has been studied by different groups with conflicting 
results. In syngeneic transplantation, where cells are taken from an 
inbred strain and transplanted into a genetically similar individual from 
the same inbred strain, immunosuppressants are deemed unnecessary 
because the contribution of the immune system to MSC death is 

 
Time point of 
transplantation 
(days psci)

Outcome Delivery Remarks

Torres-Espin et al. 2014 [16] 0 vs. 7 
7d pi: 0 > 7

il  14d pi: 7 > 0 
28d pi: 0 = 7 (few cells)

Tan et al. 2013 [12] 1 vs. 3 vs. 7 vs. 14
3,7,14d pi: 3 > 1 > 7 > 14

il  
28d pi: 1 = 3 = 7 = 14 (few cells) 

Nandoe Tewarie et al. 2009 [8] 0 vs. 3 vs. 7 vs. 2
7d pi: 3 > 0 > 7 = 21

il  
28d pi: 0 = 3 = 7 = 21 (few cells)

Hofstetter et al. 2002 [5] 0 vs. 7 5wk psci: 7 > 0 il + 
penumbra

Quantification 5w pi for acute group, 4w pi for 7d-delayed 
group

Cizkova et al. 2011 [31]
3 vs. 7 vs.
3,4,5 vs. 7,8,9 
(repeated injections)

28d psci: 3 = 7 (no cells)
it Quantification 21d pi for 7d-delayed group, 25d pi for 

3d-delayed group28d psci: 7,8,9 > 3,4,5
 

Nakano et al. 2013 [15] 7 vs. 14. vs. 28 
2dpi: 7 > 14 = 28

it  
7dpi: 7=1 =28 (no cells)

Bakshi et al. 2006 [7]
<14 (4, 9 or 13) vs. 

14d pi: [<14d] > [>14d] it  
 >14 (20 or 27)

Satake et al. 2004 [19] 3 vs. 5 vs. 7
7d pi: 5 > 3 = 7

it  
14d pi: 5 > 3 = 7

psci, post-spinal cord injury; pi, post-injection; >, better survival than; = similar survival as; il, intralesional; it, intrathecal
Table 2: Overview of studies that have investigated the effect of timing of MSC transplantation on survival of MSCs in animal models of spinal cord injury.
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The ischemic environment likely contributes to MSC death after 
transplantation, although there is some evidence that MSCs are relatively 
resistant to hypoxia [37]. An increasing body of research is focusing on 
strategies to restore vascularization after spinal cord injury, the effect of 
which on MSC survival has yet to be determined. Another mechanism 
of MSC death in an injury site may be anoikis, which is defined as 
apoptosis induced by the lack of a substrate for attachment. Indeed, 
MSCs express integrin receptors, providing ligands for attachment 
to extracellular matrix molecules including collagen, fibronectin 
and laminin [38]. MSCs are anchorage-dependent cells and lack of a 
substrate to adhere to may induce apoptotic pathways. Transplantation 
of MSCs within scaffolds, in addition to possibly providing protection 
against macrophages, may prevent anoikis. Indeed, transplantation 
within a fibrin matrix was shown to increase MSC survival compared 
to controls [39].

Alternative Survival Enhancing Therapies
In addition to the survival enhancing strategies described above, 

including optimizing timing, immunosuppression and transplantation 
within a scaffold for protection against anoikis, reactive oxygen species 
and macrophages, a number of other treatments have been shown to be 
successful at increasing MSC survival. Table 1 summarizes these studies. 
Therapies include blockade of the IL-6/IL-6receptor [12], silencing p75 
receptors in MSCs [10], culturing MSCs under microgravity conditions 
[9], electroacupunture [40,41], electrical stimulation [42], co-treatment 
with granulocyte-colony stimulating factor [13], Salvianolic acid B [43] 
or a NOGO-66R antagonist [22] and BDNF-overexpression in MSCs 
[11]. Strategies that failed to improve MSC survival include neural 
induction of MSCs [44] and co-culture with Schwann cells prior to 
transplantation [45]. Most of these studies however, did not provide 
quantitative data from which percentages of surviving cells could be 
derived. Instead, increases in MSC staining intensity, cell number per 
unit area, graft volume or only qualitative data are reported, making 
these studies very difficult to interpret and to compare. 

From Bench to Bedside
There have been some early clinical trials assessing the safety 

and primary efficacy of MSC transplantation into spinal cord injured 
patients, concluding that MSC transplantation is feasible and safe 
[62,63]. Larger randomized, controlled, blinded clinical trials are 
needed to assess efficacy of MSCs in humans. Moreover, to our 
knowledge, survival rates of MSCs in humans have not been studied, 
but it is plausible that MSC survival enhancing strategies developed in 
rodents will benefit survival rates and efficacy of MSCs in humans.

Conclusion
MSC survival after transplantation in the injured spinal cord is poor, 

especially in the clinically relevant contusion models, which limits their 
therapeutic efficacy. Optimal timing, route of delivery, pretreatment of 
MSCs and co-treatment strategies may enhance survival to an extent, 
but quantitative data is scarce and when provided shows only small 
or short-term improvements in survival. It is clear from the current 
literature that more research is needed to elucidate mechanisms of MSC 
transplant death, so that rational survival enhancing strategies may be 
developed that can further develop MSC transplantation as a clinically 
relevant spinal cord injury therapeutic.
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