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Introduction
The field of biomarker discovery has recently developed as one of 

the most challenging areas of research. Different and heterogeneous 
disciplines involve the study of biomarkers: clinical and environmental 
chemistry, ecotoxicology, food research, plant and animal biology. In 
general, we can speak of biomarkers identification whenever a pool 
of features differentiating two or more groups of samples has to be 
identified. For what concerns the particular application to proteomics, 
the search for biomarkers involves the identification of features 
responsible for sample differentiation from a quite wide range of 
instrumental applications: from classical proteomics [1-23], exploiting 
2D-PAGE and 2D-DIGE, to mass spectrometry-based approaches 
based on MALDI-TOF [24-30] and SELDI-TOF profiling [31-42], 
HPLC-MS [43-57] or shotgun approaches [58-59]. 

All these heterogeneous applications have a common 
denominator: all of them are characterized by a great number of 
variables characterizing each sample, among which biomarkers have 
to be searched for. Moreover, the great number of variables is often 
accompanied by a small number of samples available. Two main 
problems therefore arise when biomarkers have to be identified in such 
datasets: 

- The identification of reliable markers, avoiding false positives, 
as is the case when chance correlations occur;

- The exhaustive identification of all candidate markers,
necessary to obtain a complete snapshot of the effect investigated (a 
disease, a drug effect, a ripening effect etc). 

In all the areas of biomarker search, the final datasets in which 
biomarkers are search for are characterised by a series of samples 
divided in two or more classes and described by a series of variables or 
features. These datasets can be evaluated by the two different strategies: 

1) classical statistical methods that identify significant
biomarkers by monovariate statistical tests where each biomarker is 
considered as independent from the others; 

2) multivariate methods, able to take into consideration the
correlation structure of the data and the synergies and antagonisms 
(i.e. interactions) existing among the potential biomarkers. This 
approach is certainly more effective: it generally ensures diagnostic 
and prognostic performances superior to single markers in terms of 
sensitivity, specificity and reliability. 

The classic approach to the identification of biomarkers involves the 
evaluation of the variables showing a statistically significant different 
behavior between two groups of samples (e.g. control vs. pathological, 
etc.) by classical statistical tests, applied to each biomarker candidate 
separately, focused to the evaluation of the type I error comparison 
wise (for each hypothesis independently) or experiment wise (testing 
all hypotheses together). The second alternative is certainly to be 
preferred since the type I error probability increases with the number 
of tests (for k hypotheses=(1-α)k). Usually Student’s t-tests are 
applied applying a correction that takes into account the number of 
multiple tests available (Bonferroni’s with subsequent modifications 
[60], Dunn’s, Sikak’s and Dunnet’s [61-63]). Also non parametric 
tests can be applied, like the Mann-Whitney test [60] or procedures 
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based on the analysis of variance both in its two-way (ANOVA) or 
multi-way (MANOVA) versions [60]. MANOVA allows in particular 
comparing more than two groups of samples. All these strategies have 
the disadvantage of considering each variable independently from the 
others so that the correlation structure of the data is not taken into 
account. This is an important drawback since proteomic datasets are 
usually quite correlated and groups of molecules showing similar or 
opposite behavior can be easily encountered, as they often belong to 
common biochemical pathways where they are transformed into- or 
react between- themselves.

Multivariate methods instead compare two or more groups of 
samples considering the relationships existing between the candidate 
molecules, i.e. the synergic or antagonistic effects of different factors. 
They are usually coupled to variable selection procedures [16,17] 
to provide a reduced set of candidate biomarkers with the best 
predictive ability; standard variable selection tools are in fact aimed to 
the identification of the most exiguous set of variables with the best 
predictive ability. It is important to point out that biomarkers are 
useful not only for diagnostic purposes but also for functional studies 
to investigate the mechanism of action of a disease or of a particular 
effect (e.g. ripening, pollution, etc.): from this point of view, high-
throughput techniques provide a lot of information that should not 
be neglected to provide a complete view of the investigated effect. It is 
therefore the authors’ opinion that exhaustivity should be addressed to 
as well [64,65]. 

Some reviews have recently been published on biomarker discovery 
in several fields of proteomics: food and beverages [66], toxicology 
[67], molecular plant physiology [68], clinical proteomics with the 
particular application to colorectal cancer [69], Alzheimer’s disease 
[70], traumatic brain injury [71], type-1 diabetes [72], urine molecular 
profiling [73,74]. Other authors instead reviewed the application 
of instrumental or statistical tools for biomarkers identification in 
proteomics: LC-MS [75], MALDI [76], machine learning algorithms 
[77] and statistical data processing in clinical proteomics [78].

Here, we review the most recent applications of multivariate 
statistical methods for the identification of biomarkers in proteomics 
with a particular attention to the statistical methods exploited. 
Literature applications are grouped by the exploited multivariate 
methods; a brief description of the theoretical aspects of each method 
is presented at the beginning of each paragraph. 

Discussion
Multivariate methods compare two or more groups of samples 

considering the relationships existing between the variables (candidate 
molecules): this corresponds to considering their synergic or 
antagonistic effects, i.e. their interactions. In the field of biomarkers 
identification, these methods usually belong to one of these categories: 

1)	 unsupervised pattern recognition methods, also called 
clustering methods, based on no a priori information: the evaluation of 
the existence of groups of samples is suggested by the statistical method 
itself;

2)	 supervised classification methods, based on a priori 
information about the membership of each sample to a specific 
class: aimed to the identification of the variables responsible for the 
separation of the samples in the different classes. 

All methods are applied to datasets where each sample is described 
by a series of variables: spot volumes in datasets from 2D-PAGE and 
2D-DIGE or peak intensities in mass spectrometry-based approaches. 
It is important to point out that multivariate methods can be applied 
to all the quantitative proteomics analysis, a fundamental requirement 
for biomarker discovery analysis. Here, only the methods most recently 
applied in literature in the proteomic field will be discussed. Table 1 
reports all the main statistical methods used in proteomics. 

Classification performance

Classification can be evaluated by representing the classification 
matrix C, where true classes are reported on rows and assigned classes 
on columns; correct classifications are therefore reported along the 
matrix diagonal (elements cgg), while wrong assignments are reported 
in extra-diagonal elements (cij, i≠j). From the classification matrix it is 
possible to calculate some parameters accounting for the performance 
of classification:

Non-error rate (NER%): the percentage of overall correct 
assignments:
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Where,  cgg are the diagonal elements of the classification matrix; 
n is the overall number of objects; G is the overall number of classes.

Type of method Method family Method adopted

Unsupervised pattern recognition 
methods

Methods based on data projection to other 
dimensions

Principal Component Analysis (PCA)
Nonnegative PCA

Methods based on correlation analysis
Canonical Correlation Analysis (CCA)

Sparse Canonical Correlation Analysis (SCCA)
Cluster analysis methods Hierarchical Clustering

Supervised classification methods

Methods based on PCA
Soft-Independent Model of Class-Analogy (SIMCA)

Principal Component Analysis-Discriminant Analysis (PCA-DA)
Ranking-PCA

Bayesian methods
Linear Discriminant Analysis (LDA)

Diagonal LDA (DLDA)

Methods based on projection to latent 
variables

Partial Least Squares Discriminant Analysis (PLS-DA)
Orthogonal Partial Least Squares (OPLS)

Classification trees
Classification and Regression Tree (CART)

Random forests (RF)
Machine learning Support Vector Machines (SVM)

Table 1: Unsupervised and supervised methods for biomarker identification.
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Selectivity Sg: the percentage of non-overlap between the classes:
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Where,  ci,j are the extra-diagonal elements (the sum runs on the 
rows of the classification matrix); n is the number of overall objects; ng 
is the number of objects in class g; G is the overall number of classes.

Specificity Spg: the NER% of each class:
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Where,  cgg is the number of correct classification of class g; ng is the 
umber of objects of class g.

These parameters can be calculated both in calibration and cross-
validation for obtaining an evaluation of the predictive ability of the 
classification model. 

Unsupervised pattern recognition methods  

Several applications of pattern recognition methods are present in 
literature: in the most of papers Principal Component Analysis (PCA) 
and/or hierarchical clustering are applied both to classical proteomics 
(2D-PAGE or 2D-DIGE maps) and to mass spectrometric data from 
direct sample analysis by MALDI-TOF, SELDI-TOF or HPLC-MS. 
Both these approaches can be applied to all quantitative analytical 
methods exploited in proteomics and show no strict constraints on 
the number of variables and/or samples that have to be present in the 
dataset: in the case of PCA, when a smaller number of samples than of 
variables is present, the maximum number of PCs that can be calculated 
equals the number of samples present. 

Principal Component Analysis (PCA): PCA is by far the most 
widespread pattern recognition tool in proteomics: in this section a 
selection of the applications regarding exclusively PCA or hierarchical 
clustering will be presented, a more exhaustive list being reported in 
table 2.  

PCA [79,80] represents the objects, described by the original 
variables, in a new reference system characterised by new variables 
called Principal Components (PCs). PCs are calculated hierarchically: 
the first PC accounts for the maximum variance contained in the 
original dataset, while subsequent PCs account for the maximum 
residual variance; in this way systematic variations are explained in the 
first PCs while experimental noise and random variations are contained 
in the last ones. The PCs are linear combinations of the original 
variables. They are also orthogonal to each other, thus accounting for 
independent sources of information. A graphical example is presented 
in Figure 1a, where PCs are calculated in a simple case where only 
two original variables X1 and X2 are present. PCs are often used for 
dimensionality reduction due to their hierarchical nature: the original 
variables can be substituted by a smaller number of significant PCs, 
containing only relevant information. PCA provides two main tools for 
data analysis (Figure 1b): 

-	the scores, representing the co-ordinates of the samples in the 
space given by PCs;

-	the loadings, representing the coefficients of the linear combination 

describing each PC, i.e. the weights of the original variables on each PC. 

The samples are usually graphically represented in the space 
given by the PCs (through their scores) to allow the identification of 
groups of samples showing similar (samples close one to the other in 
the graph) or different (samples far from each other) behaviours. By 
looking at the corresponding loading plot (where the weights of each 
original candidate molecule on each PC are represented), it is possible 
to identify the variables that are responsible for the similar or different 
behaviours detected for the samples in the score plot. 

In the most of applications PCA is exploited for the visualization 
of the results in terms of separation achieved for the different classes in 
the space given by the relevant PCs. However, PCA provides important 
information worth of being exploited for data interpretation as well: 
the loadings provide information on the candidate biomarkers and 
their up- or down- regulation in the investigated case study; some 
applications are also present that exploit this information for the 
identification of the most relevant biomarkers. 

Some applications regard the identification of biomarkers in 
ecotoxicological studies: for the biomonitoring of mussels after the 
Prestige’s oil spill by 2D-PAGE [81]; to identify biomarkers of exposure 
to alkylphenol [31] and estrogens [32] in plasma samples of Atlantic 
cods by SELDI-TOF MS; to study the proteomic pattern of Sydney 
Rock oysters exposed to metal contamination by 2D-PAGE [2].

However, the majority of applications is in the field of clinical 
biomarker discovery to investigate (Table 2): a) coronary syndromes 
[82]; b) the influence of clotting time on the protein composition of 
serum samples [45]; c) acute myocardial infarction [4] d) inflamed 
and non-inflamed colon biopsies [5] in ulcerative colitis depression 
[25]; e) non-small cell lung cancer [3,9]; f) whether a high intake of 
industrial or ruminant trans fatty acids affects the plasma proteome 
[8]; g) amphetamine in rats [26]; h) thyroid proliferative diseases [34]; 
i) idiopathic pneumonia syndrome following allogeneic stem cell 
transplantation [83]; j) the effect of Trichostatin A on pancreatic ductal 
carcinoma cells [20]; the development of a special class of aptamers 
[84], called SOMAmers (slow off-rate modified aptamers), which bind 
specifically to proteins in body fluids.

Other applications regard the use of PCA as a tool for assessing 
measurement reproducibility in biomarker research: Liggett et al. 
[33] applied PCA to SELDI-TOF profiles of repeated measurements 
of a reference human serum standard, while Govorukhina et al. [44] 
developed an improved sample preparation method to perform future 
comparative analyses of samples from a serum bank of cervical cancer 
patients. 

Cluster analysis and hierarchical clustering: Cluster analysis 
techniques [79,80,85] allow the identification of groups of samples or 
of descriptors in a dataset. The most used clustering methods belong 
to the class of the agglomerative hierarchical methods [79,80], where 
the samples are grouped (linked together) on the basis of a measure 
of their similarity. The most similar samples or groups of samples are 
linked first. The final result is a graph, called dendrogram, where the 
samples are represented on the X axis and are connected at decreasing 
levels of similarity along the Y axis. The groups can be identified by 
applying a horizontal cut of the dendrogram, i.e. at a particular level 
of dissimilarity, and identifying the number of vertical lines crossed 
by the horizontal cut. In Figure 2 it is reported the example of a 
dendrogram obtained from a 2D-PAGE spot volume dataset: cutting at 
level 2000 identifies two clusters, corresponding to 2 different human 
pancreatic tumour cell lines, T3M4 and PACA44, while cutting at 
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Field Sample Study Analytical method Statistical method Ref

Ecotoxicology and 
environmental chemistry

Mussels   2D-PAGE PCA [81]

Plasma samples of Atlantic cods Exposure to alkylphenol SELDI-TOF MS PCA [31]

Plasma samples of Atlantic cods Exposure to estrogens SELDI-TOF MS PCA [32]

Sydney Rock oysters Exposure to metal contamination 2D-PAGE PCA [2]

Digestive gland of the sentinel 
"blue mussel" Assessment of marine pollution

Cell fractionation followed by 
ion-exchange chromatography 

and 2-DE

Hierarchical 
clustering  [14]

Hake liver and brain extracts Investigation of population variability  2D/DIGE and MS  Hierarchical 
clustering [15]

Clinical biomarker 
discovery

Serum samples  
Differential protein biomarker expression 

and their time-course in coronary 
syndromes

Microarray PCA [83]

Serum samples Influence of clotting time on the protein 
composition

Label-free and stable-isotope 
labeling MS PCA [45]

Plasma Identification of biomarkers in patients with 
acute myocardial infarction 2-D-DiGE PCA [4]

Inflamed and non-inflamed colon 
biopsies

Identification of markers for ulcerative 
colitis

2D-gel electrophoresis and 
MALDI-TOF MS PCA [5]

Serum Protein and peptide profiling in depression MALDI-MS PCA [25]

 Serum and pleural effusion Identification of markers for non-small cell 
lung cancer 2D-DIGE PCA [3]

Cell lines Identification of markers for non-small cell 
lung cancer 2D-DIGE PCA [9]

Plasma Effect of a high intake of industrial or 
ruminant trans fatty acids on healthy men 2DE PCA [8]

Brain samples of rats Peptide profiles of exposition to 
amphetamine MALDI-TOF MS PCA [26]

Biopsies Identification of markers for thyroid 
proliferative diseases SELDI-TOF-MS PCA [34]

Plasma  

Identification of markers for disease 
progression for idiopathic pneumonia 

syndrome following allogeneic stem cell 
transplantation

LC-MS PCA [84]

Pancreatic ductal carcinoma 
cells Effect of Trichostatin A 2D-PAGE PCA [20]

Body fluids Development of the analytical method  SOMAmers PCA [85]

Plasma Identification of markers in a mouse 
intestinal tumor model LC-MS/MS Hierarchical 

clustering [50]

Serum Peptidomics in  Crohn's disease Label-free nano-HPLC-MS  Hierarchical 
clustering [43]

Liver Biomarkers for progressive alcoholic 
steatosis 2-DE  Hierarchical 

clustering [10]

Tissues Different cancers MALDI imaging  Hierarchical 
clustering [88]

Tissues
Characterization of the proteomic changes 

in Barrett's adenocarcinoma and its 
premalignant stages

MALDI imaging  Hierarchical 
clustering [89]

Assessing 
measurement 

reproducibility in 
biomarker research

Reference human serum 
standard Evaluate the measurement reproducibility SELDI-TOF PCA [33]

Serum of cervical cancer patients

Development of an improved sample 
preparation method to perform future 

comparative analyses of samples from a 
bank of patients

LC-MS PCA [44]

Table 2: Applications of pattern recognition methods in proteomics.
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level 4500 identifies 4 clusters (the two cell lines treated and untreated 
with Trichostatin-A). The results of hierarchical clustering strongly 
depend on the specific measure of similarity and on the linking method 
adopted. Clustering techniques can be applied either to the original 
variables or to the scores of the relevant PCs thus achieving clustering 
exploiting only useful sources of variation, being the experimental 
error eliminated in the last PCs [85]. In two-way hierarchical clustering 
a graphical representation of clustering of both variables and samples 
is provided, to visually identify cluster of samples and in the meantime 
provide information on the behaviour of the variables in the different 
clusters. This particular application is quite widespread in both 
proteomics and genomics. 

Hierarchical clustering has been applied in combination to PCA in 

a series of papers focused to the identification of biomarkers in clinical 
and environmental applications: to identify groups of samples with a 
similar behavior and/or groups of variables with a similar expression. 
In some cases two-way hierarchical clustering was applied [13,86], to 
identify groups of samples and at the same time provide information 
about the behavior of the variables in the identified groups. Also in 
this case, hierarchical clustering can be applied to data from classical 
proteomics by 2D-PAGE or 2D-DIGE, or to mass spectrometric data 
from MALDI-TOF, SELDI-TOF or HPLC-MS. 

The most of applications (Table 2 for more details) are in the field 
of clinical proteomics to investigate: a) ovarian [49], prostate [11] and 
colorectal cancer [12]; b) systemic and invasive candidiasis [13,86]; c) 
the plasma proteome in a mouse intestinal tumor model [50]; d) serum 
peptidomics in Crohn’s disease [43]; e) liver proteomics in progressive 
alcoholic steatosis [10]. 

Two applications regard MALDI imaging: in the first study 
Deininger et al. [87] applied MALDI imaging to compare spectra from 
controls and patients affected by different cancers. The reconstruction of 
images based on PC scores allowed an unsupervised feature extraction 
of the dataset. Generally, these images were in good agreement with the 
histology of the samples. The hierarchical clustering allowed the access 
to the multidimensional information in the dataset and the selection 
of spectra classes representative for different tissue features. PCA 
showed that the tumor and control mucosa were separated in the first 
three PCs. In the second study Elsner et al. [88] applied hierarchical 
clustering to MALDI imaging MS results, to characterize proteomic 
changes found in Barrett’s adenocarcinoma and its premalignant stages 
and find proteins that might be used as markers for monitoring cancer 
development as well as for predicting regional lymph node metastasis 
and disease outcome. 

Two papers regard applications to environmental analysis for the 
assessment of marine pollution on blue mussels [14] and for evaluating 
the protein expression in liver and brain extracts of hakes [15]. 

Supervised classification methods 

Supervised classification tools are used to separate the objects 
in the classes present which are known a priori (e.g. control versus 
pathological) and provide the variables most responsible for their 
belonging to different classes (candidate biomarkers). Their application 
in the proteomics field is focused both to the development of diagnostic 
tools and to the identification of the differences existing between the 
classes, to shed light on the mechanism of action of the effect under 
investigation (e.g. a disease or a new drug in the biomedical field, 
ripening in food research, a cultivar in plant biology, etc.). Here, only 
the methods already applied to the identification of biomarkers in the 
proteomics field will be presented (Table 1).  

All the presented methods can be applied to all quantitative 
analytical methods exploited in proteomics. Methods based on PCA 
or on projection to latent structures (as PLS-DA and OPLS) show no 
strict constraints on the number of variables and/or samples that have 
to be present in the dataset: they provide a substantial dimensionality 
reduction and, when a smaller number of samples than of original 
variables is present, the maximum number of latent structures that can 
be considered equals the number of samples. Other methods, as Linear 
Discriminant Analysis (LDA) can be applied when the number of 
variables overcomes the samples available: when this constraint is not 
observed, LDA can be applied to PCs or coupled to variable selection 
procedures, giving a final model containing a maximum number of 
original variables equaling the number of samples.  

 

 

(a) 

 

 

(b) 

 

Figure 1: PCA calculation: graphical representation of PCs (a) and calculation 
of a PCA model (b).
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Figure 2: Dendrogram calculated by the Ward’s linkage method and exploiting 
euclidean distances. Samples, reported on the x-axis, belong to two pancreatic 
cancer cell lines (T3M4 and PACA44) treated or not with Throchostatin-A (TSA).
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Several papers have recently appeared on the development and 
application of classification tools to proteomic datasets (2DE, 2D-DIGE, 
MALDI-TOF, SELDI-TOF, HPLS-MS data). These tools represent 
certainly a better approach than the use of pattern recognition methods 
since they provide mathematical models able to clearly identify sets 
of candidate biomarkers and provide information on classification 
performances. In the field of proteomics, a great panorama of different 
techniques have been recently developed and applied: some of the 
most significant papers in this field will be presented here separated 
according to the classification tool exploited in the study, a more 
exhaustive list of applications being presented in table 3.

Principal Component Analysis–Discriminant Analysis (PCA-
DA): PCA-DA was first developed by Hoogerbrugge et al. [89]. In 
this method PCA is exploited as a dimensionality reduction tool. The 
space defined by the relevant PCs is used to identify linear discriminant 
functions (LDFs) able to separate the samples in the classes present. The 
first LDF, D1, is defined as:

1 1

1 1

maximum
T

T

D BD
D WD

=

where:

B=between group covariance matrix;

W=within group covariance matrix.

The second LDF, D2, is defined in the same way but under the 
condition that D1 and D2 are independent. In two class problems, only 
one LDF is provided, able to discriminate the samples in the two classes 
present.

An interesting paper appeared by Smit et al. [90] presenting a 
strategy for the statistical validation of discrimination models in 
proteomic studies by PCA-DA applied to SELDI-TOF analyses of serum 
samples. Different tools as permutation tests, single and double cross-
validation are combined to provide a statistically sound procedure for 
biomarker discovery. The cross-validation steps were combined with 
a variable selection method called rank products. The strategy was 
applied coupled to PCA-DA but any other classifier could be used. A 
dataset containing serum samples from Gaucher patients and healthy 
controls was used as test case. The variable selection procedure can be 
briefly described as follows: the discriminant vector found with PCA-
DA represents the differences between the control and the diseased 
groups. Since the largest peaks in this vector are most important for 
the discrimination, the m/z values can be selected on the basis of their 
absolute value in the discriminant vector. In a 10-fold cross-validation, 
10 different discriminant vectors are found in which the importance 
of the m/z values is different. For each of the discriminant vectors, 
the m/z values are ranked according to their absolute value; the m/z 
value with the largest absolute value gets rank 1, the next largest gets 
rank 2, etc. The 10 ranks of each m/z value are multiplied to obtain 
the rank product, and the m/z values with the lowest rank product are 
the ones with the largest discriminative power. Single cross-validation 
in combination with rank products can be used for variable selection, 
while the prediction error associated with the selected variables is 
determined with double cross-validation. The model presents Sg=89% 
and the Spg=90%. The validation of the discrimination models with a 
combination of permutation tests and double cross-validation helps to 
avoid erroneous results which may result from undersampling, as it is 
often the case in proteomics. 

The same authors [91] applied the procedure to a dataset containing 
serum samples from breast cancer patients and healthy controls 

obtaining Sg=82% and Spg=86%. The final classification exploited a 
majority voting scheme from the ensemble classifier. 

Ranking-PCA
Ranking-PCA is a ranking method proposed by Marengo, Robotti 

et al. [64,65,92] based on the description of the original data by means 
of PCs. The development of this method has its roots in the necessity 
of finding the optimal compromise between best predictive ability of 
the final model and the exhaustivity of the biomarkers search. PCA 
is used to describe the data coupled to a ranking procedure of the 
candidate biomarkers in forward search. When PCA is applied to a 
dataset where the samples belong to two classes and their belonging to 
class 1 or 2 is the leading information, should provide only the first PC 
as relevant for the samples discrimination. When the variable ranking 
procedure is applied in forward search, one variable is added at each 
cycle. The first variable selected is the one providing the best separation 
between the classes on the first PC (Figure 3a). The addition of another 
discriminating variable further improves the distance between the two 
classes on PC1 (Figure 3b). If successively a non-discriminating variable 
is added, instead, the two classes will not be further separated on PC1: 
the third variable will show a small weight on the first PC and will be 
mostly explained by other PCs. However, these subsequent PCs will 
not be considered relevant since they are not related to class separation. 
Sometimes, more than one PC could be necessary for class separation 
(Figure 3c): in this case different independent sources of information 
related to the class structure are present. A third variable acting in this 
way could be explained mostly by another PC (Figure 3d) or could 
show large weight on both PC1 and the other PC responsible for class 
separation: in both cases, the second PC accounting for class separation 
will be included in the model. The algorithm is structured in two steps: 

1)	 Selection of the first variable. The first variable is the one 
providing the largest distance between the two class centroids while 
preserving class compactness; 

2)	 Selection of the subsequent variables. In the subsequent steps 
the variable chosen at each step is the one providing the maximum 
increase of distance between the two centroids in the space given by the 
relevant PCs, while preserving class compactness.

At each cycle, the possibility of including more than one PC 
is considered through the exhaustive evaluation of all possible 
classification models containing from 1 to a user-selected maximum 
number of PCs. The choice of the most discriminating variable is 
performed by cross-validation: the final model therefore represents the 
best model according to its predictive ability. The proposed method 
allows the ranking of the variables according to their discrimination 
ability, assuring the exhaustiveness of the results. 

The first applications of this method regard the identification of 
biomarkers from proteomic spot volume datasets. In a first study 
[65] the authors investigated an artificial dataset and a real case-
study to demonstrate its principle: Ranking-PCA exhaustively 
identified the potential biomarkers and provided reliable and robust 
results. In another paper [64] the same method was applied to three 
different proteomic datasets to prove its effectiveness: 1) 8 2DE 
maps from adrenal nude mouse glands (4 controls and 4 affected by 
neuroblastoma) described by 532 spots; 2) 11 samples from nuclea 
of human colon cancer HCT116 cell line (6 controls and 5 treated 
by an HDAC inhibitor) described by 779 spots; 3) 10 samples from 
total lysates of human colon cancer HCT116 cell line (5 controls and 
5 treated by an HDAC inhibitor) described by 525 spots. Ranking-
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Field Sample Study Analytical 
method

Statistical method Performance Ref

Clinical 
proteomics

Sera Gaucher patients and healthy controls SELDI-TOF PCA-DA with 
variable selection 
by rank products

Sg 89%; Spg 90% [91]

Sera Breast cancer patients and healthy 
controls

MALDI-MS PCA-DA with 
variable selection 
by rank products

Sg 82%; Spg 86% [92]

Ecotoxicology Mussels Exposition to oil pollution SELDI-TOF CART - [53]
Clinical 

proteomics
Proximal fluid 

samples
Identify biosignatures of 3 breast cancer 
types: HER2 positive, hormone receptor 

positive and HER2 negative, triple 
negative (HER2-, ER-, PR-).

Protein 
fractionation 

before LC-MS/MS

CART - [54]

Sera Characterization of the response to 
Infliximab in Crohn's disease: 20 patients 

with or without clinical response to 
Infliximab

SELDI-TOF-MS CART Sg, Spg and accuracy in cross-
validation: 78.6%,
80.0%and 79.3%

[35]

Sera Hepatocellular carcinoma: 81 patients 
with hepatitis B-related carcinoma and 80 

controls

SELDI-TOF CART Sgand Spg89.6%. Model with two 
biomarkers and AFP: Sg91.7%; 

Spg92.7%.

[39]

Urine Predictive diagnosis of chronic allograft 
dysfunction: 29 samples withdrawn 3 

months post-transplant

SELDI-TOF CART Sg 93%; Spg65%. [36]

Clinical 
proteomics

Platelets, peripheral 
blood mononuclear 
cells, plasma, urine 

and saliva

Investigation of how fasting for 36h, as 
compared to 12h, affects the proteome of 

healthy volunteers

2DE, MS 
and multiplex 
immunoassay

Random forests - [6]

Sera Biomarker for Malignant Pleural 
Mesothelioma: 117 pathological cases and 

142 asbestos-exposed controls

SOMAmer 
proteomic 
technology

Random forests Sg: 97% (training) – 90% (blinded 
verification); Spg 92% (training), 95% 

(blinded verification). Second validation 
set: Sg/Spg 90%/89%; combined 

accuracy 92%.

[106]

Plasma Biomarkers for multiple systemic 
autoimmune diseases in disease-

discordant monozygotic twins: 4 pairs of 
systemic lupus erythematosus, 4 pairs 
of juvenile idiopathic arthritis, 2 pairs of 

juvenile dermatomyositis

RP-LC-MS Random forests - [57]

Sera Identification of lymphnode metastases 
in NSCLC with circulating autoantibody 

biomarkers

2-D immunoblots 
of HCC827 
lysates for 

tumor-associated 
autoantigens

Random forests Sg94%, Spg97%, NER% 96% [107]

Blood NSCLC Immunoproteomic 
method

Random forests NER%: 97% [108]

Sera Biomarkers for prostate cancer 2D-DIGE Random forests - [19]
Clinical 

proteomics
Cytosolic protein 

extracts from frozen 
thyroid samples

Biomarkers for follicular and papillary 
thyroid tumors: 10 follicular adenomas, 

9 follicular carcinomas, 10 papillary 
carcinomas, 10 controls

2DE PLS-DA - [18]

Urine Peptidomics LC/MS PCA and PLS-DA - [98]
Sera Biomarkers of ovarian cancer: 265 sera 

from women admitted with symptoms of a 
pelvic mass

MALDI-MS PCA and PLS-DA Best models: 79% Spg, 56% Sg, 68% 
accuracy

[95]

Cell line extracts Biomarkers for colon cancer (HCT116 cell 
line) treated and not treated with a new 

histone deacetylase inhibitor

2D-PAGE PLS-DA NER%=100% [17]

Sera Biomarkers of resistance to neoadjuvant 
chemotherapy in advanced breast cancers: 

profiling of N-glycosylated proteins in 15 
advanced breast cancer patients

Label-free LC-
MS/MS

PLS-DA - [56]

Cerebrospinal fluid Markers of multiple sclerosis (MS) and 
other neurological diseases (OND) vs. 

controls (NHC)

Mas spectral 
profiling

PLS-DA NER%:
MS vs OND: MS 89.5%, OND: 92.3%.

MS vs NHC: 100%.
OND vs NHC: OND 97.2%, NHC 98.4%

[96]

Plasma Biomarkers of Alzheimer's disease 
progression: 119 samples of patients 

with mild cognitive impairment (MCI) with 
different outcomes

Untargeted, 
label-free shotgun 

proteomics

OPLS-DA Best model: accuracy 79%. Some 
sex-specific biomarkers were 

identified.

[58]
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Clinical 
proteomics

Sera Biomarkers of cancer (lymphoma and 
ovarian): determination of N-glycans of 
human serum alpha-1-acid glycoprotein

MALDI-TOF MS LDA NER% 88%. Cross-validation: 
cancerous vs. controls Sg 96%, Spg 

93%; lymphoma vs. controls + ovarian 
tumor 72% Sg 84% Spg

[28]

Sera Development of a novel index FI-PRO 
in the prediction of fibrosis in chronic 

hepatitis C: 62 patients for training and 73 
for validation. Prediction of minor fibrosis 
(F0-F1), moderate fibrosis (F2-F3) and 

cirrhosis (F4).

- LDA Best model based on four markers. 
Novel index A2M/hemopexin: 

diagnostic performance rate 0.80-
0.92 for F2-F4 and F3-F4 in validation

[104]

Plant biology Pinot Noir skins Biomarkers of ripening: 3 moments of 
ripening

2DE PCA and LDA NER%=100% in calibration; 77.78% 
in cross-validation

[16]

Animal biology Sera Biomarkers of ovine paratuberculosis 
(Johne's disease): sheep with 

paratuberculosis, vaccinated-exposed 
sheep and unexposed animals

SELDI TOF–MS CART and LDA Accuracy: sheep vs unexposed or 
exposed 75-100%

[38]

Clinical 
proteomics

Simulated data and 
a proteomic dataset

Development of Ranking-PCA 2-DE Ranking-PCA NER%=100% [65]

Differet samples Three different proteomic datasets: 1) 8 2DE 
maps from adrenal nude mouse glands (4 
controls and 4 affected by neuroblastoma); 
2) 11 samples from nuclea of human colon 
cancer HCT116 cell line (6 controls and 5 

treated by an HDAC inhibitor); 3) 10 samples 
from total lysates of human colon cancer 

HCT116 cell line (5 controls and 5 treated by 
an HDAC inhibitor)

2-DE Ranking-PCA NER%=100% [64]

Food analysis Meat extracts Biomarkers of tenderization of bovine 
Longissimus dorsi: 4 Charolaise heifers 

and 4 Charolaise bull’s muscles sampled 
at slaughter after early (12 days) and long 

ageing (26 days)

Cartesian and 
polar 2-DE

Ranking-PCA NER%: 100% [90]

Clinical 
proteomics

Cell line extracts Biomarkers for neuroblastoma 2-DE SIMCA NER%: 100% [21]
Cell line extracts Biomarkers of mantle cell lymphoma 2DE SIMCA NER%: 100% [22]
Cell line extracts Development of an approach  for identifying 

relevant proteins from SIMCA DPs
2DE SIMCA NER%: 100% [23]

Clinical 
proteomics

Sera Development of a sequence-specific 
exopeptidase activity test. Application to 

metastatic thyroid cancer patients (48) and 
controls (48)

MALDI-TOF MS SVM 94% Sg and 90% Spg [29]

Plasma Biomarkers of air contaminant exposure: 
Fischer rats exposed for 4h to clean air or 

Ottawa urban particles

HPLC with 
autofluorescence 

detectio

SVM and GA - [113]

Sera Diagnosis of gastric adenocarcinoma. 
Test/training set: 120 gastric 

adenocarcinoma and 120 controls. 
Validation: 95 gastric adenocarcinoma and 

51 controls.

29-plex array 
platform

Random forests and 
SVM

Training/test set: accuracy >88%. 
Validation set: >85%.

[114]

Cerebrospinal fluid Biomarkers of multiple sclerosis-related 
disorders: 107 patients with MS-related 

disorders (including relapsing remitting MS 
[RRMS], primary progressive MS [PPMS], 

anti-aquaporin4 antibody seropositive-
neuromyelitis optica spectrum disorder 

[SP-NMOSD], and seronegative-NMOSD 
[SN-NMOSD]), amyotrophic lateral sclerosis 

(ALS), other inflammatory neurological 
diseases (controls). Independent sample set 
of 84 patients with MS-related disorders or 

with other neurological diseases.

MALDI-TOF MS PCA and SVM SP-NMOSD and SN-NMOSD 
distinguishable from RRMS with high 

cross-validation accuracy by SVM

[30]

Sera Biomarkers of NSCLC: 8 NSCLC samples 
and 8 controls

Label-free 
quantitative 1D-

LC/MS/MS

Normalized, 
randomly paired t 

test and integrated 
bioinformatics, 

including 
hierarchical 

clustering analysis, 
PCA and SVM

- [59]

Plasma Biomarkers of tuberculosis and malaria SELDI-TOF and 
MS

SCCA and SVM Improvementsin diagnostic prediction, 
up to 11% in tuberculosis and up to 

5% in malaria

[112]

Urine Biomarkers associated with early renal 
injury: 50 healthy controls and intensive 
care unit patients 12-24 h after coronary 

artery bypass graft surgery

SELDI-TOF MS SVM coupled to 
PCA

- [37]
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Plasma - 2-D-LC-MS Regression 
analysis, 

unsupervised 
hierarchical 

clustering, PCA,  
genetic algorithm 

and SVM

88% Sg and 94% Spg [51]

Clinical 
proteomics

Sera Identification of discriminatory variables 
in MS by clustering of variables (CLoVA). 
Two experimental data sets: ovarian and 

prostate cancers.

MALDI-TOF and 
SELDI-TOF

Self-organization 
maps for clustering 

of variables; 
classification 

methods: PLS-DA 
and ECVA

Higher Sg and Spg than conventional 
PLS-DA and ECVA

[115]

Plasma Identification of a liver cirrhosis signature 
for predicting hepatocellular carcinoma risk 

in Hepatitis B carriers

174-antibody 
microarray 

system

PCA, DLDA and 
3-NN

Accuracy,
Sg and Spg:

100%, 100% and 90.9% respectively

[119]

Plasma Biomarkers for depression and 
schizophrenia: 245 depressed patients, 

229 schizophrenic patients and 254 
controls

Multi analyte 
profiling 

evaluating  79 
proteins

PCA, PLS-DA and 
random forests

- [99]

Urine Biomarkers of pediatric nephrotic 
syndrome (NS): steroid-sensitive NS 

(SSNS), steroid-resistant NS (SRNS), and 
orthostatic proteinuria (OP). 19 subjects 
with SSNS/SDNS in remission, 14 with 
SSNS/SDNS in relapse, 5 with SRNS in 

relapse, and 6 with OP.

SELDI-TOF MS Genetic algorithm 
and PCA

- [40]

Sera Evaluation of intact alpha-1-acid 
glycoprotein isoforms as potential 

biomarkers in bladder cancer: 16 samples 
(8 healthy, 8 bladder cancer)

CZE-UV and 
CZE-ESI-MS

ANOVA, PCA, LDA 
and PLS-DA.

Best results obtained by LDA: 
NER%=93.75%

[127]

Tear fluid Biomarkers of breast cancer: 50 women 
with breast cancer and 50 age-matched 

controls

SELDI-TOF MS multivariate 
discriminant 

analysis and ANN

NER%: 71.19% for cancers, 70.69% 
for controls (overall NER=70.94%)

[42]

Urine Two studies: 1) addition of seven peptides 
at nanomolar concentrations to blank urine 

samples of different origin; 2) a study of 
urine from kidney patients with and without 

proteinuria.

LC-MS PCA and NSC - [46]

Plant biology Leaves of 
Arabidopsis

thaliana

Analysis oftime-related regulatory effects 
of plant metabolism at a systems level: 
wild type plants and starchless mutant 

plants deficient in phosphoglucomutase 
activity

GC-TOF-MS- 
metabolite 

profiling and 
LC-MS- protein 

profiling

PCA and ICA - [47]

Clinical 
proteomics

Sera and plasma Biomarkers of inflammatory auto-immune 
disease: 30 patients

MALDI-TOF ICA - [24]

Maternal plasma 
and cord plasma

Biomarkers of spontaneous preterm birth: 
191 African, American and Caucasian 

women

- MARS - [121]

- Improvement of mass spectra 
classification

MALDI-TOF or 
SELDI-TOF

MCR - [27]

Plasma and bone-
marrow cell extracts

Biomarkers of acute myeloid or acute 
lymphoblastic leukemia: patients with 

Kawasaki disease and bone-marrow cell 
extracts from patients with acute myeloid 

or acute lymphoblastic leukemia

SELDI-TOF-MS Preprocessing 
algorithm that 
clusters highly 

correlated features, 
using the Bayes 

information criterion 
to select an optimal 
number of clusters

- [116]

Proteomic datasets 
of ovarian and 
prostate cancer

Development of a new approach to 
biomarker selection based on the 

application of several competing feature 
ranking procedures to compute a 

consensus list of features

SELDI-TOF random forest, 
SVM, CART, LDA

- [117]

Sera Development of Nonnegative PCA. Four 
serum proteomic datasets: ovarian, 

ovarian-qaqc
(quality assurance/quality control), liver 

and colorectal

MS profiling nonnegative PCA 
and SVM

[81]

Sera Biomarkers of Type 1 diabetes (T1D) SELDI-TOF Normal kernel 
discriminant 

analysis

Training set: 88.9% Spg, 90.0% Sg. 
Test set: 82.8% Spg, 76.2% Sg

[41]

Table 3: Applications of supervised methods in proteomics.
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PCA provided the perfect classification of all samples and provided a 
more exhaustive identification of biomarkers if compared to previously 
published results based on the use of other classification tools.

Another application [92] by the same authors regards the study of 
the proteomic changes involved in tenderization of bovine Longissimus 
dorsi: 4 Charolaise heifers and 4 Charolaise bull’s muscles were sampled 
at slaughter after early and long ageing (2-4°C for 12 and 26 days 
respectively). Protein composition of fresh muscle and of aged meat 
was analyzed by cartesian and polar 2-D electrophoresis. Ranking-PCA 
was applied to detect proteomic modulation: meat maturation caused 
changes of the abundance of proteins involved in metabolic, structural, 
and stress related processes.

Soft-Independent Model of Class-Analogy (SIMCA)

SIMCA [21-23,93] is based on the independent modelling of each 
class by means of PCA: each class is described by its relevant PCs. 
The samples belonging to each class are contained in the so-called 
SIMCA boxes, defined by the relevant PCs of each class (an example 
of different SIMCA boxes is presented in Figure 4). Exploiting PCA, 
the classification of each sample with SIMCA is not affected by 
experimental uncertainty and random variations since each class is 
modelled only by its relevant PCs. This method is also useful when 
more variables than objects are available since it performs a substantial 
dimensionality reduction.

The classification rule of object i is based on a Fisher’s F-test; the 
residual standard deviation of each object i (i.e. its distance from the 
model of class g) is compared to the residual standard deviation of class 
g (i.e. the typical distance of class g): if their ratio is smaller than the 
critical F value based on the degrees of freedom and on the significance 
level, object i is classified in class g. With SIMCA also outliers can be 
identified, i.e. samples classified in none of the classes: this happens 
when an object lies outside all the existing SIMCA boxes (an example 
is given in Figure 4). 

SIMCA provides an important statistics useful for the identification 
of the most discriminating variables (i.e. candidate biomarkers): the 
Discrimination Power (DP) which is a measure of the ability of each 

 

(a) 

(b) 

 

(c) 

 

(d) 
Figure 3: Mechanisms of construction of a Ranking-PCA model. Separation of 
the classes along PC1 after the addition of the first discriminating variable (a). 
Further addition of another discriminating variable improves classes separation 
along PC1 (b). Addition of a third variable accounting for another source of 
variation: scores (c); loadings (d).

 

Figure 4: Example of SIMCA classification: the three classes are described by 
SIMCA boxes built with one (class A), two (class B) and three PCs (class C); 
Object * is nearer to class A but it is classified in none of the classes present 
since it falls outside the three classes boundaries.
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variable to discriminate between two classes (c and g) at a time. The 
greater the discrimination power, the more a variable influence the 
classification of an object to class c or g.

The discrimination power is positive defined, but it is not limited. 

SIMCA was applied by Marengo et al. in two studies. The first one 
[21] is focused on the identification of biomarkers for neuroblastoma 
the most common extracranial solid tumor of infancy and childhood, 
by 2D-PAGE. The second study is devoted to identify biomarkers of 
mantle cell lymphoma [22] by evaluating the different expression of 
two different human lymphoma cell lines by 2D-PAGE. When SIMCA 
is applied as classification method, this can be done by the analysis 
of the discrimination power of each candidate biomarker: usually, 
variables characterized by a DP larger than a selected threshold are 
considered significant. The same authors developed an approach [23] 
for identifying relevant proteins from SIMCA discriminating powers 
not based on a threshold level established by the operator. The method 
is based on a procedure consisting in two steps: 1) through a nonlinear 
Box-Cox transformation, the population of the calculated DP values 
is turned into a well-known statistical distribution (e.g., Gaussian or 
gamma) and 2) the relevant spots are identified, by the use of probability 
plots, as those characterized by a transformed DP value that does not 
match the reference statistical distribution. The idea underlying the 
procedure is that the variables characterized by a relevant DP value 
do not belong to the population of the spots showing homogeneous 
values of DPs. The method successfully allowed the identification of the 
relevant spots from 2D maps in several cases study.

Partial Least Squares Discriminant Analysis (PLS-DA) 
and Orthogonal Partial Least Squares (OPLS)

PLS [79,80,94] is a multivariate regression method establishing a 
relationship between one or more dependent variables (Y) and a group 
of descriptors (X). X and Y variables are modeled simultaneously, to 
find the latent variables (LVs) in X that will predict the LVs in Y (Figure 
5a). These LVs are calculated hierarchically, as for PCA. PLS was 
originally set up to model continuous responses but it can be applied 
even for classification purposes by establishing an appropriate Y related 
to the association of each sample to a class. The regression is then 
carried out between the X-block variables and the Y just established. 
This application for classification purposes is called PLS-DA. The 
conceptual difference between PCs and LVs is represented in Figure 5b: 
while PCs are aligned along the direction of maximum variance, LVs 
are aligned along the direction that maximizes the covariance between 
X and Y variables.

PLS-DA and related procedures based on PLS are quite widespread 
in proteomics and several applications have been recently reported 
in clinical proteomics. West-Norager et al. [95] demonstrated the 
feasibility of serodiagnosis of ovarian cancer by MALDI-MS: 265 sera 
from women admitted with symptoms of a pelvic mass were used for 
model building. The authors developed a rigorous approach for building 
classification models suitable for highly multivariate data. Spectra were 
first aligned and zones not containing peaks were removed; finally a 
master list of 117 peaks defined by m/z intervals was obtained. For 
each interval, a PCA was calculated: if a peak represents only one 
underlying feature, it is expected that one PC can explain the variation; 
if the peak contains information from several chemical compounds, 
then more than one PC may be needed, but the number of PC will 
always be dramatically lower than the number of initial variables. Data 
redundancy was therefore eliminated by representing each peak by its 
relevant PCs. The entire procedure reduced the number of variables 
from more than 30000 to about 500. To test if further variable selection 
would improve model prediction, PLS-DA models were calculated 
using a stepwise variable selection based on using variable importance 
in projection (VIP) scores that estimate the importance of each variable 
used in the PLS-DA model: variables with VIP scores close to or greater 
than 1 were retained as significant. Time dependent changes in peak 
profiles up to 15 months after sampling were demonstrated, even when 
storing samples at -20°C. The best models were able to classify with 
79% Spg and 56% Sg, i.e., an analytical accuracy of 68%. 

Rajalahti et al. [96] applied PLS-DA to identify biomarker 
signatures in MS profiles of cerebrospinal fluid (CSF) from patients 
with multiple sclerosis. The low molecular weight CSF proteome from 
54 patients with sclerosis and a range of other neurological diseases, as 
well as healthy controls, was analyzed in replicates using mass spectral 
profiling. PLS-DA identified the most discriminatory spectral regions 
by the exploitation of a nonparametric discriminating variable test 
(DIVA) together with the so-called selectivity ratio (SR) plot.

Finally, Yang et al. [58] identified prognostic polypeptide blood 
plasma biomarkers of Alzheimer’s disease (AD) progression. 119 blood 
plasma samples of patients with mild cognitive impairment (MCI) 
with different outcomes (stable and progressive MCI) were analyzed 
by untargeted, label-free shotgun proteomics. Predictive biomarkers of 
progressive MCI were selected by OPLS-DA [97], a modification of PLS 
developed for highly decorrelated datasets, which removes variation 
from X variables not correlated to Y: the final interpretation of the 
results is therefore easier due to the reduced complexity of the final 

 

(a) 

 

(b) 

Figure 5: Calculation of a PLS model (a) and graphical representation of the 
differences between PCs and LVs (b).
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model and usually the prediction ability of the model improves. The 
best model showed an accuracy of 79% in predicting progressive MCI. 
Some sex-specific protein biomarkers were also identified. Significant 
sex bias in AD-specific biomarkers underscores the necessity of 
selecting sex-balanced cohort in AD biomarker studies, or using sex-
specific models.

Other applications regard: the proteomic profiling of follicular 
and papillary thyroid tumors [18]; the analysis of peptidomics data 
from clinical urine samples subjected to LC/MS to identify peptide-
biomarker fingerprints related to disease diagnosis and progression 
[98]; the identification of a serum protein profile predictive of the 
resistance to neoadjuvant chemotherapy (NACT) in advanced breast 
cancers [56]; the identification of plasma protein biomarkers for 
depression and schizophrenia [99]; the identification of biomarkers 
in colon cancer by 2DE [17]. In this last application, PLS-DA was 
coupled to a variable selection procedure in backward elimination 
and compared to differential analysis carried out by classic PDQuest 
analysis: PLS-DA with backward elimination provided a larger set 
of candidate biomarkers proving to be more exhaustive than classic 
differential analysis. 

Discriminant Analysis-Based Approaches
LDA [79,80] is a Bayesian classification method providing the 

classification of the objects considering the multivariate structure of 
the data. In Bayesian methods, an object i, identified by its descriptor 
values  xi, is assigned to class g for which the posterior probability P(g/
xi) is maximum. 

Each class is usually described by a Gaussian multivariate 
probability distribution, 

where the argument of the exponential function is the Mahalanobis 
distance between object i and the centroid of class g and takes into 
account the shape of the class and the correlations among the variables 
(it contains the covariance matrix). Each object is classified in class g if 
the so-called discriminant score Dg is minimum:

1( ) ( ) ( ) ln | | 2 lnT
g i i g g i g g gD x x x S x x S P−= − − + − 		

where Sg is the covariance matrix of class g, gx is the centroid of class g, 
Pg is the prior probability of class g.

Bayesian methods differentiate according to how the covariance 
matrix is chosen: in LDA it is approximated with the pooled (between 
the classes) covariance matrix; this corresponds to consider all the 
classes as having a common shape (i.e. a weighted average of the shape 
of the classes present). Figure 6 shows an example of LDA where two 
classes A and B are present in the space described by two variables X1 
and X2: while the two classes are overlapped along the two original 
variables, they appear separated along the discriminant function; 
Figure 6 reports the linear discriminant direction as a dotted line.

The variables contained in the LDA model discriminating the 
classes can be chosen by a stepwise algorithm, selecting iteratively 
the most discriminating variables. Usually, a Forward Selection (FS) 
procedure is applied: the method starts with a model where no variables 
are included and gradually adds a variable at a time until a determined 
criterion of arrest of the procedure is satisfied. The variable being 
included in the model in each step is the one providing the greatest 
value of an F-Fisher ratio, so that the j-th variable is included in the 
model, with p variables already included, if:

2max p p j
j j to enter

p j

RSS RSS
F F

S
++

−
+

 −
= > 

  
         

where: 
2
p jS + =variance calculated for the model with p variables plus j-th 

variable; 

RSSp=residual sum of squares of the model with p variables; 

RSSp+j=residual sum of squares of the model with p variables plus 
j-th variable.

The F value thus calculated is compared to a reference value (Fto-

enter) usually set at values ranging from 1 (more permissive selection, 
including a larger number of variables in the final model) to 4 (more 
severe selection).

LDA can be performed either on the original variables or on PCs. 
In this last case, it is possible to convert the LDA model based on the 
significant PCs in a model based on the original variables by means of 
the loadings. The combination of PCA and LDA allows the use of LDA 
even in cases when the data are characterized by fewer samples than 
variables, as it is usual in proteomics.

Another approach useful when the number of variables overcomes 
that of the samples is the use of DLDA, where the covariance matric is 
diagonal [100]. Since this simplification is by itself not enough when 
many variables are not relevant for the classification and they add noise, 
a Feature Subset Selection (FSS), which uses only a small fraction of the 
initial set of variables, can be used. Nearly all DLDA based techniques 
[100-102] use a filter approach for FSS: variables are first ranked using 
a statistical score and the discriminant function is built by selecting the 
highest ranking variables. 

Many applications are present were LDA is applied alone or in 
combination with other methods like CART or PCA. An interesting 
theoretical paper was presented by Zollanvari et al. [103] who proposed 
the analytical formulation for the joint sampling distribution of the 
actual and estimated errors of a classification rule, applied to LDA. 
Error estimation must in facts be used to evaluate the accuracy of a 

 

Figure 6: Example of LDA: the two classes A and B appear overlapped 
along both X1 and X2 directions, while they are perfectly separated along the 
discriminant function. The linear direction of separation between the classes is 
represented as solid line.
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designed classifier, an issue that is critical in biomarker discovery for 
disease diagnosis and prognosis in genomics and proteomics. Exact 
results are provided in the univariate case, and a simple method is 
suggested to obtain an accurate approximation in the multivariate case. 
The analysis presented is applicable to finite training data. In particular, 
it applies in the case of small-sample datasets commonly found in 
genomics and proteomics applications. Numerical examples illustrate 
the analysis.

For what regards the field of clinical chemistry, Imre et al. [28] 
applied LDA for the classification of cancer patients and controls 
based on the determination of N-glycans of human serum alpha-1-
acid glycoprotein (AGP). N-glycan oligosaccharides of AGP samples 
isolated from 43 individuals (controls and patients with lymphoma and 
ovarian tumor) were analyzed by MALDI-TOF MS. 34 different glycan 
structures were identified. LDA analysis showed a good separation 
between the three groups (NER% 88%). Cross-validation results 
indicated that the method has predictive power: cancerous vs. controls 
showed 96% Sg and 93% Spg; lymphoma vs. controls + ovarian tumor 
cases instead 72% Sg and 84% Spg. 

Another study regards the application of LDA in plant proteomics. 
LDA was coupled to PCA by Negri et al. [16] for the identification 
of proteins involved in biotic and abiotic stress responses in the 
ripening of Pinot Noir skins. A comparative 2-DE analysis of grape 
skins collected in three moments of ripening was carried out; PCA was 
applied to the spot volume dataset obtained and LDA with a variable 
selection procedure based on a forward stepwise search was applied to 
the obtained scores. This technique allowed to discriminate veraison, 
quite mature and mature samples, and to sort the matched spots 
according to their significance. 

Other applications are by Zhong et al. [38] in animal proteomics 
and by Cheung et al. [104] in clinical proteomics (Table 3 for details). 

Classification and Regression Tree (CART)
This method is used to build classification rules. Classification 

trees [93] are built by subsequent divisions (splits) of subgroups of the 
original dataset in two descending subgroups with the aim of classifying 
the data in homogeneous groups as much as possible different one from 
the others. It is possible to derive a tree diagram where, starting from 
the root node (where the dataset is not separated), a series of nodes and 
branches separate; each node h represents a subgroup of the dataset. 
Nodes not undergoing a further split are called terminal nodes: to each 
terminal node a class is associated. Starting from the root node h1, the 
samples are separated in a series of splits: in each node the split giving 
the most homogeneous division of the data in the two descendent 
nodes is selected. An example is given in Figure 7. 

Several applications of classification and regression trees are 
present in literature. One application is in the field of ecotoxicology 
[53] (Table 3 for details), while other applications are present in the 
field of clinical proteomics [35,36,39,54]. 

In the study by Whelan et al. [54], the authors applied LC-MS/MS 
to identify biosignatures of breast cancer in proximal fluid samples. 
The authors investigate three clinically important types of breast 
cancer using a panel of human cell lines: HER2 positive, hormone 
receptor positive and HER2 negative, and triple negative (HER2-, 
ER-, PR-). The most abundant secreted, sloughed, or leaked proteins 
released into serum free media from these breast cancer cell lines were 
characterized by a combination of protein fractionation methods 
before LC-MS/MS analysis. 249 proteins were detected in the proximal 

fluid of 7 breast cancer cell lines. Comparison of each cell line displayed 
unique and consistent biosignatures regardless of the individual group 
classifications, demonstrating the potential for stratification of breast 
cancer. Predictive CART was able to categorize each cell line as HER2 
positive, HER2 negative and hormone receptor positive and triple 
negative based on only two proteins.

Other applications (Table 3 for more details) regard the search 
for biomarkers in: the response to Infliximab in Crohn’s disease [35]; 
hepatocellular carcinoma [39] and the predictive diagnosis of chronic 
allograft dysfunction by urinary proteomics [36]. All these applications 
regard the use of SELDI-TOF profiling. 

Random Forests
Random Forests [105] is an extension of the classification trees and 

it is structured to grow many classification trees. The new objects are 
classified by each independent tree in the forest: each tree therefore 
gives a classification. The forest chooses the most recurrent classification 
(over all the trees in the forest). Each tree is grown as follows:

a.	 If N objects are in the training set, N cases are sampled 
randomly from the data to grow the tree; 

b.	 If there are M variables, a number m<<M is specified such 
that at each node, m variables are selected at random out of the M and 
the best split on these m is used to split the node. The value of m is held 
constant during the forest growing.

c.	 Each tree is grown to the largest possible extent. 

The error rate depends on: the correlation between any two trees 
in the forest (increasing the correlation increases the forest error rate); 
the strength of each individual tree in the forest (inversely correlated to 
the tree error rate).

RF are quite widespread for the identification of biomarkers 
in proteomics, the most of applications being in the field of clinical 
proteomics. 

Ostroff et al. [106] investigated sera from 117 Malignant Pleural 

 

Figure 7: Example of CART classification: objects belong to three classes (light 
grey=1, dark grey=2 and black=3). Nodes h3, h4, h5 are terminal nodes, while h1 
and h2 represent splitting decisions. In h1, if the value of splitting variable 1 is > 1, 
the object is assigned to h2, otherwise to h3. In h2, if the value of splitting variable 
2 is > 2, the object is assigned to h4, otherwise to h5. 
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Mesothelioma (MM) cases and 142 asbestos-exposed control individuals 
for the early detection of MM. Biomarker discovery, verification, and 
validation were performed using SOMAmer proteomic technology, 
which simultaneously measures over 1000 proteins in unfractionated 
biologic samples. Using univariate and multivariate approaches 64 
candidate protein biomarkers were identified; a 13-marker random 
forest classifier was derived with an AUC of 0.99 ± 0.01 in training, 0.98 
± 0.04 in independent blinded verification and 0.95 ± 0.04 in blinded 
validation studies. Sg and Spg were respectively 97% and 92% in training 
and 90% and 95% in blinded verification. This classifier accuracy was 
maintained in a second blinded validation set with a Sg/Spg of 90%/89% 
and combined accuracy of 92%.

Other applications (Table 3 for more details) regard: plasma 
proteomic profiles from disease-discordant monozygotic twins in 
multiple systemic autoimmune diseases by RP-LC-MS [57]; the 
investigation of how fasting for 36 h, as compared to 12h, affects the 
human proteome of platelets, peripheral blood mononuclear cells, 
plasma, urine and saliva [6]; the improvement of a multianalyte serum 
biomarker panel to identify lymphnode metastases in non-small cell 
lung cancer (NSCLC) with circulating autoantibody biomarkers [107]; 
the development of a multiplexed tumor-associated autoantibody-
based blood test for detecting NSCLC [108] and the identification of 
biomarker panels in 2D-DIGE data from sera of patients with prostate 
cancer [19].

Support Vector Machines (SVM) Approaches
SVM [109] are machine learning algorithms that find a maximal 

margin hyperplane that maximizes the distance between the two classes 
present. A linear hyperplane is in general able to separate n samples in 
n+1 dimensions, therefore in high-dimensional data, the use of non-
linear kernels can be avoided. The linear SVM separates the classes by 
a linear boundary.

The graphical representation of a simple case is given in Figure 
8: the solid line represents the border hyperplane, while the dotted 
lines delimit the border. Cortes and Vapnik [110] in 1995 proposed 
a modified maximum margin allowing misclassifications. Boser et 

al. [111] proposed also a modification to the original linear classifier 
providing a nonlinear classifier by applying the kernel trick to 
maximum-margin hyperplanes. 

Support vector machines have been extensively used in 
proteomics for the identification of biomarkers, usually coupled 
to other multivariate tools as genetic algorithms, PCA, random 
forests, Canonical Correlation Analysis (CCA). This last method is a 
multivariate generalization of the correlation analysis, developed by 
Hotelling; it is used to define the relationship between 2 sets of variables 
[80]. When CCA is applied to multichannel signal processing, linear 
combinations X and Y of two mean-centered multivariate random 
vectors [x1(t),...,xm(t)]T and [y1(t),...,yn(t)]T (t1,....,N) are defined.

CCA computes the linear combination coefficients (i.e. regression 
weights) ωx and ωy, so that the correlation between the new variables X 
and Y (called canonical variates) is maximum. 

The first pair of canonical variates correspond to the eigenvectors x 
and ωy associated with the largest eigenvalue. The remaining canonical 
variates correspond to the remaining eigenvectors, and the associated 
eigenvalues are the squared canonical coefficients. The canonical 
variates are maximally correlated and, at the same time, uncorrelated 
with the previous pairs. 

Sparse Canonical Correlation Analysis (SCCA) is a modification of 
CCA [112] useful when CCA has to be applied to sparse data. 

Karthikeyan et al. [113] applied SVM and the genetic algorithm 
(GA) to plasma peptide chromatograms for identifying biomarkers 
of air contaminant exposures. Interrogation of chromatographic data 
for biomarker discovery is hampered by the stochastic variability in 
retention times; the difficulty is further increased when the effects 
of exposure (e.g. to environmental contaminants) and biological 
variability result in varying numbers and intensities of peaks among 
chromatograms. The authors developed a software to correct the time 
shifts in chromatographic data through iterative selection of landmark 
peaks and isometric interpolation to improve alignment. To illustrate 
the tool, plasma peptides from Fischer rats exposed for 4h to clean air 
or Ottawa urban particles (EHC-93) were separated by HPLC with 
autofluorescence detection, and the retention time shifts between 
chromatograms were dewarped. Both dewarped and non-dewarped 
datasets were then mined for models containing peptide peaks that 
best discriminate among the treatment groups. In general, models 
generated by dewarped datasets were able to better classify test sample 
chromatograms into either clean air or EHC-93 exposure groups, 
and 0 or 24 h post-recovery time groups. Peak areas of peptides in a 
model that produced the best discrimination of treatment groups were 
analyzed by two-way ANOVA with exposure (clean air, EHC-93) and 
recovery time (0 h, 24 h) as factors. Statistically significant (p<0.05) 
time-dependent and exposure-dependent increases and decreases were 
noted establishing these as biomarker candidates for further validation.

Ahn et al. [114] identified serum biomarker panels for the 
diagnosis of gastric adenocarcinoma by random forests and SVM. A 
29-plex array platform with 29 biomarkers, consisting of 11 proteins 
discovered through proteomics and 18 previously known to be cancer-
associated, was constructed. Via RF, 13 markers were selected for 
multivariate classification analysis. Then, multivariate classification 
analysis with RF and SVM was performed on the training set, consisting 
of 70 serum samples from gastric adenocarcinoma patients and 70 
control samples. Each algorithm was cross-validated on the test set 
to which 50 samples were assigned. The best RT and SVM algorithms 
showed mean accuracies of 88.3% and 89.7% respectively. These two 

 

 

Figure 8: Example of SVM. The solid line represents the discriminant direction, 
while the dotted lines represent the margin boundaries. 
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algorithms were tested on a separate, independent blinded set of 95 
gastric adenocarcinoma sera and 51 controls with mean accuracies of 
89.2% and 85.6%, respectively. The biomarker panel selected by RF 
containing 11 markers showed a higher accuracy in the validation set. 
RF generally outperformed SVM, regardless of stage or tumour size 
even if SVM showed a higher sensitivity for small tumours.

Other applications (Table 3 for details) regard: the use of PCA 
and SVM to discriminate among multiple sclerosis-related disorders 
[30]; the comparative proteomic analysis of non-small-cell lung cancer 
and normal controls using serum label-free quantitative shotgun 
technology [59]; plasma biomarkers of tuberculosis and malaria by 
SCCA and SVM [112]; biomarkers associated with early renal injury 
by SELDI-TOF MS in human urine [37]; the ability to perform a 
clinical proteomic study using samples collected at different times 
from two independent clinical sites by label-free 2-D-LC-MS [51]; 
the development of a sequence-specific exopeptidase activity test for 
functional biomarker discovery [29]. 

Other Methods 
In this section, some papers will be presented, reporting the use 

of alternative methods developed by different authors to address 
particular drawbacks of the standard multivariate tools. 

Karimi et al. [115] proposed a novel approach for the identification 
of discriminatory variables in mass spectrometry by clustering of 
variables. In factor analysis-based discriminate models, latent variables 
are calculated from the data at all employed instrument channels. 
Since some channels are irrelevant for classification, the extracted LV’s 
possess mixed information from both useful and irrelevant channels. 
Clustering of variables (CLoVA) based on unsupervised pattern 
recognition was suggested but the authors as an efficient method to 
identify the most informative spectral regions. The m/z values were 
clustered into different clusters via self-organization maps. Then, the 
spectral data of each cluster were separately used as the input variables 
of classification methods such as PLS-DA and extended canonical 
variates analysis (ECVA). The proposed method was evaluated by the 
analysis of two experimental data sets (ovarian and prostate cancer 
datasets). The method was able to detect cancerous from control 
samples with higher Sg and Spg than conventional PLS-DA and ECVA. 

Chen [27] applied multivariate curve resolution (MCR) to 
improve proteomic mass spectra classification. The paper describes a 
novel proteomic pattern analysis algorithm for biomarker discovery 
using MALDI-TOF or SELDI-TOF. The algorithm (MCR-marker) is 
based on the combination of MCR with classification methods and 
applies singular value decomposition to select differentially expressed 
m/z windows. In each selected m/z window, potential biomarkers 
are identified from MCR-resolved peak profiles that show better 
performance than the precise m/z values. The identified potential 
biomarkers are not dependent on the selection of MCR methods and 
consist of clearly detectable peaks, which may represent identifiable 
proteins, protein fragments or peptides. The algorithm was validated 
on two data sets from the literature. 

Carlson et al. [116] reported the biomarker clustering to address 
correlations in proteomic data. Existing methods for dimension 
reduction, i.e. PCA and related techniques, are not always satisfactory in 
proteomics since they provide results that are of not easy interpretation. 
The authors propose a preprocessing algorithm that clusters highly 
correlated features, using the Bayes information criterion to select 
an optimal number of clusters. Statistical analysis of clusters, instead 

of individual features, benefits from lower noise, and reduces the 
difficulties associated with strongly correlated data. This preprocessing 
tool proved to improve biomarker discovery in clinical SELDI-TOF-
MS datasets of plasma from patients with Kawasaki disease and 
bone-marrow cell extracts from patients with acute myeloid or acute 
lymphoblastic leukemia.

Dutkowski and Gambin [117] proposed a new approach to the 
biomarker selection problem: the approach is based on the application 
of several competing feature ranking procedures and compute a 
consensus list of features based on their outcomes. The method was 
validated on two proteomic datasets for the diagnosis of ovarian 
and prostate cancer. The proposed methodology can improve the 
classification results and at the same time provide a unified biomarker 
list for further biological examinations and interpretation.

Han [118] applied nonnegative PCA for mass spectral serum 
profiles and biomarker discovery. Nonnegative PCA is an extension 
of PCA [118] where nonnegativity constraints are imposed to the 
loadings. This alternative is useful when PCA, providing both positive 
and negative loadings, makes the interpretation of the loadings quite 
difficult, i.e. when positive defined signals as spectra or mass signals 
are investigated. The author addresses the main drawback of PCA, i.e. 
its global feature selection mechanism that prevents it from capturing 
local features. In this study, the author developed a nonnegative PCA 
algorithm and present a nonnegative PCA based SVM algorithm 
with sparse coding to conduct a high-performance proteomic pattern 
classification. 

Purohit et al. [41] developed a procedure for the identification of 
serum candidate biomarker of Type 1 diabetes (T1D) by SELDI-TOF 
and model averaging. 146 protein/peptide peaks were identified as 
significantly changing over a total of 581 peaks discovered. The data 
were split for the first replicate into training and test sets. Normal 
kernel discriminant analysis was then used to obtain random sets of 
three peaks (model), and each of 200000 models of three peaks was 
evaluated using LOO cross-validation. Models with LOO cross-
validation error rates >25% were discarded, and the predictions of the 
remaining models were averaged using plurality voting. The resulting 
set of models was then evaluated on the test set. The identified models 
were then applied to the dataset for the second replicate. T1D and 
control samples were classified with 88.9% Spg and 90.0% Sg, while 
82.8% Spg and 76.2% Sg were reached on the test set. 

Other applications (Table 3 for details) regard: a protein biomarker 
profile in tear fluid for breast cancer patients by artificial neural networks 
on SELDI-TOF MS [42]; a comparative urine analysis by liquid 
chromatography-mass spectrometry and PCA coupled to the Nearest 
Shrunken Centroid (NSC) algorithm [46]; the correlation of GC-TOF-
MS-based metabolite profiling and LC-MS-based protein profiling to 
improve pattern recognition for multiple biomarker selection, by PCA 
and Independent Component Analysis (ICA) [47]; the extraction of 
reliable protein signal profiles from MALDI-TOF spectra by ICA [24]; 
the identification of a liver cirrhosis signature in plasma for predicting 
hepatocellular carcinoma risk by PCA, DLDA and 3-Nearest Neighbors 
(3-NN) [119]; a high performance profile-biomarker diagnosis for 
mass spectral profiles by embedding multi-resolution ICA in LDA and 
SVM [120]; the application of multivariate adaptive regression splines 
analysis to predict biomarkers of spontaneous preterm birth [121]; the 
urine proteomic profiling of pediatric nephrotic syndrome by a genetic 
algorithm search in the principal component space [40]. 

For what regards the development of software tools for multivariate 
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data treatment, Fan et al. [122] developed digger, a graphical 
user interface R package for analyzing 2D-DIGE data by different 
multivariate tools. Akella et al. [48] instead developed CLUE-TIPS 
(Clustering Using Euclidean distance in Tanimoto Inter-Point Space), 
a clustering method for pattern analysis of LC-MS Data. In CLUE-
TIPS, an intersample distance feature map is generated from filtered, 
aligned and binarized raw LC-MS data by applying the Tanimoto 
distance metric to obtain normalized similarity scores between all 
sample pairs for each m/z value. Clustering and visualization methods 
for the intersample distance map were developed to analyze datasets 
for differences at the sample level as well as the individual m/z level. 
CLUE-TIPS can also be used as a tool in assessing the quality of LC-
MS runs. It was applied to LC-MS data obtained from plasma samples 
collected at various time points and treatment conditions from 
immunosuppressed mice implanted with MCF-7 human breast cancer 
cells. CLUE-TIPS successfully detected the differences/similarities in 
samples at various time points taken during the progression of tumor, 
and also recognized differences/similarities in samples representing 
various treatment conditions.

Comparison of Different Methods
Some interesting papers have recently appeared focused on the 

comparison of different multivariate methods: these studies are 
reported here together with the main findings to provide information 
on the performance of different statistical tools when they are applied 
to the same case study. 

Brasier et al. [123] examined physiological data from 1048 
subjects to identify 4 quantitative intermediate phenotypes asthma. 
Four different statistical machine learning methods were evaluated to 
predict each intermediate phenotype using cytokine measurements 
on a 76 subject subset. The comparison of these models using the area 
under the ROC curve and the overall classification accuracy indicated 
that logistic regression and multivariate adaptive regression splines 
produced the most accurate methods to predict intermediate asthma 
phenotypes. 

Levner [124] reported the application of feature selection and NSC 
classification for protein mass spectrometry; the aim of the study was 
to reduce data dimensionality in mass spectrometry to allow the use 
of standard machine learning techniques. The performance of the 
NSC classifier was evaluated coupled with different feature selection 
algorithms: Student-t test, Kolmogorov-Smirnov test, P-test, sequential 
forward selection and a modified version of sequential backward 
selection. In addition, several dimensionality reduction approaches 
were tested: PCA and PCA coupled with LDA. Comprehensive 
experiments, conducted on five popular cancer datasets, revealed 
that the sequential forward selection and boosted feature selection 
algorithms produced the most consistent results across all data sets.

Guo and Balasubramanian [125] performed the comparative 
evaluation of classifiers in the presence of statistical interactions 
between features in high dimensional data settings. A central 
challenge in biomedical investigations involves the estimation of an 
optimal prediction algorithm to distinguish between different disease 
phenotypes: these analyses are hampered by features that exhibit 
statistical interactions. The authors compared the performance of 
4 classifiers (K-NN, Prediction Analysis for Microarrays - PAM, RF 
and SVM) in settings involving high dimensional datasets including 
statistically interacting feature subsets. Their performance was 
evaluated under varying sample size, levels of S/N ratio and strength of 
statistical interactions among features. Simulation studies revealed that 

the classifier PAM had the highest classification accuracy in the absence 
of noise, statistical interactions and when feature distributions were 
multivariate gaussian within each class. In the presence of statistical 
interactions, modest effect sizes and the absence of noise, SVM achieved 
the best performance followed closely by RF. RF was optimal in settings 
that included both significant levels of high dimensional noise features 
and statistical interactions between biomarker pairs.

Christin et al. [126] compared different feature selection methods 
for biomarker discovery in clinical proteomics. Six feature selection 
methods for LC-MS-based proteomics and metabolomics biomarker 
discovery were compared: t test, Mann-Whitney-Wilcoxon test (MWW 
test), NSC, linear SVM-recursive features elimination (SVM-RFE), 
PCA-DA and PLS-DA. The methods were tested using human urine 
and porcine cerebrospinal fluid samples that were spiked with a range 
of peptides at different concentration levels. The ideal feature selection 
method should select the complete list of discriminating features that 
are related to the spiked peptides without selecting unrelated features. 
The performance was assessed using the harmonic mean of the recall 
and the precision (f-score) and the geometric mean of the recall and 
the true negative rate (g-score). The univariate t and MWW tests with 
multiple testing corrections are not applicable to data sets with small 
sample sizes (n=6), but their performance improves markedly with 
increasing sample size up to a point (n>12) at which they outperform 
the other methods. PCA-DA and PLS-DA select small feature sets 
with high precision but miss many true positive features related to the 
spiked peptides. NSC strikes a reasonable compromise between recall 
and precision for all data sets independent of spiking level and number 
of samples. Linear SVM-RFE performs poorly for selecting features 
related to the spiked compounds, even though the classification error 
is relatively low.

Ongay et al. [127] performed the statistical evaluation of CZE-UV 
and CZE-ESI-MS data of intact alpha-1-acid glycoprotein isoforms for 
their use as potential biomarkers in bladder cancer. Samples from 16 
individuals (8 healthy, 8 bladder cancer) were analyzed. The analytical 
data were evaluated employing different statistical techniques: 
ANOVA, PCA, LDA and PLS-DA. Statistically significant differences 
between the two groups of study were observed. The best results were 
obtained by LDA that showed a NER=93.75%. 

Conclusion
This review is aimed to present the most recent applications of 

multivariate statistical tools in proteomics for the identification of 
biomarkers. The most recent applications present in literature were 
presented separately for the different multivariate methods adopted 
together to the theoretical bases of each statistical method. A quite wide 
range of different statistical methods are exploited in literature for the 
identification of biomarkers in proteomics, providing sound results. In 
general, multivariate methods should always be preferred to univariate 
approaches to provide a pool of markers highlighting synergistic and 
antagonistic effects. The biological effect played by a particular factor (a 
pathology, a drug, a polluting effect, a ripening effect etc) is usually the 
result of a series of different mechanisms either independent from each 
other or showing relevant interactions. Multivariate procedures are 
able to highlight these relationships avoiding the neglection of relevant 
information.

It is however important to avoid the identification of false positives, 
mostly due to chance correlations: this risk greatly increases when few 
information is available (i.e. a small number of cases investigated), as 
is often the case in proteomic studies. This problem can be partially 
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solved by a sound experimental design and sample collection; each 
study should be carefully designed from a statistical point of view before 
being performed in order to include all possible sources of biological 
variation. In the cases when the poor availability of samples cannot 
be solved, it is very important to apply mathematical tools to validate 
the models built, thus evaluating the predictive ability of the models: 
in these cases cross-validation or the use of simulation algorithms is 
mandatory to identify only statistically significant markers. Another 
way to face this problem is the use of multivatiate methods based on 
projection to latent structures (e.g. based on PCA and PLS approaches), 
able to provide a substantial dimensionality reduction by considering 
few latent variables or principal components rather than a large 
number of original variables. This approach makes also possible the 
application of other classification tools as LDA to problems where a 
smaller number of samples than of variables is present: in such cases 
in fact LDA cannot be applied unless a variable selection procedure is 
applied providing a maximum number of discriminant variables equal 
to the number of samples available.  

The identification of biomarkers represents a balance between the 
achievement of parsimonious models with the best predictive ability 
and the necessity of obtaining the maximum amount of information 
about the effect investigated: it is the authors’ opinion that the future 
perspective in biomarkers identification has to be searched for in the 
exhaustive search for potential markers. Complex effects as pathologies, 
pollution effects, drug effects etc, acting on a wide range of individuals 
characterized by a large biological variability cannot in fact realistically 
reflect in a restricted panel of biomarkers. We think that the future 
will rely on high-throughput techniques that are able to provide 
great amount of information that can be coupled together to identify 
exhaustive panels of markers, improving the predictive performance of 
the final models in terms of specificity and sensitivity: to this respect the 
use of sound and reliable multivariate tools is particularly important to 
obtain reliable results.
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