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Abstract

Immune modulatory antibody-based therapies serve to augment and direct the endogenous immune response
against cancer. Significant efficacy has been demonstrated in multiple subtypes of solid and haematological
malignancies. Despite great promise, responses are limited to a fraction of treated patients highlighting the need to
decipher underlying mechanisms of response and resistance. Here we review progress in this area with a focus on
the identification of candidate predictive biomarkers of response.
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Introduction
The development and clinical application of immune modulatory

antibody-based therapies continues to generate much excitement. In
contrast to monoclonal antibodies (mAb) targeting cancer cells
directly, immune modulatory mAb serve to direct and augment the
endogenous immune response against cancer. This has translated into
significant clinical activity in multiple subtypes of solid and
haematological malignancies within randomised clinical trials [1-13].
At present, three therapeutic agents have received US Food and Drug
Administration (FDA) approval. Ipilimumab, a humanised IgG1
monoclonal antibody (mAb), targeting cytotoxic T lymphocyte
antigen-4 (CTLA-4), was the first drug to prolong survival in advanced
melanoma, whilst nivolumab and pembrolizumab, both IgG4 mAbs
targeting programmed cell death-1 (PD-1), have demonstrated
significant clinical activity across multiple solid and, most recently,
haematological tumour subtypes [3,5-7,9-13]. For responding patients,
these agents offer the potential for durable remission and even cure.
Response rates are, however, modest, engendering significant efforts to
decipher underlying mechanisms of response and resistance.
Significant evolution in the understanding of immune checkpoint
modulation at both a cellular and molecular level has led to promising
advances in the identification of candidate predictive biomarkers. Here
we review this progress, with a focus on the current FDA-approved
therapies employed in clinical practice.

CTLA-4 and PD-1 - Key Regulators of T cell Response
and Function

CTLA-4 was first described as a novel B7 family member nearly
three decades ago [14]. Highly conserved between species [15], it plays
a critical role in immune regulation supported by the death of
knockout (KO) mice by 3-4 weeks of age secondary to
lymphoproliferative disease and associated multi-organ failure [16]. It

is a co-inhibitory cell surface molecule, closely related to CD28, also
interacting with B7 molecules (CD80 and CD86) expressed on antigen
presenting cells (APCs), but with greater affinity and avidity than
CD28, thus negatively regulating T cell activation. T cell receptor
(TCR) signalling in the presence of CTLA-4 inhibits T cell clonal
expansion and initiation of effector functions such as IL-2 production
[17]. It is thus a powerful negative regulator of T cell activation,
recognised as an attractive therapeutic target on tumour-infiltrating
lymphocytes (TILs).

PD-1 is also a B7 family member, related to CD28 and CTLA-4,
demonstrated to negatively regulate TCR signalling upon engagement
of its ligands programmed cell death ligand-1 (PD-L1) and/or
programmed cell death ligand-2 (PD-L2) [18-23]. The PD-1 receptor
was initially discovered as an upregulated gene in a T cell hybridoma
undergoing cell death [24]. Signalling through PD-1 exerts its effects
on cellular differentiation and survival through inhibition of the cell
cycle and lymphocyte effector function and/or promotion of
apoptosis; cellular events that are positively regulated by CD28 or
interleukin-2 [25]. C57BL/6 and Balb/c mice KO for PD-1 develop
late-onset glomerulonephritis and antibody-mediated cardiomyopathy
respectively [26,27] Furthermore, PD-1 loss in non-obese diabetic
mice mediates accelerated insulinitis and pro-inflammatory T cell
cytokine production [28]. Together, these findings demonstrate a key
role of PD-1 in down-modulating immune responses and maintaining
peripheral T cell tolerance.

Anti-CTLA-4 Therapy

Defining the mechanisms underlying the activity of anti-
CTLA-4 therapy

Despite a number of elegant pre-clinical studies, a comprehensive
understanding of the mechanisms underlying the activity of anti-
CTLA-4 mAb has been lacking until recently. The initial hypothesis
was that mAb targeting CTLA-4 would act to block co-inhibitory
signals at the immune synapse, ‘taking the brakes off’ effector CD8 T
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cell (Teff) responses. The subsequent demonstration that CTLA-4 is
constitutively expressed on regulatory T cells (Treg) raised the
possibility of an additional impact on the Treg compartment [29-32]. It
was later demonstrated that for maximal anti-tumour activity,
blockade of both Teff and Treg compartments is required [33],
although the specific impact of anti-CTLA-4 mAb on the Treg
compartment remained unclear. A consistent observation associated
with anti-CTLA-4-mediated tumour rejection had been a positive shift
in the intra-tumoural ratio of Teff to Treg. A number of studies had
demonstrated that anti-CTLA-4-mediated expansion of both Teff and
Treg in the blood and secondary lymphoid organs of mice [34-36]. It
was therefore unclear how anti-CTLA-4 mAb act to preferentially
expand Teff in the tumour whilst simultaneously expanding both
populations in the periphery. Three pre-clinical studies subsequently
demonstrated that anti-CTLA-4 mAb serve to preferentially deplete
intra-tumoural Treg leading to a shift in the Teff/Treg ratio correlating
with tumour rejection [37-39]. Preferential depletion of Treg occurs
secondary to a higher relative density of expression of CTLA-4 on the
Treg versus Teff and a tumour microenvironment enriched for
activatory Fc gamma receptor (FcγR) expressing tumour-associated
macrophages (TAMs) with capacity for antibody-dependent cellular
cytotoxicity (ADCC). These studies highlighted a previously
unrecognised importance of antibody isotype, target molecule density
and FcγR-expressing innate effector cells in dictating the final
outcome of immune modulatory therapies.

Insights from clinical trials
In keeping with the described pre-clinical studies, Hodi and

colleagues identified a striking linear relationship between the extent
of tumour necrosis in post-treatment biopsies and the ratio of intra-
tumoural CD8+ T cells and FoxP3+ Treg in six patients with advanced
melanoma and ovarian cancer undergoing CTLA-4 blockade with
ipilimumab following GVAX therapy [40]. This raised the possibility
of selectively targeting Treg as a complementary strategy for
combination therapy. In the same year, Sharma and colleagues
conducted a neoadjuvant clinical trial of ipilimumab in patients with
localised bladder cancer [41]. The study design allowed analysis of
surgical specimens and peripheral blood mononuclear cells (PBMCs)
prior to and following three infusions of ipilimumab. Anti-CTLA-4
therapy resulted in a consistent increase in CD4+ICOS+ T cells in both
the periphery and tumour as well as a reduction in CD4+FoxP3+ cells
in the tumour in all patients. A significant population of CD4+ICOS+

cells were identified as FoxP3-, IFN-γ-producing cells, demonstrated
to recognise the tumour-associated antigen NY-ESO-1. The authors
therefore described the observed shift in CD4+ICOS+ and
CD4+FoxP3+ populations as a change in the balance of effector to
regulatory T cells. Owing to the neoadjuvant nature of the study, the
clinical relevance of the described immunological findings, specifically
their predictive value, is yet to be determined.

In another small cohort of patients, Ribas and colleagues
determined the impact of tremelimumab, an IgG2 mAb targeting
CTLA-4, on the tumour microenvironment (TME) of patients with
advanced melanoma [42]. Fifteen biopsies were performed in seven
patients at variable timepoints pre- and post-therapy including both
responding and non-responding lesions. Immunohistochemical
analysis of the TME was performed with focus on CD8+ T cells, Treg
and the immunosuppressive enzyme indoleamine 2,3-dioxygenase
(IDO). Responding patients were found to have a striking increase in
granzyme B+ CD8+ T cells, these were absent at baseline and
distributed throughout the tumour areas rather than in the periphery

as observed in pre-dosing biopsies. In contrast to the findings of Hodi
and colleagues, no impact on Treg or change in IDO expression by
CD1a+ dendritic cells (DC’s) was observed. This analysis was
expanded within the setting of an early clinical trial, evaluating pre and
post treatment biopsies in 32 patients with advanced melanoma
undergoing therapy with tremelimumab [43]. CD8+ T cell infiltration
was observed in response to therapy in both responding and non-
responding patients. Functional analyses of HLA-DR, CD45RO and
Ki67 on the described CD8+ TILs failed to differentiate between
responders and non-responders. Analysis of FoxP3+ Treg identified a
trend towards higher infiltrates in responding lesions but nil
significant.

In a similar manner, again within the context of a phase II trial,
Hamid and colleagues attempted to prospectively identify candidate
biomarkers from the TME associated with clinical response to
ipilimumab in 82 patients with advanced melanoma [44]. Candidate
biomarkers were evaluated in tumour biopsies collected pre-treatment
and 24-72 hours after the second ipilimumab dose. In contrast to the
findings of Huang et al., significant associations were observed
between clinical activity and high baseline levels of FoxP3 and IDO.
Baseline TIL scores did not significantly correlate with outcome,
however, the increase in TILs between baseline and week 3 met
significance. Based on the pre-clinical data, one might hypothesise that
the observed relationship between baseline FoxP3+ cells and clinical
outcome could be explained by depletion of Treg by ipilimumab and
consequent shift in the ratio of Teff to Treg. The lack of similar findings
with tremelimumab43 may be explained by its IgG2 isotype and
resulting low affinity for FcγRs on innate effector cells. With a lack of
ADCC capacity, tremelimumab may therefore only benefit those with
an existing, favourable baseline ratio of Teff to Treg. Nevertheless, in
the human setting, ipilimumab-mediated depletion of Treg is yet to be
demonstrated, although studies to date have largely focused on
peripheral blood rather than tumour infiltrating lymphocytes [45].

Longitudinal sampling studies in patients with advanced cancer are
notoriously difficult. Evaluation of mechanism is often less challenging
in the neoadjuvant setting where samples are guaranteed before and
after therapy. The drawback of these studies is the inability to
determine the predictive value of any observed findings where surgical
intervention is curative. A calculated approach was adopted by Tarhini
and colleagues in evaluating the mechanistic activity of ipilimumab in
patients with operable, regionally advanced melanoma [46]. Blood and
tumour was assessed at baseline and then again at week 6 following
two infusions of ipilimumab and surgical resection of disease. In
keeping with pre-clinical studies, a significant increase in the
percentage of circulating Treg was observed and associated with
improved progression free survival (PFS). Moreover, relative to
baseline, an increase in activated (CD69+) tumour-infiltrating
CD3+CD4+ and CD3+CD8+ T cells was observed. There was also a
trend towards an inverse association between the change in intra-
tumoural Treg and clinical benefit, again in keeping with pre-clinical
studies. Circulating and tumour-associated monocytic myeloid-
derived suppressor cells (mMDSCs) were also assessed. Treatment was
observed to mediate a reduction in both circulating and intra-
tumoural mMDSCs associated with improved PFS.

Despite the enrolment of 35 patients, only 24 and 10 specimens
were available for immunohistochemical and flow cytometric analysis
respectively. This once again highlights the difficulties in tumour
sampling in patients with advanced disease. In contrast to
haematological malignancies, patients with advanced solid cancers
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often have little or no readily accessible disease for biopsy. This group
of patients are also commonly highly symptomatic of their disease and
unfit to undergo more invasive sampling. Despite known dissociation
in immune responses between tumour and peripheral blood [47], such
difficulties have prompted efforts to identify biomarkers through non-
invasive sampling.

Circulating biomarkers of response
Owing to the described mechanism of anti-CTLA-4 mAb, a number

of studies have set out to evaluate the impact and possible predictive
value of anti-CTLA-4 on circulating T lymphocytes. Ku and colleagues
evaluated the change in peripheral absolute lymphocyte count (ALC)
in relation to ipilimumab therapy in 53 patients with advanced
melanoma [48]. Baseline ALC counts failed to predict response,
however, an ALC of ≥ 2000/uL following two doses of ipilimumab
(week 7) was associated with a significantly higher clinical benefit rate
and median OS compared to those with an ALC of <1000/uL.
Santegoets and colleagues observed similar findings in ALC counts
within a phase I/II dose escalation/expansion trial of GVAX plus
ipilimumab in 28 patients with advanced prostate cancer. On further
evaluation, however, no differences in overall frequencies of
circulating CD3+CD4+/CD8+ T lymphocytes or CD3-CD56+ NK cells
were observed [49]. A detailed analysis of pre-treatment frequencies of
Teff and Treg subsets was performed as well as longitudinal analysis
through therapy and correlation with clinical outcome. A number of
findings were observed to correlate with median OS including baseline
non-naïve CD8+, CD4+PD-1+ and CD4+ T cells. The strongest
predictor of outcome, identified by unsupervised clustering, was
baseline frequency of CD4+CTLA-4+ effector T cells. Interestingly,
intracellular CTLA-4 was virtually undetectable in CD4+ T cells of
healthy donors but abundant in both Treg and CD4 effector T cells in
prostate cancer patients. These data, in part, complement the
described findings of Sharma et al. highlighting further a potential role
for CD4 effector T cells in dictating the outcome of anti-CTLA-4
therapy. The study shed no further light on the predictive value of
baseline or on therapy FoxP3+ Treg, these were observed steadily to rise
in response to therapy, with increases of greater than 50% associated
with shorter OS.

With a specific aim of identifying novel biomarkers associated with
both clinical benefit and ipilimumab-mediated toxicity, Wang and
colleagues assessed baseline characteristics and changes in CD4+ and
CD8+ T cells sorted from the peripheral blood of advanced melanoma
patients receiving ipilimumab [50]. Microarray analysis of purified
CD4+ and CD8+ T cells was performed to assess gene-profiling
changes induced by ipilimumab in 75 patients. Thereafter, to verify
changes in selected molecules, a flow cytometric study was undertaken
with pre-treatment, 3 month and 6 month post-ipilimumab PBMC
samples from expanded groups of 55, 25 and 37 patients respectively.
Analysis of candidate biomarkers at baseline revealed a low percentage
of Ki67+EOMES+CD8+ and EOMES+CD8+ T cells was significantly
associated with relapse. Pre-therapy specimens were subsequently
stratified by the median percentage of EOMES+CD8+ T cells. Patients
with a higher baseline percentage of EOMES+CD8+ T cells had a
significantly improved relapse-free survival; the same was true for
Ki67+EOMES+CD8+ T cells. The authors proposed further validation
of the predictive value of these markers in a prospective manner.

Although studies evaluating mechanisms of response and resistance
to anti-CTLA-4 have largely focused on T lymphocytes, mMDSCs
have been identified as a suppressor subset with capacity to impact on

outcome to anti-CTLA-4 therapy [51,52]. Meyer and colleagues
collected peripheral blood samples from 49 patients with advanced
melanoma undergoing ipilimumab therapy [51]. Lineage negative
CD14+HLA-DR- mMDSC were enriched in the peripheral blood of
melanoma patients relative to healthy donors. A trend towards higher
frequencies of mMDSCs was observed in patients with a high burden
of metastatic disease. Interestingly, significantly lower percentages of
CD14+HLA-DR- mMDSCs were observed in patients responding to
ipilimumab versus non-responders. Baseline values were therefore
compared to mean values during and after treatment. A trend towards
lower baseline values in responders was observed compared to non-
responders. Patient numbers were small, possibly contributing to the
lack of statistical significance. In parallel, Kitano and colleagues
developed a computational algorithm-driven system for evaluation of
mMDSC frequency for prediction of clinical outcomes. In a larger
study of 68 patients with advanced melanoma treated with
ipilimumab, a low pre-treatment mMDSC frequency, defined as less
than 14.9%, was significantly associated with improved OS in both
uni- and multi-variate analyses. In terms of mechanism, no
relationship between ALC and mMDSC frequency was observed,
however, a statistically significant inverse correlation between the
percentage change in absolute CD8+ T cell number and mMDSC
frequency at week 6 was demonstrated, in keeping with the described
suppressor function of this myeloid subset.

Lactate dehydrogenase (LDH) emerged as a candidate biomarker
following subgroup analysis of overall survival in a landmark phase III
trial of ipilimumab in advanced melanoma [1]. Interestingly, the
hazard ratio for ipilimumab versus the control arm was only
significant in patients with baseline serum LDH values within normal
range. Based on these data, Kelderman and colleagues retrospectively
correlated baseline LDH in two separate cohorts of ‘real world’
melanoma patients treated within an expanded access programme
(EAP) [53]. In a multi-variate model, LDH was found to be the
strongest predictive factor for OS. Patients with a baseline LDH two
times the upper limit of normal were highly unlikely to derive benefit
from ipilimumab with a significantly lower median OS observed in
this group. The absence of a control arm precluded discrimination
between the prognostic and predictive value of LDH as a marker,
nevertheless, in the absence of more robust biomarkers it was
highlighted as a readily available marker to guide clinical decision-
making.

In addition to its role as a key regulator of angiogenesis, vascular
endothelial growth factor (VEGF) is a potent inhibitor of DC
maturation and T cell responses [54,55]. Serum VEGF levels are
known to correlate with melanoma stage, moreover, high circulating
serum VEGF is a poor prognostic marker in patients with melanoma
[56,57]. The prognostic and/or predictive value of serum VEGF in
relation to immune modulatory therapy had, however, remained
undetermined. Yuan and colleagues retrospectively analysed serum
VEGF levels in 176 patients with advanced melanoma, before and after
therapy with ipilimumab [58]. Baseline VEGF levels were associated
with clinical response, patients with a baseline serum VEGF value
greater than 43pg/mL, treated with either 3 or 10mg/kg of ipilimumab
were less likely to derive clinical benefit. In addition, higher baseline
serum VEGF levels were associated with a significantly poorer OS.
Prospective studies were therefore called for in order to determine the
predictive value. Such findings suggest potential synergy between anti-
CTLA-4 and anti-VEGF therapies, indeed, combination therapy with
ipilimumab and bevacizumab appears promising in early clinical trials
[59].
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Genetic determinants of response to anti-CTLA-4 therapy
Although the prognostic significance of TILs has been

demonstrated for a number of solid cancers [60-65], their predictive
value in relation to immune modulatory therapies is unclear. Ji and
colleagues performed gene expression profiling on tumour biopsies
collected from 45 patients with advanced melanoma, three weeks
before commencement of ipilimumab, within a phase II clinical trial
[66]. High baseline expression of immune-related genes was associated
with favourable clinical outcome to therapy. Genes involved in the
immune response increased in expression whilst those for melanoma-
specific antigens and cell proliferation decreased. These findings
highlighted the potential importance of an existing, endogenous anti-
tumour immune response in dictating outcome to immune
modulation. Adding another layer of complexity, recent advances in
next generation sequencing techniques have enabled more detailed
characterisation or ‘immunoprofiling’ of both the periphery and the
tumour microenvironment allowing quantitative assessment of the
clonality and repertoire of T cell receptors. In two studies evaluating T
cell repertoire in response to anti-CTLA-4 therapy, a diversification of
the T cell repertoire in the peripheral blood with an increased number
of unique T cell receptor β chain complementarity determining region
3 (CDR3) sequences was observed. In a separate study, improved
overall survival was seen in patients who maintained peripheral T cell
clones that were present in high frequencies prior to anti-CTLA-4
blockade [67,68].

It remains to be elucidated whether the maintenance of a specific T
cell receptor clonotype can be used as a prognostic and/or predictive
biomarker in patients treated with immune modulatory antibodies.
Furthermore, although T cell receptor sequencing provides
information on the diversity and clonality of the T cell repertoire,
limitations exist in the ability of this technique to provide detail
regarding the antigen specificity of infiltrating lymphocytes. A study
using peptide/MHC multimers and a panel of melanoma-derived neo-
epitopes demonstrated a broadening of the peripheral melanoma-
specific CD8 T cell repertoire following anti-CTLA-4 therapy with
ipilimumab [69]. Interestingly, ipilimumab therapy did not appear to
significantly affect the magnitude of the pre-existing melanoma-
specific T cell peripheral responses suggesting anti-CTLA-4 therapy
serves to prime rather than enhance pre-existing immune responses.

Until recently, identification of the molecular determinants driving
tumour-infiltrating T cell responses has remained unclear. Based on
the observations that somatic mutations can give rise to neo-epitopes
and that these may serve as neoantigens [70], Snyder and colleagues
conducted a study to determine whether the genetic landscape of a
tumour impacts upon clinical benefit derived from anti-CTLA-4
therapies [71]. Whole exome sequencing was performed on pre-
treatment tumour tissue and matched blood samples in 64 patients.
With use of sequencing data and bioinformatic approaches, candidate
neoantigens were identified. Thereafter, relevant mutated peptides
were synthesized and tested for their ability to activate lymphocytes
from ipilimumab-treated patients. Using a discovery set of 11
responding and 14 non-responding patients, a neo-antigenic
repertoire, unique to responding patients, was defined and
subsequently validated in a separate cohort of 39 patients. High
mutational load was associated with a benefit from CTLA-4 therapy,
however, this factor alone was not sufficient to impart a clinical
benefit. Rather, there were specific somatic neo-epitopes shared by
patients with a prolonged benefit and absent in non-responders. These
observations require validation in a larger cohort of patients, however,

this study represents a major step forward, not only in the quest for
predictive biomarkers, but for the entire field of tumour
immunotherapy.

Anti-PD-1 Therapy

Defining the mechanisms underlying the activity of anti-
PD-1 therapy

The programmed cell death-1 (PD-1) receptor-ligand interaction is
a major pathway hijacked by tumours, promoting immune evasion
and tumour escape. PD-1 is expressed on a variety of cellular subsets
including activated T and B lymphocytes, natural killer (NK) cells,
monocytes and dendritic cells [72]. In health, PD-1, expressed on the
surface of activated T cells, acts to down-modulate unwanted or
excessive immune responses, preventing autoimmunity and
maintaining immunological tolerance to self-antigens. Expression
patterns of PD-L1 and PD-L2 vary. PD-L1 is highly expressed on
monocytes, but also at low levels on plasmacytoid and myeloid
dendritic cell subsets as well as activated T lymphocytes [72].
Furthermore, PD-L1 expression can be induced by inflammatory
cytokines including type I and type II interferons in non-
haematopoietic cells of epithelial and endothelial origin [73]. In
contrast, PD-L2 is expressed selectively within the myeloid
compartment on macrophages and dendritic cells [72]

PD-L1 expression has been demonstrated in multiple solid tumours
[74-76]. Two key mechanisms of tumour PD-L1 up-regulation and
immune resistance have been described. Innate immune resistance
refers to the constitutive expression of PD-L1 by tumour cells
secondary to increased signalling via oncogenic pathways,
independent of the cytokine milieu of the tumour microenvironment
[75,77]. On the contrary, adaptive immune resistance is a process
whereby tumour cells adapt to the endogenous immune response
through aberrant upregulation of PD-L1 in the context of interferon
gamma release by tumour infiltrating lymphocytes [78,79]. This
mirrors the physiological role of PD-L1 upregulation, which serves to
prevent excessive immune-mediated damage as a result of the immune
response to infection [75,77].

In mouse models of chronic viral infection, continuous exposure to
lymphocytic choriomeningitis virus (LCMV) was found to mediate
functional dysregulation or ‘exhaustion’ of viral-specific CD8 T cells
with associated increased PD-1 cell surface expression [80]. In vivo
administration of antibodies blocking the PD-1/PD-L1 pathway
restored viral-specific T cell function, leading to a substantial
reduction in viral burden. Early studies in animal models provide
support for the integral role of the PD-1/PD-L1 axis in tumour
immunity. PD-L1 expression on tumour cells has been shown to
inhibit T cell activation and lysis of tumour cells with increased
tumour-specific T cell death [20,81]. In BALB/c PD-1 knockout mice,
the growth of PD-L1 expressing murine myeloma cell lines was
completely suppressed in contrast to rapid tumour cell growth in PD-1
positive controls [82]. Furthermore, PD-L1 expression on
immunogenic P815 tumour cells associated with resistance to
anti-4-1BB therapeutic antibody treatment was restored with anti-PD-
L1 therapy [81]. Collectively, these data demonstrate the critical role of
the PD-1/PD-L1 pathway in tumour immune evasion, highlighting its
therapeutic significance in the treatment of cancer.
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Insights from clinical trials
Several trials of monoclonal antibodies targeting the PD-1/PD-L1

pathway have demonstrated unprecedented rates of success with
durable responses and survival benefit in patients with a variety of
cancers [3-8,12,13,83]. In 2014, pembrolizumab and nivolumab, both
fully humanised IgG4 mAbs targeting PD-1, received FDA approval
for the treatment of patients with ipilimumab-refractory advanced
melanoma. In the same year, nivolumab and an anti-PD-L1 inhibitor,
MPDL3280A, achieved ‘breakthrough designation’ status for the
treatment of subsets of refractory Hodgkin’s lymphoma and metastatic
bladder cancer respectively.

Whilst there is evidence to support PD-L1 expression as a predictor
of response to anti-PD-1/PD-L1 therapy [3,6,8,12,13,83-85], the
observed clinical activity in patients with PD-L1 negative tumours has
questioned this hypothesis [5,6,11]. Initial support for tumour PD-L1
expression as a predictive biomarker arose from data generated within
a phase I trial of nivolumab [3]. A response rate of 36% was reported
in patients with PD-L1 positive tumours with no responses
demonstrated in those harbouring PD-L1 negative tumours. The
utility of PD-L1 as a predictive biomarker was later questioned
however, following observations of clinical responses to nivolumab in
PD-L1 negative melanoma in 17% of patients [85]. Furthermore, in a
phase 1 trial of pembrolizumab, responses were also seen in PD-L1
negative melanoma and non-small cell lung cancer (NSCLC), albeit
significantly lower than the PD-L1 positive subgroups [86].
Subsequent comprehensive analysis of tumour specimens obtained
from 41 patients with a variety of advanced solid tumours treated with
nivolumab, demonstrated that tumour PD-L1 expression was the
factor most closely correlated with response to anti-PD-1 therapy, in
keeping with findings from previous studies [87]. PD-L1 expression
was significantly associated with tumour subtypes in which the
majority of responses to anti-PD-1 therapy have been reported thus
far, including melanoma, NSCLC and renal cell carcinoma. In a
combination trial of ipilimumab and nivolumab, objective responses
were reported in approximately 40% of patients with advanced
melanoma treated with concurrent immunotherapy, irrespective of
baseline tumour PD-L1 status, suggesting that tumour PD-L1
expression may be less relevant as a predictive biomarker for
combination immunotherapy [6].

The dynamic, inducible nature of tumour PD-L1 expression, largely
related to interferon gamma release by tumour-infiltrating
lymphocytes may indeed explain the lack of consistency in correlation
between tumour PD-L1 expression and response to anti-PD-1 therapy
demonstrated in some clinical trials. Although, based on these studies,
tumour PD-L1 expression as a predictive biomarker requires further
evaluation, the observed clinical successes have led to the clinical
evaluation of these agents in other highly positive PD-L1 expressing
tumours such as Hodgkin lymphoma in which overexpression of PD-
L1 on Reed-Sternberg cells occurs constitutively as a result of PD-L1
and PD-L2 gene co-amplification [8].

Comparison between and interpretation of the described clinical
studies is limited by the use of varied staining antibodies and
thresholds for determining PD-L1 positivity. Moreover, the
observation that PD-L1 is expressed on tumour-infiltrating immune
cells in addition to tumour cells, with some clinical trials including
immune infiltrate PD-L1 expression in the cut off for PD-L1 positivity
may be highly relevant [3,6,8,12,13,83-86]. Observed responses in PD-
L1 negative patients in early stage clinical trials highlight the limited
negative predictive power of PD-L1 expression as a biomarker of

response. Moreover, significant discordance in PD-L1 expression
between primary tumours, metastases and intra-patient metastases
was recently demonstrated in a study of advanced melanoma [88].
Discordance in PD-L1 expression in renal cell carcinoma between
primary and metastatic lesions has also been described [89]. These
findings may, at least in part, explain why PD-L1 is a poor negative
predictor of response to treatment (Figure 1).

Figure 1: Mechanisms of response and resistance to immune
modulatory therapies. [A] Professional antigen-presenting cells,
dendritic cells (green) and macrophages (brown), engulf and
process tumour cells and their products before migrating to lymph
nodes. [B] Anti-CTLA-4 mAb enhance priming of Teff and Treg
leading to their expansion. [C] The activity of tumour-reactive Teff
is limited by the engagement of PD-1 with its ligands PD-L1 (black/
white) and PD-L2 (black/yellow) on tumour and myeloid cells
respectively. [D] Tumour-associated macrophages are typically
described as pro-tumour, promoting tumour progression and
invasion. [E] Macrophage activity is, however, context dependent,
in pre-clinical studies anti-CTLA-4 mAb act additionally in the
tumour to deplete CTLA-4 expressing Treg by ADCC, it is unclear
whether this activity is common to ipilimumab.

Beyond tumour cell PD-L1 expression
In a series of recent publications, tumour-infiltrating immune cell

rather than tumour PD-L1 expression was associated with clinical
response to the anti-PD-L1 therapy MPDL3280A in patients with
NSCLC and bladder cancer [83,90]. Responses were associated with
baseline tumour gene expression of IFNγ, Granzyme-A, CD8 and
EOMES, indicative of a Th1 type immune response. Increased
CTLA-4 expression and the absence of chemokine CX3C motif ligand
1 (CX3CL1) expression was also seen in baseline tumour specimens of
responding patients. Simultaneously, a study of pembrolizumab
therapy in metastatic melanoma demonstrated higher numbers of
CD8+PD-1+ and PD-L1+ positive cells within the tumour and at the
tumour invasive margin in baseline tumour specimens obtained from
responding patients. A predictive model of response to
pembrolizumab therapy was developed based on CD8+ T cell
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expression at the tumour invasive margin and was subsequently
validated in a separate cohort of patients [84].

Collectively, these findings demonstrate the importance of
acknowledging the interaction between multiple cellular subsets
within the immune tumour microenvironment and the potential
implications of these in dictating outcome. PD-L1 expression is likely
only to form part of a predictive model or ‘immunoscore’ necessary for
selecting patients expected to respond to anti-PD-1/PD-L1 therapy. In
addition to PD-L1 expression, the geographical location and densities
of various immune cell subsets appears to have predictive value
[84,90]. Furthermore, the clinical significance of the relative
expression of PD-L1 on tumour cells, myeloid cells and activated
tumour-infiltrating lymphocytes is yet to be determined (Table 1).

Anti-CTLA-4 therapies

Shift in intra-tumoural CD8/Treg ratio [34]

Increase in circulating ICOS+ CD4+ effector T cells [41]

Increase in Granzyme B+ CD8+ T cells [42]

Rise in absolute lymphocyte count [48,49]

Baseline FoxP3 and IDO expression [44]

Baseline ‘immune active’ tumour microenvironment [66]

CTLA-4+ CD4+ effector T cells [49]

EOMES+ CD8+ T cells [50]

Baseline circulating monocytic MDSCs [51]

Reduction in monocytic MDSCs in periphery and tumour [52]

Baseline serum VEGF [58]

Baseline serum LDH [53]

Maintenance of high frequency T cell clones in periphery [68]

Neo-antigenic repertoire [71]

Anti-PD-1/-PD-L1 therapies

Tumour PD-L1 expression [3,6,8,12,13,84-86]

Tumour infiltrating immune cell PD-L1 expression [83]

Increased tumoural IFNγ, Granzyme-A, CD8, EOMES and CX3CL1 gene
expression [90]

Increased CD8+PD-1+PD-L1+ cell density within tumour and at invasive tumour
margin [84]

Increased clonality and reduced diversity of intra-tumoural T cell repertoire [84]

Higher somatic mutational burden and neo-antigenic repertoire [92]

Table 1: Candidate biomarkers of response to immune modulatory
therapy.

Genetic determinants of response to anti-PD-1 therapy
In a study of pembrolizumab therapy in patients with advanced

melanoma, baseline tumour specimens from responding patients were
found to have a more clonal and less diverse T cell repertoire [84].
Furthermore, a ten-fold increase in the number of expanded clones

following pembrolizumab therapy was seen in responding patients
compared to those with disease progression [84]. The molecular
determinants of relevant clonal T cell responses have, however,
remained unclear until recently. Higher responses to anti-PD-1/PD-L1
therapy are typically seen in tumours associated with a high burden of
somatic mutations such as melanoma, NSCLC and bladder cancer,
highlighting the potential importance of the genomic landscape in
predicting response [91]. Given the identification of a neo-antigenic
repertoire, unique to responding patients undergoing CTLA-4
blockade, the same group studied patients with NSCLC undergoing
pembrolizumab therapy [71,92]. Whole exome sequencing
demonstrated a significant positive correlation between the level of
somatic, non-synonymous mutational burden and improved response
and progression-free survival [92]. The clinical efficacy of
pembrolizumab was found to correlate with a higher burden of the
identified neo-antigenic repertoire and a molecular signature
characteristic of smoking-related mutagenesis. In a single patient with
an observed rapid response to pembrolizumab, a CD8+ T cell response
against a neoantigen resulting from a HERC1 P3278S mutation was
observed in peripheral blood. This was only detectable following
commencement of therapy (0.005%), three weeks post initiation of
therapy the magnitude of response was 0.040% of CD8+T cells and this
was maintained at day [44]. This study represents another key step in
deciphering the mechanisms underlying response to immune
modulatory therapies, furthermore, the observation that neo-antigen-
reactive T cells could be detected in peripheral blood raises the
possibility of blood-based/non-invasive sampling methods of
monitoring response to therapy.

Conclusion
The identification of biomarkers of response to immune

modulatory therapies is an area of high scientific and clinical priority.
While many studies have failed to conclusively identify predictive
biomarkers, the insights provided have and continue to be
instrumental in advancing understanding. Undoubtedly, the recent
demonstration of a specific neo-antigenic repertoire underlying
response to CTLA-4 and PD-1 blockade represents a major step
forward. Predictably, these studies raise a number of further questions
and therapeutic challenges. The observation that a high burden of
somatic mutations might in fact be used for therapeutic gain with
immune modulation is transforming approaches within the field. The
prospect of sequencing tumours on an individual patient basis,
developing truly bespoke cellular therapies and optimising activity
with appropriate immune modulation now appears both attractive and
achievable. The success of immune modulation is the result of sound
basic science brought to the clinic in an intelligent manner. Pre-
clinical and clinical studies have served to inform each other,
expanding understanding of the mechanisms underlying response and
resistance. The challenge now is to exploit this understanding,
translating it in durable benefit for the majority rather than a selected
few.
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