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Abstract

Tumor necrosis factor alpha (TNFα) plays an important role in the pathogenesis of diabetic retinopathy (DR). The
objective of this study is to investigate the effect of TNFα blockade on complications of DR. Experimental models of
diabetes were induced with streptozotocin (STZ) injection or insulin 2 gene point mutation (Akita) in mice. Intravitreal
(IVT) and intraperitoneal (IP) injections were used to deliver anti-TNFα antibody and saline control. TUNEL and
activated caspase-3 staining were used to examine apoptotic cell death. Transcardially-perfused FITC-ConA and
fluorescence microscopy were used to monitor leukocyte adhesion. Trypsin digestion was used to prepare retinal
vasculature and quantify acellular capillary. The leakage of 3H-mannitol into the retina was used to quantify the
breakdown of blood-retinal barrier (BRB). TNFα blockade significantly prevented diabetes-related retinal leukostasis.
The numbers of caspase 3-positive and TUNEL-positive cells were significantly increased in diabetic retina, but
reduced due to anti-TNFα treatment. The increased acellular capillary by diabetes was significantly prevented by
anti-TNFα treatment. Diabetes-caused BRB breakdown was prevented by antibody treatment at 3 and 6 months.
IVT and IP routes of antibody delivery had similar efficacy and dose response curve. Among the examined dose
ranges (1-10 μg/eye for IVT injection and 2-25 mg/kg for IP injection), the antibody inhibited complications of DR in a
dose-dependent manner. These results suggest that anti-TNFα therapy is a potential therapeutic treatment for DR.

Keywords: Blood-etinal barrier; Diabetic retinopathy; Inflammation;
Tumor necrosis factor-alpha

Abbreviation
Akita: Insulin 2Akita/+; BRB: Blood-Retinal Barrier; DME: Diabetic

Macular Edema); DR: Diabetic Retinopathy; KO: Knockout; IVT:
Intravitreal; IP: Intraperitoneal; PDR: Proliferative Diabetic
Retinopathy; STZ: Streptozotocin; TNFα: Tumor Necrosis Factor-
Alpha; TUNEL: Terminal dUTP Nick-end Labeling.

Introduction
Diabetic retinopathy (DR) is a leading cause of visual loss in the

working age population with with approximately 93 million people
suffering from DR worldwide [1]. Diabetic macular edema (DME) and
retinal neovascularization (NV), resulting from blood-retinal barrier
(BRB) breakdown and hypoxia, are the two major causes of blindness
in patients with DR. Inflammation has been shown an important
contributor to these complications of DR [2-5]. The common features
of inflammation in DR include leukocyte adhesion and infiltration,
microglia activation, and cytokines/chemokines expression. Targeting
these inflammatory elements represents an attractive therapeutic
strategy for the prevention and treatment of DME and proliferative
DR (PDR).

TNFα is a potent pro-inflammatory cytokine and implicated in the
pathogenesis of DR. TNFα protein level is increased in diabetic rats

relative to non-diabetic controls [6,7]. In PDR, TNFα protein is
presented in the fibrovascular membranes of PDR [8] and increased in
the vitreous fluid and plasma of patients with DR [9,10]. TNFα
deficiency in mice attenuates diabetes-related retinal leukostasis,
retinal cell apoptosis and breakdown of BRB [11]. TNFα inhibition by
compounds inhibits the activity of caspase-3/-8, acellular capillary and
vascular permeability in the rat models of diabetes [12,13]. TNFα is
associated with insulin resistance [14,15] and its polymorphism is
associated with type 2 diabetic patients [12,16].

Anti-TNFα therapy provides benefits to a variety of inflammatory
disorders. For example, several TNFα inhibitors, including infliximab,
etanercept, adalimumab, golimumab and certolizumab-pegol, have
been developed and approved for the treatment of autoimmune
disorders such as rheumatoid arthritis, inflammatory bowel disease,
and psoriasis. However, whether TNF inhibitors can effectively inhibit
complications of DR is unclear. In the present study, we evaluated the
effect of an anti-murine TNFα antibody called CNTO5048 on
complications of DR and hoped to provide insight into the potential
application of this strategy to prevention and treatment DR and DEM.

Methods

Mouse models of diabetes
All animals were used in accordance with the approved protocols by

the Institutional Animal Care and Use Committee of The Johns
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Hopkins University School of Medicine and the guidelines of the
ARVO Statement for the Use of Animals in Ophthalmic and Vision
Research. Two mouse models of diabetes were used: streptozotocin
(STZ) treatment and insulin2 gene point mutation, both of which were
described in our previous reports [11].

STZ is an alkylating antibiotic and is highly toxic to insulin-
producing pancreatic β-cells. It has long been used to generate
experimental models of diabetes. The Ins2Akita/+ (Akita) mice are
heterozygous for the insulin 2 gene with a transition from cysteine to
tyrosine at the seventh amino acid of the protein. This mutation leads
to the disruption of the disulfide bond between chains A and B of
insulin, the intracellular accumulation of misfolded insulin protein,
and consequently the death of pancreatic β-cells. Both models were
used in our study because each model has its own advantages and
disadvantages. The mutant Akita mice serve as an excellent animal
model of diabetes with the phenotypes of hypoinsulinemia and
hyperglycemia, with symptoms similar to those observed in diabetic
patients. Retinal complications have been well characterized in these
diabetic mice. The STZ-induced mouse is a more acute diabetic mouse
model because STZ is toxic to many other cells, as well as to pancreatic
β-cells. For this reason, Akita diabetic mice are thusly considered to be
more relevant to diabetic patients than the STZ-induced diabetic mice.
The Akita mouse strain is maintained by the breeding of a male Akita
diabetic mouse and a non-diabetic C57BL6 female mouse; only half of
the offspring become diabetic. Furthermore, only the diabetic male
mice are suitable for experimentation because the hyperglycemia
status of the female diabetic mice is not as consistent as in the male
diabetic mice. So the method of STZ induction is more efficient at
obtaining a large number of diabetic mice and non-diabetic controls
than the Akita.

Anti-TNFα treatment cohorts
For the STZ-induced diabetic mouse model, blood glucose levels

were measured at one week after STZ injection. For the Akita model,
glucose levels were measured at the age of one month. The blood
glucose of over 250 mg/dL was considered diabetes. Prior to analysis (3
or 6 months), blood glucose was measured again. Diabetic and non-
diabetic mice were separated and randomized for the treatment of
anti-TNFα antibody CNTO5048, a rat-mouse chimeric monoclonal
antibody that neutralizes murine TNFα [17]. Doses of 2, 8, and 25
mg /kg mouse body weight were used for IP injection, and 1, 5 and 10
μg antibody/eye for IVT injection. These dose ranges were chosen
based on the antibody’s clinical applications. The measurements were
performed at 3 or 6 months, which were the time frames used in our
previous mouse knockout (KO) study [11]. The treatment cohorts
were described below and illustrated in Figure 1.

Cohort 1-retinal leukostasis: 20 STZ-induced diabetic C57BL6 mice
were IVT injected with PBS, 1, 5, or 10μg antibody biweekly for 3
months. 5 age-matched non-diabetic mice were used as control.

Cohort 2-apoptosis: (A) 20 STZ-induced diabetic mice were IVT
injected with PBS, 1, 5, or 10 μg antibody biweekly for 3 months. 5
age-matched non-diabetic mice were used as control. (B) 20 STZ-
induced diabetic C57BL6 mice were IP injected with PBS, 2, 8, or 25
mg/kg weekly for 3 months. 5 age-matched non-diabetic mice were
used as control.

Figure 1: Treatment scheme and blood glucose. Separate cohorts of
mice were used to evaluate the effect of anti-TNFα antibody on the
complications of DR. (A) The line indicated the development of
DR. Diabetes duration, delivery routes, measurements were shown.
IVT: Intravitreal. IP: Intrapertonal. (B) Average HbA1c value of the
mice that were used for assays. Blood samples used to test blood
glucose concentrations were always collected in the afternoon
between 2-4pm. The level of average glucose (AG, mg/gL) was
converted into HbA1c value (%) using the equation HbA1c
(%)=[AG(mg/dl)+77.3]/35.6, as suggested at http://www.ngsp.org/
A1ceAG.asp. The results were expressed as mean ± SD (n=10).

Cohort 3-acellular capillary: 20 STZ-induced diabetic C57BL6 mice
were IP injected with PBS, 2, 8, or 25 mg/kg weekly for 6 months. 5
age-matched non-diabetic control mice were used as control.

Cohort 4- BRB assay: (A) 20 Akita diabetic C57BL6 mice were IVT
injected with PBS, 1, 5 or 10 μg antibody/eye biweekly for 3 months. 5
age-matched non-diabetic control mice were used as control. (B) 20
STZ-induced diabetic C57BL6 mice were IP injected with PBS, 2, 8 or
25 mg/kg for 3 months. 5 age-matched non-diabetic mice were used as
control. (C) 20 STZ-induced diabetic mice were IP injected with PBS,
2, 8 or 25 mg/kg mouse body weight weekly for 6 months. 5 age-
matched non-diabetic mice were used as control.

Intravitreal (IVT) injections
IVT injections were performed with a Harvard pump

microinjection apparatus and pulled glass micropipettes. Each
micropipette was calibrated to deliver 1 μl of solution upon depression
of a foot switch. Mice were anesthetized with 25 mg/kg of ketamine
(Fort Dodge Animal Health, Fort Dodge, IA) and 4 mg/kg xylazine
(Vedco, St. Joseph, MO). Pupils were dilated with 1% tropicamide.
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Under a dissecting microscope, the sharpened tip of a micropipette
was passed through the sclera just behind the limbus into the vitreous
cavity, and the foot switch was depressed.

Retinal leukostasis
Mice were first anesthetized as described above, then the

descending aorta was clamped, and the right atrium was cut. The mice
were perfused with 5 mL PBS to remove erythrocytes but not adherent
leukocytes, followed by perfusion with fluorescein-conjugated con A
to label adherent leukocytes. Another PBS perfusion was used to flush
out unbound fluorescein. Retinal flat mounts were prepared to assess
leukostasis. The eyes were removed and fixed for more than 1 hour
with phosphate-buffered formalin. The cornea and lens were removed
and, under a stereomicroscope (Stemi 2000C; Carl Zeiss Meditec, Inc.,
Thornwood, NY), the entire retina was carefully dissected from the eye
cup, rapidly cut from the edge to the equator in all four quadrants, and
flat-mounted with the photoreceptors facing upward. Leukocytes
adherent to the vessel walls were labeled with fluorescein, and
leukocytes within the vessels of each retina were counted under an
epifluorescence microscope (Axio- pan2; Carl Zeiss Meditec, Inc.) by
an investigator masked to the nature of the specimen. The counting
began at the optic disc. The vessel nearest the 12 o’clock position and
its branches were followed all the way to the periphery, with the focus
changed as necessary to include all of the arteries, veins, and capillaries
in the field. This process was repeated in a clockwise direction for each
vessel radiating from the optic disc, so the total number of adherent
leukocytes in all of the vessels of the retina was counted.

TUNEL assay for detection of apoptotic nuclei
The terminal dUTP nick-end labeling (TUNEL) assay was

performed with the ApopTag Red In Situ Apoptosis Detection Kit
(Millipore, Temecula, CA) according to the manufacturer's
instructions. In brief, eye cryosections were fixed in 1%
paraformaldehyde (PFA) at room temperature (RT) for 10 min and in
ethanol/acetic acid (2:1) at −20°C for 5 min and then washed twice
with 1x PBS (pH 7.4) for 5 min. After the tailing of digoxigenin-dNTP
catalyzed by the TdT enzyme, the sections were incubated with the
anti-digoxigenin-rhodamine antibody at RT for 30 min. For negative
controls, deionized water was substituted for the TdT enzyme.
Processed sections were mounted with antifade mounting medium for
fluorescence-containing DAPI (Vectashield; Vector, Burlingame, CA)
and were viewed with a fluorescence microscope (Axiopan2; Carl Zeiss
Meditec, Inc).

Activated caspase-3 staining
Cryosections of eyes were fixed in ice-cold methanol/acetone (1:1)

for 10 minutes at −20°C, washed with 0.01 M PBS (pH 7.4), and
blocked with 4% normal goat serum for 90 minutes. They were
incubated overnight at 4°C with polyclonal antibodies against
activated caspase-3 (1:200; Cell Signaling Technology, Boston, MA).
Negative control sections were similarly treated, but the normal IgG
was added. Sections were rinsed and incubated for 1 hour with Alexa
Fluor 594-conjugated goat anti-rabbit IgG (1:1000; Invitrogen,
Carlsbad, CA). Fluorescence microphotography was performed on the
epifluorescence microscope (Axiopan2; Carl Zeiss Meditec, Inc.). Each
section was scanned systematically from the temporal to the nasal side
for fluorescent cells indicative of cells undergoing apoptosis, by an
investigator masked to the nature of the specimens. The number and
locations of positive cells were counted and photographed.

Preparation of retinal vasculature and quantification of
acellular capillary

Isolation of retinal vasculature and quantification of acellular
capillaries were performed as previously described [18,19] with minor
modifications. Briefly, the enucleated eyes were fixed with 2% PFA for
24 h. After removing the cornea, the eye-cups were fixed with 2% PFA
for 24 h and dissected to isolate the retina. The retinas were rinsed by
tap water overnight and then were incubated with 40 unit/ml elastase
(Calbiochem, MA) in 100 mM sodium phosphate buffer with 150 mM
sodium chloride and 5.0 mM EDTA, pH 6.5 at 37°C for 2 h. Retinas
were transferred to a 100 mM Tris-HCl (8.5) solution at RT for 3 h.
Nonvascular tissues were removed by gentle brushing, and the isolated
vasculature was mounted on the slide. After drying overnight, the
retinal blood vessels were subjected to the periodic acid–Schiff and
hematoxylin stain. To quantify the acellular capillaries, the retinal
blood vessels were analyzed for 20–25 random fields in masked
fashion (200x magnification). Acellular capillaries were identified as
capillary-sized vessel tubes without nuclei along their length. The
numbers were normalized by the counting area (degenerated
vessels/mm2).

The quantitative BRB assay
The quantitative BRB assay was performed according to a

previously described technique [11,20] with some modifications. Mice
were sedated as above and given an IP injection of 1μCi/gram body
weight of 3H-mannitol. One hour after injection, the mice were
sedated and retinas from the experimental and control eyes were
rapidly removed. The posterior portion of the globe was firmly
grasped with forceps and a razor blade was used to cut across the
cornea and extrude the lens, vitreous, and retina. Retinas were
dissected free from the lens, vitreous, and any RPE that was extruded,
and were placed within pre-weighed scintillation vials within 30
seconds of sacrifice. The thoracic cavity was opened and the left
superior lobe of the lung was removed, blotted free of excess blood and
placed in another pre-weighed scintillation vial. A left dorsal incision
was made and the retroperitoneal space was entered without entering
the peritoneal cavity. The renal vessels were clamped with forceps and
the left kidney was removed, cleaned of fat, blotted, and placed into a
pre-weighed scintillation vial. Superficial liquid was allowed to
evaporate over 20 min from the open vials. The vials containing the
tissue were weighed and tissue weights were calculated and recorded.
One ml of NCSII solubilizing solution was added to each vial and the
vials were incubated overnight in a 50°C water bath. Solubilized tissue
was brought to RT and decolorized with 20% benzoyl peroxide in
toluene in a 50°C water bath. The vials were brought to RT and 5 ml of
Cytoscint ES and 30 μl of glacial acetic acid were added. The vials were
stored for several hours in darkness at 4°C to eliminate
chemoluminescence. Radioactivity was counted with a LS 6500 Liquid
Scintillation Counter (Beckman, Brea, CA). The CPM/mg tissue was
measured for the lung, kidney, and experimental and control retinas.
Retina/lung and retina/kidney ratios were calculated and compared.

Statistical analysis
Statistical comparisons were made using analysis of variance

(ANOVA) or a linear mixed model. P-values for comparison of
treatments were adjusted for multiple comparisons by the Dunnett
method. For data sets with two groups, statistical analyses were
performed with the Mann-Whitney test. P<0.05 was designated as
being statistically significant.
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Results

Anti-TNFα treatment prevents retinal leukostasis in DR
In order to investigate whether anti-TNFα treatment prevents

retinal leukostasis, the STZ-induced diabetic mice were IVT injected
anti-TNFα antibody or PBS weekly. At 3 months, the mice were
transcardially perfused with FITC-ConA to stain the static leukocytes

in the retinal vasculatures; the stained leucocytes were visualized and
counted under fluorescence microscopy. Consistence with our
previous observations, diabetes caused an increase of adherent
leukocyte in the retinal vasculatures. The number of leukocytes was
significantly lower in the anti-TNFα treatment groups than in the PBS
control group. Quantification showed the treatment inhibited retinal
leukostasis in a dose-dependent manner (Figure 2).

Figure 2: Prevention of retinal leukostasis by Anti-TNFα treatment. The STZ-induced diabetic mice were IVT injected antibody biweekly for 3
months. (A) The representative image showed leukocyte adhesion. (B) The quantitative results were expressed as mean ± SD (n=10). $ p<0.05
compared to non-diabetes. *p<0.05 compared to diabetes with PBS treatment. Scale bar: 100 μm.

Anti-TNFα treatment prevents apoptotic cell death in DR
The STZ-induced diabetic mice were IVT or IP injected with anti-

TNFα antibody or PBS weekly. At 3 months, the effect on the
apoptotic cell death was evaluated by caspase-3 or TUNEL staining.
Both caspase-3 (+) and TUNEL (+) cells were increased in the diabetic
mice compared to the non-diabetic mice. The number of the caspase-3
(+) or TUNNEL (+) cells were significantly decreased in the antibody
treatment groups compared to the PBS control group. The inhibition
potency was enhanced with the increased dose of antibody. Both
routes of delivery showed similar response curves (Figures 3 and 4).

Anti-TNFα treatment prevents acellular capillary in DR
As aclleular capillary is one of the most important characteristics of

DR, we investigated whether anti-TNFα antibody is effective at
preventing this complication. The STZ-induced diabetic mice were IP
injected with anti-TNFα antibody or PBS weekly. At 6 months, the
eyes were subjected trypsin digestion; and the isolated retinal

vasculatures were used for the quantification of aclleular capillary.
Consistent with the previous reports, diabetes caused a significant
increase of acellular capillary. Interestingly, the number of acellular
capillary was largely reduced in the treatment groups compared to PBS
group (Figure 5).

Anti-TNFα treatment prevents BRB breakdown in DR
The effect of anti-TNFα treatment on BRB breakdown was

examined with both STZ-induced and Akita diabetic mice. IV
injection was made to the Akita mice biweekly; IP injections to the
STZ-induced diabetic mice weekly. At 3 or 6 months, the mice were
subjected the quantitative BRB assay, as described in Methods.
Diabetes caused a significant BRB breakdown compared to non-
diabetic controls. Anti-TNFα treatment consistently prevented BRB
breakdown in either STZ-induced or Akita diabetic mice at 3 and 6
months (Figures 6-8).
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Figure 3: Prevention of caspase-3 (+) cells by anti-TNFα treatment. The STZ-induced diabetic mice were IVT injected antibody biweekly for 3
months. (A-E) The sample images of activated caspase-3 staining for non-diabetic (A), diabetic with the treatments of PBS (B), 1 μg (C), 5 μg
(D) and 10 μg (E). (F) Quantitative results were expressed as mean ± SD (n=10). $p<0.05 compared to non-diabetes. *p <0.05 compared to
diabetes with PBS treatment. Scale bar: 100 μm.
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Figure 4: Prevention of TUNEL (+) cells by Anti-TNFα treatment. The STZ-induced diabetic mice were IP injected antibody weekly for 3
months. (A-E) The sample images of TUNEL staining for non-diabetic (A), diabetic with the treatments of PBS (B), 2 mg/kg (C), 8 mg/kg (D)
and 25 mg/kg (E). (F) Quantitative results were expressed as mean ± SD (n=10). $ p<0.05 compared to non-diabetes. * p<0.05 compared to
diabetes with PBS treatment. Scale bar: 100 μm.
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Figure 5: Prevention of acellular capillary by anti-TNFα treatment. The STZ-induced diabetic mice were IP injected antibody weekly for 6
months. (A-E) The example images of isolated retinal vasculatures for non-diabetic mice (A), PBS (B), the antibody doses of 2 mg/kg (C), 8
mg/kg (D), and 25 mg/kg (E). Arrows indicated acellular capillaries. (F) Quantitative results. The results were the averaged acellular
capillary/mm2 retina (n=6). *p<0.05 compared to non-diabetes. #p<0.05 compared to diabetes with PBS treatment. Scale bar: 50 µm.
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Figure 6: Prevention of BRB breakdown by anti-TNFα treatment in Akita mice. Akita diabetic mice were IVT injected biweekly for 3 months.
(A) The histogram shows the graphic view of inhibitory effect. (B) The table shows the value of quantitative BRB, which were expressed as
mean ± SD (n=10). 1: RLLR (retina to lung leakage ratio); 2: RSLR (retina to serum leakage ratio). *p<0.05 compared to non-diabetes; #p<0.05
compared to diabetes with PBS treatment.
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Figure 7: Prevention of BRB breakdown by anti-TNFα treatment in STZ-induced mice (3 months). The STZ-induced diabetic mice were IP
injected antibody weekly for 3 months. (A) The histogram was the graphic view. (B) The table was the value of quantitative BRB, which were
expressed as mean ± SD (n=10). Lung and serum were used for reference. RLLR: retina to lung leakage ratio; RSLR: retina to serum leakage
ratio. *p<0.05 compared to non-diabetes; #p<0.05 compared to diabetes with PBS treatment.
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Figure 8: Prevention of BRB breakdown by anti-TNFα treatment in STZ-induced diabetic mice (6 moths). The STZ-induced diabetic mice
were IP injected weekly for 6 months. (A) The histogram was the graphic view. (B) The table was the value of quantitative BRB, which were
expressed as mean ± SD (n=10). RLLR: retina to lung leakage ratio. RSLR: retina to serum leakage ratio. *p<0.05 compared to non-diabetes;
#p<0.05 compared to diabetes with PBS treatment.

Discussion
In this study, we investigated the effect of anti-TNFα antibody

(CNTO5048) on complications of DR in the experimental models of
diabetes. We found that this antibody effectively prevented diabetes-
related retinal leukostasis, cell death, acelluar capillary, and BRB
breakdown. Both IVT injection and IP injection showed similar
efficacy and dose response curve. Among the three examined IP doses,
the 8mg/kg appeared to be the most appropriate dose considering the
efficacy and safety profiles, because 2 mg/kg did not show consistence
sufficiency and 25 mg/kg were occasionally associated with some

abnormalities. Although the abnormalities might be due to the long-
term repeated treatments of such dose, we could not rule out the
possibility of drug formula itself. IVT injection, which requires much
less antibody amount (1, 5 or 10 µg/eye) and elicits minimal systemic
impact, is a good strategy for drug delivery into the retina. Based on
the previous report that the half-life (t1/2) of clearing Infliximab from
rabbit vitreous was 6.5 days [21], we performed IVT injection of
CNTO5048 into the mice vitreous cavity biweekly for 3 months. This
treatment interval and duration consistently prevented complications
of DR in either STZ-induced or Akita diabetic mice. The next step
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would divert these results to the other models and translated to human
clinical trials.

Several small clinical trials have been reported for anti-TNFα
antibody in the treatment of DR. The results did not appear consistent.
For example, two studies showed that the intravenous (IV) injection of
infliximab increased the visual acuity of DME patients [22,23].
However, some others reports the IVT injection of this anti-TNF
antibody had not any benefits and was even deleterious to the eyes of
the patients with DME [24,25]. It is worthy of noting that infliximab’s
formulation was optimized for IV use, and not IVT injection. So the
harmful effect could be due to other excipients in the formulation.
Despite the inconsistent reports, the overall outcomes are encouraging
for the potential application of anti-TNFα in the treatment of DR, but
the treatment conditions, such as dosage, formulation, and delivery
routes, may need to be further optimized.

Inflammation is an important mechanism that TNFα is implicated
in the pathogenesis of DR [11,12]. TNFα is expressed by the activated
microglia, which is a notable inflammatory response in human
diabetic patients [26] and animal models of diabetes [27,28]. TNFα-
mediated apoptotic cell death is another mechanism that is implicated
in the pathogenesis of DR. Nuclear factor kappa B (NF-κB) is a
mediator of TNFα inflammatory and death signaling pathways [29,30].
It can be hypothesize that TNFα contributes to the cascade events in
DR: the death of vascular pericytes and endothelial cells
microaneurysm and acellular capillary ischemic retina increased
HIF-1α and VEGF expression vascular permeability and retinal
neovascularization. In addition, TNFα is involved in the DNA binding
activity and nuclear translocation of transcription factor FOXO1 in
diabetic retina [31]. In retinal endothelia cell cultures, TNFα can
regulate expression and cellular localization of ZO-1 and claudin-5,
which is mediated by NF-κB and protein kinase (PKC)-delta [32].
TNFα was shown to be a potent downstream molecule of VEGF-,
PAF- and IL-mediated retinal leukostasis [33]. How these signaling
pathways and regulatory mechanisms are modulated by TNFα in the
background of DR needs further elucidation.

In summary, the results of this study suggest that anti-TNFα
treatment can be potentially applied to treat complications of DR, but
the treatment conditions and underlying mechanisms need further
elucidation.
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