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Abstract

Bone is highly dynamic tissue. It's the plastic nature of bone which is responsible for orthodontic tooth movement
upon application of force. It is the inherent property of any cell to react to a mechanical stimulus of extracellular or
intracellular nature. The generation and propagation of signaling cascades molecules and associated tissue
remodeling in adjacent tissues response to applied mechanical loads form the central theme of orthodontic tooth
movement. Orthodontic forces deform the extracellular matrix and activate cells of the paradental tissues, facilitating
tooth movement. Findings in mechanobiology have illuminated sequential cellular and molecular events, such as
signal generation and transduction, cytoskeletal re-organization, gene expression, differentiation, proliferation,
synthesis and secretion of specific products, and apoptosis. Orthodontists work in a biological environment, wherein
applied forces engender remodeling of both mineralized and non-mineralized periodontal tissues, including the
associated blood vessels and neural elements.
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Review
Bone is highly dynamic tissue. It’s the plastic nature of bone which

is responsible for orthodontic tooth movement upon application of
force. It is the inherent property of any cell to react to a mechanical
stimulus of extracellular or intracellular nature. The generation and
propagation of signaling cascades molecules and associated tissue
remodeling in adjacent tissues response to applied mechanical loads
form the central theme of orthodontic tooth movement. Capability of
adaptive response to applied orthodontic force rests in the DNA of
periodontal ligament (PDL) and alveolar bone cells. Cell vitality and
numbers determine the molecular genetic responses making tooth
movement possible. In the dramatic words of Kiberstis et al., [1] “the
robust and unceasing activities of osteoblasts and osteoclasts imbue
humans with the mechanical prowess to climb mountains or run
marathons”.

This article reviews and concludes the current biomedical literature
on processes in orthodontic tooth movement. It seeks to link clinical
orthodontics with the basic research involved in molecular-genetics.

Discoveries in the molecular biology and genetics of bone and
connective tissue physiology permit appreciation of the complexity
and regulatory sophistication of orthodontic tooth movement [2,3].

Cellular and Molecular Events Associated with Orthodontic
Tooth Movement

In order to achieve tooth movement, remodeling of the alveolar
bone surrounding the dental roots is required. Bone remodeling
involves a complex network of cells (osteoblasts and osteoclasts), cell
interactions and cell matrix interactions, all of which are regulated by
hormones, growth factors and cytokines (some of which are a result of
the strained PDL).

Mechanotransduction induced by orthodontic force occurs when
external strain induces mechanosensing, transduction, and cellular
response in several paradental tissues. This process leads to vasculature
and extracellular matrix remodeling in the periodontal ligament
(PDL), gingiva, and alveolar bone. This remodeling is facilitated by
proliferation, differentiation, and apoptosis of local periodontal cells,
bone cell precursors, and leukocyte migration from the microvascular
compartment [4,5]. In this context, an aseptic acute inflammatory
response is occurring in the early phase of orthodontic tooth
movement (OTM), followed by an aseptic and transitory chronic
inflammation. As orthodontic forces (continuous, interrupted, or
intermittent) are not uniform throughout the applied region, areas of
tension or compression are developed leading to varied inflammatory
processes resulting in different tissue remodeling responses.

Cytokines and Tooth Movement
Cytokines are extracellular signaling proteins directly involved in

the bone remodeling and inflammatory process during OTM, which
act directly or indirectly, to facilitate bone and PDL cells
differentiation, activation, and apoptosis [4,5]. Investigations of their
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mechanisms of action have identified their effector (proinflammatory)
and suppressive (anti-inflammatory) functions during OTM.

The receptor activator of nuclear factor-kappa B ligand (RANKL)
and macrophage colony-stimulating factor (M-CSF) expressed by
osteoblast and apoptotic osteocyte are the most important pro-
inflammatory cytokines responsible for recruitment, differentiation,
activation, and survival of osteoclasts [6]. These cytokines bind to their
respective receptors, RANK and c-Fms, expressed in osteoclast
precursors and mature osteoclasts, to produce these events through
osteoclast–osteoblast communication [7,8]. By contrast, osteoblasts
also express osteoprotegerin (OPG), a decoy receptor of RANKL,
which inhibits the RANK/RANKL interaction, preventing
osteoclastogenesis and accelerating mature osteoclast apoptosis [4,8].

When subjected to continuous (0.5-3.0 g/cm2 ) or intermittent (2.0
or 5.0 g/cm2) mechanical compressive force, PDL cells induce
osteoclastogenesis in vitro through down regulation of OPG
expression and upregulation of RANKL expression, via prostaglandin
E 2 (PGE 2) and interleukin (IL)-1 β synthesis [9,10]. In accordance,
mice research also demonstrated that osteoclastogenesis appears to be
primarily regulated through M-CSF and RANKL signaling by PDL
cells in the compression side in the first week of orthodontic force
application. In the compression sites during human OTM (250 g), the
same standard of RANKL and OPG expression is observed in gingival
crevicular fluid (GCF) after 24 hours [11].

Tumor necrosis factor (TNF) - α is another proinflammatory
cytokine that has been investigated in OTM and is involved in bone
resorption and acute as well as chronic inflammation. TNF- α is
produced primarily by activated monocytes and macrophages, but also
by osteoblasts, epithelial cells, and endothelial cells [12]. In vitro
studies have demonstrated that in bone, TNF- α can directly and
indirectly induce osteoclastogenesis by binding to its p55 receptor on
osteoclast precursors and by upregulating expression of RANKL, M-
CSF, and other chemokines on osteoblasts [4,13]. TNF- α is also an
apoptotic factor for osteocytes, which could be the signal for osteoclast
recruitment to resorb bone in the PDL pressure side, at the same time
inhibiting osteoblasts [14]. The real role of TNF-α in bone resorption,
upregulating and increasing the amount of OTM, was shown in rodent
models with TNF- α receptor impairment [15,16]. A recent in vitro
study suggested that PDL fibroblasts secrete higher levels of TNF- α at
the PDL compression side than at the tension side [17]. This
imbalance leads to RANKL expression by activating CD4+ T cells,
thereby facilitating bone resorption during OTM.

Like TNF- α, IL-1 (alpha and beta) is a proinflammatory cytokine
that is highly expressed on the PDL pressure side of humans and
animals and the adjacent alveolar bone in the early stages of OTM
[18-20]. Its role in OTM has been the focus of previous human studies
[20] that demonstrated an increase in osteoclast activity and survival,
while at the same time inducing bone marrow cells and osteoblasts to
produce RANKL in the early phase of OTM [21].

Under 24 hours of continuous compressive forces in vitro (3.0 g/
cm2), osteoblastic cells respond by expressing IL-1 α , IL-6, IL-11,
TNF- α and receptors for IL-1, IL-6 and IL-8, suggesting an
osteoblastic autocrine mechanism induced by mechanical stress.
Indeed, animal studies with absence of IL-1 α and/or TNF-α signaling
demonstrated impaired tooth movement, [15,16] but the mechanisms
behind this finding remain unknown.

Other cytokines, such as IL-6, IL-8 and IL-11, also stimulate
alveolar bone resorption during OTM by acting early in the

inflammatory response [22]. These cytokines can be enhanced by, or
can act synergistically with, TNF- α andIL-1 [23]. By contrast, IL-11
can have anabolic effects, alone or in association with bone
morphogenetic protein-2 (BMP-2), inducing osteoblastic
differentiation in mouse mesenchymal cells [24]. Different anti-
inflammatory cytokines play inhibitory effects, controlling
inflammation and bone resorption. IL-18 and IL-10 are also expressed
in the PDL during OTM, and both inhibit osteoclastogenesis and bone
resorption [25,26]. Furthermore, IL-10 inhibits the production of IL-1,
IL-6, and TNF- α and its expression is higher in PDL tension than in
compression sites [27].

From a clinical standpoint, analysis of cytokine levels in gingival
crevicular fluid (GCF) during OTM may, in the future, reveal the rate
of OTM and determine the optimum force level that should be applied
by orthodontic devices. Analysis of cytokine levels in GCF may also be
helpful in monitoring the biological activities in the periodontium
during the retention period, which could provide information about
possible relapse.

Chemokines and Tooth Movement
Chemokines belong to the superfamily of small heparin-binding

cytokines [28]. The ability to induce cell migration is the common
feature that distinguishes this group of cytokines [29]. Structurally, the
chemokines are classified in 4 subfamilies based on the position of 2
highly conserved cysteine residues at the N-terminus: C, CC, CXC,
and CX3C. To mediate their cellular effects, these molecules bind to
selective 7-transmembrane domain receptors, which are coupled to
heterotrimeric G proteins, differentiating also from other cytokines.
The chemokine receptors are named according to their ligand family,
such as CCR for receptors of CC ligands and CXCR for CXC ligands
[28]. The chemokine system is promiscuous or redundant, as different
chemokines can bind to a given chemokine receptor, and a given
chemokine may bind to different chemokine receptors [28,29].
However, binding of chemokines to their respective receptors does not
necessarily achieve the same functions in vivo [29]. Chemokines
present different biological outcomes in different tissues, which are
controlled by geography and timing [28,29]. They play a central role in
trafficking and homing of leukocytes, immune cells, and stromal cells,
during physiological (homeostatic chemokines) and inflammatory
conditions (inflammatory chemokines) [29]. In addition, chemokines
induce other biological processes, such as angiogenesis, cell
proliferation and apoptosis [28].

Previous studies in vitro have demonstrated that CC-chemokine
ligand 3 (CCL3), CCL2,CCL5, and CXC-chemokine ligand (CXCL9)
chemokines promote chemotaxis of osteoclasts when binding to their
respective CC receptors(CCR1, CCR2, CCR3, CCR5, and CXCR3),
which are expressed by osteoclast precursors [30-32]. Others have
shown that CCL5, CCL7, CCL2, CCL3, CXCL12, and IL-8 (CXCL8)
promote RANKL-induced differentiation of osteoclast precursors
[33,34]. Chemokines also stimulate activity of osteoclasts, such as
CCL2, CCL3 and IL-8, [35,36] and prolong osteoclast survival, such as
CCL3 and CCL9 (ligands CCR1) [35]. Moreover, RANKL induces
osteoclast production of CCL2, CCL3 and CCL5, which suggests an
autocrine and paracrine signalization during osteo-clastogenesis and
an increase of bone resorption.

Chemokines can also induce recruitment, proliferation, and
survival of osteoblasts. Osteoblasts express chemokine receptors, such
as CXCR1, CXCR3, CXCR4, CXCR5, CCR1, CCR3, CCR4, and CCR5
[38]. CCL5, a ligand of CCR1, CCR3, CCR5, and CCR4, can induce
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osteoblast recruitment and avoid apoptosis of this cell [38]. The
chemokine CXCL10 induces osteoblast proliferation and release of
alkaline phosphatase and β-acetyl hexosaminidase, while CXCL12
andCXCL13 induce both proliferation and collagen type I mRNA
expression in osteoblasts [16].

Growth Factors and Tooth Movement
Growth Factors (GF) are substances that bind to specific receptors

on the surface of their target cells, stimulating cell proliferation,
migration, and differentiation. Moreover, they display important roles
in hematopoiesis, the inflammatory process, angiogenesis, and tissue
healing [38]. GF may also act locally to modulate bone remodeling,
and consequently, OTM [38].

Vascular endothelial growth factor (VEGF) is an essential mediator
of angiogenesis and increased vascular permeability [38]. As osteoblast
and osteoclast express VEGF receptor-1, some studies have
investigated the effect of VEGF on bone remodeling under mechanical
loading [39,40]. In vitro studies have shown that PDL cells and
apoptotic osteocytes increase VEGF production after compressive
force application. VEGF can modulate the recruitment, differentiation,
and activation of osteoclast precursors, increasing bone resorption
[38]. The transforming growth factor (TGF) - β superfamily (TGF- β 1
to - β3) is another important GF related to bone and PDL tissue
remodeling during OTM. Under mechanical loading, the cyclic tensile
force upregulates TGF- β expression in osteoblasts and also in PDL
cells invitro [17]. Furthermore, TGF- β stimulates OPG production
and down regulates IL-6 expression, which inhibits the
osteoclastogenesis –supporting activity of these cells [9].

Bone Morphogenetic Proteins (BMPs)
Bone morphogenetic proteins are multifunctional GFs that belong

to the TGF- β super-family and play an important role in upregulating
various transcription factors involved in osteoblastic differentiation
and consequently, in bone formation [41]. To date, more than 20
BMPs have been discovered, but BMP-2, BMP-6, BMP-7 and
BMP-9seem to have the most potent osteogenic activity [41-42].
Studies have shown that under tensile strain, human PDL cells in
culture increaseBMP-2 and BMP-6 expression, suggesting that these
BMPs might play an important role in PDL tensile sites during OTM
[42-43]. However, there is a lack of information on the actual role of
BMPs in OTM.

Insulin-like growth factors (IGFs) are involved in bone formation
by inducing proliferation, differentiation, and apoptosis of osteoblasts
[44]. The IGFs effect is regulated by growth hormone, parathyroid
hormone, vitamin D3, corticosteroids, TGF- α, IL-1 and platelet-
derived growth factor. Studies have shown that under continuous
tensile mechanical loading, rat tibiae osteocytes and calvaria
osteoblasts increase IGF-I synthesis, which stimulates bone formation
[45,46]. In PDL tissues, IGF also acts as anti-apoptotic and
proliferative factor for fibroblasts and osteoblasts in vitro [46].
Accordingly, an in vivo study using Wistar rats demonstrated that
4hours of a continuous tensile force (0.1-0.5 N) applied to a tooth
induces increased expression of IGF-I and IGF-I receptor in PDL cells
in tension sites, but a decreased expression in compression sites [47].
Therefore, a local increase of IGF-I appears to provide a link between
the mechanical loading and tissue remodeling in the tensile site during
OTM.

Fibroblast growth factors (FGFs) belong to a family of 23 members
that bind to 4 structurally related high-affinity receptors [48]. Among
FGFs, FGF-2 can regulate bone remodeling by stimulating osteoblast-
like cell proliferation and differentiation in vitro, and by increasing
osteoclast formation and activity [49]. An in vitro study demonstrated
that compressive forces induce production of FGF-2 by human PDL
cells, which stimulates RANKL expression.

It can be concluded that orthodontic tooth movement is produced
by mechanical means that evoke biological responses. These two
entities, mechanics and biology, act in concert to produce desirable
and predictable alterations in the form and function of the dento-
alveolar complex. The actual performers of this force-induced
remodeling are the native cells of the treated teeth and their
surrounding tissues.
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