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Introduction
Expression of recombinant proteins outside the cytoplasm was 

pioneered over 20 years ago in bacterial and yeast systems [1-3], 
opening the way for its current use in a variety of biotechnological 
applications [4]. The bacterium Escherichia coli remains the preferred 
host for the extracytoplasmic expression of recombinant proteins 
because of its compartmentalized cell envelope, which comprises the 
cytoplasmic and outer membrane separated by the periplasmic space 
[5]. Production of recombinant proteins in the periplasm offers in 
some cases important advantages over their cytoplasmic expression 
because it improves protein folding, reduces proteolytic degradation 
and facilitates purification [6]. Additionally, many (potential) 
substrates are able to cross the outer membrane unlike the cytoplasmic 
membrane. The increased substrate accessibility offered by periplasmic 
expression is a major advantage that is exploited in library screening 
and whole-cell biocatalysis [7]. Here, I will discuss recent progress in 
the periplasmic expression of recombinant proteins in E. coli with a 
focus on its use in library screening, protein engineering and whole-cell 
biocatalysis.

For secretion of proteins, E. coli possesses two distinct translocation 
systems, SecYEG and Tat (Figure 1) [8,9]. The vast majority of secretory 
proteins are translocated by the SecYEG system in an unfolded state[8], 
whereas the Tat system only accepts fully folded and often cofactor-
containing proteins for periplasmic export [9]. The export of foreign 
proteins to the periplasm of E. coli is accomplished by harnessing 
endogenous protein translocation pathways, which is typically achieved 
by fusing a signal sequence to the target protein. The type of signal 
sequence used determines which export pathway is utilized by the 
target protein. Most Sec-dependent secretory proteins contain a SecB-
dependent signal sequence and are translocated by the ATPase SecA 
post-translationally, while kept in an unfolded state by chaperones 
such as SecB or DnaK [8]. In addition, a sub-set of secretory proteins 
are exported in a co-translational fashion via the SRP pathway which 
is able, unlike the SecA/B pathway, to export fast-folding proteins, or 
proteins that aggregate in the cytoplasm [10-13]. Moreover, the Sec 
system cannot be used for the export of cofactor containing target 
proteins unlike the Tat system. Interestingly, a recent study suggested 
that Tat-dependent export results in relatively pure and highly active 
recombinant proteins compared to the same proteins exported Sec-
dependently [14]. 

In summary, the choice of export pathway is dictated by the 
properties of the target protein. This is exemplified by our study on 
exporting AldO, a flavoprotein oxidase, to the periplasm of E. coli [15]. 
AldO contains covalently bound FAD, which will only form upon 
linkage to polypeptide chain. In contrast; AldO could be functionally 
transported to the periplasm Tat-dependently. Similarly, it was found 
that green fluorescent protein, which folds rapidly in the cytoplasm, 
could be transported in a functional form to the periplasm via the Tat 
pathway and not Sec-dependently [16,17].

Library screening and protein engineering
Periplasmic expression of protein libraries is commonly employed 

in protein engineering experiments to enable screening for variants 
displaying the desired trait. Several elegant studies show that secretory 
pathway quality control can be utilized in library screening. The Sec 
system is able to prevent the export of folded proteins and this form 
of quality control was exploited in the selection of a novel superfolder 
GFP [18]. It was found that certain variants were rejected by the Sec 
system and accumulated in the cytoplasm of E. coli as a consequence 
of their improved folding kinetics. The Tat translocase also exhibits 
secretory pathway quality control, but in this case, unfolded proteins 
are rejected for export. This feature of the Tat pathway was utilized 
to obtain solubility-enhanced variants of Alzheimer’s Ab42 peptide 
[19,20]. These studies emphasize the potential of secretory pathway 
quality control in library screening to ensure that properly folded 
variants are obtained.

In addition, periplasmic expression is employed in the screening 
of antibody libraries using cell sorting techniques. Firstly, it was shown 
that full length antibodies can be exported to the periplasm of E. coli 
by fusing to a SecB-dependent signal sequence. Following secretion 
into the periplasm, antibodies are captured by a Protein A derivative of 
Staphylococcus aureus, which is anchored to the periplasmic face of the 
cytoplasmic membrane [21,22]. Another system, utilizes a lipoprotein-
type signal sequence for export of antibodies to the periplasm and 
subsequent tethering to the cytoplasmic membrane [23-25]. Both 
systems allow the cell sorting based screening of E. coli spheroplasts 
that display antibodies at their cytoplasmic membrane. Secondly, 
solubility-enhanced antibody fragments were selected from a library of 
antibody fragments using Tat-mediated quality control in combination 
with a cell sorting-based screen [26].

The increased substrate accessibility offered by periplasmic 
expression was recently explored by us in the development of a 
novel screening procedure for Baeyer-Villiger-monooxygenases 
(BVMOs) (our unpublished results). BVMOs are NADPH-dependent 
flavoproteins that catalyze a variety of oxidations [27]. To meet 
the demand of a generic screen for BVMOs, we based the screening 
procedure on Tat-mediated periplasmic export of BVMOs which allows 
conversion of compounds that do not enter the cytoplasm. Moreover, 
periplasmic expression of BVMOs enables coenzyme recycling using 
our established coenzyme regeneration system [28,29]. Moreover, the 
use of periplasmic expression was recently extended to the production 
of recombinant glycoproteins. E. coli expressing the Campylobacter 
jejunipgI gene cluster, which encodes a bacterial pathway for N-linked 
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protein glycosylation [30], was used to study N-linked glycosylation of 
secretory proteins. It was found that proteins secreted via the SecA/B, 
SRP or Tat pathway were successfully N-glycosylated and, moreover, 
a clear difference in the glycosylation pattern of these proteins was 
observed depending on their mode of export [31]. The secretion 
of bacterial glycoproteins seems, therefore, a promising tool in the 
production and engineering of recombinant glycoproteins.

Whole-cell biocatalysis
Whole-cell biocatalysis prevents the costly and laborious 

isolation of enzymes and the use of periplasmic expression of target 
enzymes offer a greatly improved substrate accessibility. The latter is 
well illustrated by our finding that cells which express AldO in the 
cytoplasm are unable to convert xylitol. In contrast, xylitol was readily 
converted by cells that export AldO Tat-dependently to the periplasm 
[15]. Next, we constructed a xylitol biosensor comprising AldO 
equipped with a microperoxidase (MP) domain. In this hybrid, both 
domains act in concert because the MP domain enables the detection 
and quantification of the oxidase activity. This eliminates the need 
of adding peroxidase, which is typically required for the detection 
of oxidase activity. Cells secreting the AldO-MP hybrid protein Tat-
dependently to the periplasm were successfully used for the in vivo 
detection of oxidase activity [32].

In addition, periplasmic expression was used in several 
studies to develop and optimize tools for the bioremediation of 
organophosphates. These compounds are known to be neurotoxic and 
are used for the synthesis of pesticides, herbicides and nerve gasses. 
Organophosphates can be degraded by several bacterial enzymes 
such as, organophosphorus hydrolase (OPH) and methyl parathion 
hydrolase (MPH). Several whole-cell biocatalytic systems revolving 
around OPH were developed relying either on Sec-dependent or Tat-
dependent export. This resulted in different biocatalytic systems capable 
of efficient degradation of organophosphates [33,34]. Moreover, the 
Tat pathway was used for the periplasmic export of MPH in E. coli and 
the biocatalytic performance of this system can be greatly improved by 
coexpression of chaperones [35,36].

Other platforms for protein export
Although secretion outside of the cytoplasm can in many cases be 

achieved by genetically fusing a signal sequence to the target protein, 
this strategy does, however, not always work. Several studies show that 
this can frequently be solved by attachment of a larger proteinaceous 
moiety that functions as an export signal, or secretion partner. For 
example, it was found that a truncated derivative of protein A is able 
to facilitate the periplasmic export of several recombinant proteins 
attached to its C-terminus, thereby enabling their facile purification 
from periplasmic extracts [37]. Moreover, E. coli OsmY was identified 
in a proteomic study as a potential partner for extracellular secretion 
and was found to facilitate the highly efficient secretion of recombinant 
proteins into the growth medium [38,39]. This also allows their rapid, 
one-step isolation.

Conclusions and perspective
Since the first landmark studies over 20 years ago, periplasmic 

expression of recombinant proteins in E. coli has become indispensable 
in many biotechnological applications. The latter is exemplified by 
only a selection of relevant studies in this editorial paper. Despite 
recent progress, several important challenges remain. These include 
the periplasmic expression of sizable, cofactor-containing proteins, 
coexpression of more than one target protein in the periplasm and 
improvement of secretion capacity. The periplasmic expression of 
complex (containing multiple cofactors) and large proteins remains 
problematic primarily because the E. coli Tat system is unable to handle 
large proteins. This is in contrast to the Tat translocon of Streptomyces 
coelicolor which is able to translocate proteins up to 146 kDa [40]. The 
coexpression of several proteins in the periplasm is importantin, for 
example, the design of cascade reactions. However, it is questionable 
whether this can be achieved by using different expressions systems 
employing different translocation pathways without avoiding 
detrimental secretion stress. Alternatively, the genetic fusion of relevant 
proteins or catalytic domains followed by periplasmic secretion via the 
same export route seems to be a more promising strategy as illustrated 
by our oxidase-microperoxidase hybrid [32]. Strategies for increasing 
the secretion capacity include coexpression of chaperones, translocon 
components and the optimization of signal sequences [41]. It can be 
expected that the growing understanding of protein translocation 
systems in combination with the increasing amount of structural data 
will provide new leads for the optimization of protein secretion in E. 
coli, which will ultimately extend the biotechnical use of periplasmic 
expression further.
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