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Commentary
Cancer is a major public health problem across the society, and is

the second leading cause of death globally [1]. Early diagnosis of
cancer effectively decreases the mortality associated with cancer
metastasis [2]. However, the scarcity of more sensitive biomarker has
hampered this important public healthy strategy. In this
communication, we will discuss: 1) the topic on plasma Hsp90α as a
novel cancer diagnosis biomarker; 2) the present knowledge regarding
the underlying regulatory mechanism of Hsp90α translocation to cell
membrane and secretion; 3) our strategy for cancer prevention with an
emphasis on trinity of nucleolin guided, endostatin treatment, and
plasma Hsp90α monitored.

The intracellular heat shock protein 90 (Hsp90) is well-known and
widely studied as the essential and ubiquitously expressed molecular
chaperone [3-6]. It accounts for 1-2% of cellular proteins in normal
cells or 2-7% in tumor cells [7]. In concert with co-chaperones and
accessory proteins, Hsp90 mediates remarkably versatile activities
including intracellular signal transduction [8,9], protein folding [10],
cell apoptosis [11], chaperone mediated autophagy [12], antigen
presentation [13], and morphological evolution [14,15]. Until now,
more than 300 Hsp90’s diverse “clients” have been reported to be
involved in these processes in both normal cells and cancer cells [16]
(for a comprehensive review of Hsp90’s clients, see http://
www.picard.ch/downloads/Hsp90facts.pdf and the database of the
Hsp90Int, see http://www.picard.ch/Hsp90Int).

However, the discovery of secreted Hsp90 is a relatively recent story.
The widely accepted specific isoform which can be secreted is heat
shock protein 90alpha (Hsp90α) [17-29], whereas some researchers
have also identified that heat shock protein 90beta (Hsp90β) localize
outside of certain cell types [20,30,31]. Work by Jay and colleagues has
provided the most compelling evidence that Hsp90α, not Hsp90β, can
be detected extracellularly with functional proteomic and specific anti-
Hsp90α antibody [24]. After that, two pools of secreted Hsp90α,
including “cell surface-bound” Hsp90α and “extracellular” Hsp90α
(eHsp90α), have been characterized from cancer cells [7]. The function
of eHsp90α in regulating tumor invasion and metastasis will not be
covered in this short communication, which has been well
summarized in recent reviews [7,32].

Previous work from our group has firstly reported the underlying
regulatory mechanism of Hsp90α secretion [27]. Residue Thr-90
phosphorylated by protein kinase A will disrupt the interaction
between Hsp90α and proteins containing tetratricopeptide repeat
domains, which leads to the exposure and cleavage of C-terminal

EEVD motif. This process will initiate the downstream secretion of
Hsp90α. PLCγ1-PKCγ signaling axis mediates Hsp90α plasma
membrane translocation [28]. Hsp90α has no to-be-secreted signal
peptide, and the presently well accepted secretory pathway is through
exosome [21,33,34]. Our group reported that overexpression of PKCγ
[28] or Rab3D [35] can regulate the secretion of Hsp90α through the
increase of exosome release. Furthermore, the level of plasma Hsp90α
is positively correlated with tumor malignancy in cancer patients [27].

Lyden’s group reported that VEGFR1-positive hematopoietic bone
marrow progenitors initiated the pre-metastatic niche to facilitate
tumor metastasis [36]. We also observed that, at the pre-metastatic
stage, the permeability of pulmonary vasculatures and extravasation of
circulating tumor cells were increased. Then we used microarrays to
systematically examine the gene expression in lung mesenchyme, and
found that angiopoientin 2 (Angpt2), matrix metalloproteinase 3
(MMP3), and MMP10 were upregulated. These three genes showed a
synergistic effect on disrupting vascular integrity in both in vitro and
in vivo models [37]. In addition, we also found that local miR-30
family were deregulated in the pre-metastatic lung to promote the
hyperpermeability of the lung vascular by targeting Skp2 [38]. All
these studies indicate that metastasis at molecular level occurred
before tumor metastasis, which provides the evidence supporting the
detection of early-stage cancer.

These findings promote us to test whether detecting cancers at early
stage using plasma Hsp90α is feasible. Therefore, our lab and
collaborators developed a quantitative detection kit for plasma Hsp90α
based on ELISA, and clinical trials with the enrollment of 2,347 cases
demonstrated that plasma Hsp90α is a novel lung cancer biomarker
[39]. Besides, our small-scale clinical investigation also revealed that
the levels of plasma Hsp90α are all elevated in detected 16 common
cancer types (unpublished data).

Liver cancer, mainly consisting of hepatocellular carcinoma (HCC)
and cholangiocarcinoma (CC), has become the sixth most common
malignant disease and the second leading cause of cancer-associated
death [40]. Recently, we extended the ELISA kit for the auxiliary
diagnosis and efficacy monitoring of patients with liver cancer patients,
and an official (registered at ClinicalTrial.gov: NCT02324127), large-
scale (1,647 enrollments), and multicenter (three independent
hospitals) clinical trial has been accomplished. At the optimum
diagnostic cutoff 62 ng/mL, plasma Hsp90α showed a sensitivity of
93% and specificity of 91% in detecting cancer patients. Similar results
were noted for early-stage liver cancer (sensitivity 91%, specificity
91%). α-Fetoprotein (AFP) is a well-accepted tumor biomarker for the
diagnosis of HCC. However, its sensitivity is only 25-65% at the
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commonly used cutoff value of 20 ng/mL [41]. Due to its low
sensitivity, the 2010 American Association for the Study of Liver
Diseases (AASLD) guidelines has cancelled the use of AFP as a
screening indicator for HCC [42]. However, plasma Hsp90α
measurement showed much more precise in distinguishing AFP-
negative HCC patients (AUC 0.971, sensitivity 94%, specificity 91%)
and AFP-limited liver cancer (AUC 0.971, sensitivity 97%, specificity
90%) from non-liver cancer control, including healthy individuals and
patients with non-cancerous liver disease [43]. This quantitative ELISA
kit of plasma Hsp90α has now been approved by China Food and Drug
Administration (CFDA) to be used in lung cancer and liver cancer
patients (see http://www.sfda.gov.cn). Also, we are continuing to
expand the use of plasma Hsp90α in many other cancer types,
including colorectal cancer (AUC 0.955, sensitivity 94%, specificity
87%) and breast cancer (AUC 0.764, sensitivity 69%, specificity 74%)
(Data not published). These results have proved that plasma Hsp90α is
a novel cancer biomarker with a broad spectrum. About 90% of cancer
indications, estimated by the World Health Organization, could be
hopefully cured if diagnosed at early stage [44]. The detection of
plasma Hsp90α represents an early, convenient, accurate, and fast (e-
CAF) “liquid biopsy” means for cancer diagnosis, particularly for
patients at early stage. In addition, plasma Hsp90α can also be used to
monitor the efficacy of cancer therapy [27,39,43]. A biomarker
reflecting the dynamic changes responding to the patients’ condition
can provide the important clinical guidance for doctors. In lung cancer
patients, we observed a statistically significant difference between
before and after operation, and patients in PD and PR/SD groups [39].
In liver cancer patients, the difference of mean concentration of plasma
Hsp90α was also significant between pre and postoperative, and
between two interventional therapy groups [43].

It is well known that multidrug resistance, the underlying
mechanisms by which many cancers acquired the drug resistance to
chemotherapy or targeted therapy, contribute majorly the failure for
cancer treatments [45]. Increasing researches have reported that
exogenous anti-angiogenesis drugs can induce the tumor metastasis
[46-48]. Recently, we also reported that specific chemotherapeutic
agents, such as paclitaxel and carboplatin, can promote tumor
metastasis through upregulation of the serum levels of cytokine and
angiogenic factors, including CXCR2, CXCR4, S1P/S1PR1, PIGF,
PDGF-BB, CXCL1 [49]. Therefore, the potent anti-tumor drug with
low toxicity and no drug resistance is urgently needed [50,51].
Endostatin, a 20-kDa C-terminal proteolytic fragment of collagen
XVIII, was first identified as a potent endogenous angiogenesis
inhibitor on endothelial cell migration, proliferation, and angiogenesis
[50,52-54]. More than 20 years’ extensive studies in our lab have
unraveled many mysteries of endostatin, including acid-induced
unfolding mechanism [55,56]; contribution of disulfide bonds to the
structure stability and biological functions [57]; the antitumor effect of
nonnative endostatin [58-60]; contribution of zinc ion to the structure
stability and biological function [61]; contribution of the N-terminal
integrity to the structure stability and biological functions [62]; the
mechanisms of internalization and translocation of endostatin [63-70];
establishment of criteria to assure correct folding of endostatin [71]
(For more details, see refs [71,72]). On these ground breaking
discoveries, recombinant human endostatin was correctly refolded and
approved by CFDA to be used for the treatment of non-small cell lung
cancer (see http://www.sfda.gov.cn). Further studies have revealed that
the fraction of nucleonin on the surface of endothelial cells serves as
the functional receptor of endostatin, which mediates the anti-
angiogenic and anti-lymphangiogenic activities of endostatin [64,66].

Vascular endothelial growth factor (VEGF) and nonmuscle myosin
heavy chain 9 (MyH9) cooperatively mobilize nucleolin from nucleus
to cell surface [63]. Surface nucleolin can be internalized by two
pathways: caveolae/lipid rafts and clathrin-coated pits [65]. Voltage-
dependent anion channel 1 also mediates the apoptosis function of
endostatin on endothelial cells [73]. The identified novel roles for
nucleolin provide the fundamental implications for understanding the
biology of endostatin and for its personalized application for cancer
treatment with endostatin [74].

Our recent findings on endostatin are also extremely exciting. We
have found that endostatin can prevent dietary-induced obesity by
inhibiting adipogenesis and angiogenesis through interaction with
Sam68 RNA-binding protein to paralyzing the mTOR pathway, which
revealed that endostatin has a potential application for antiobesity
therapy and prevention of obesity-related metabolic syndromes [75].
Another study in our lab reported for the first time that endostatin
embedded novel ATPase activity, which mediates its antiangiogenic
and antitumor activities [76]. The endostatin mutant with enhance
ATPase can significantly inhibit the recruitment and activation of
macrophages in non-small cell lung cancer [77]. Endostatin can also
chemosensitize p53-deficient non-small cell lung cancer to genotoxic
drug by targeting DNA-dependent protein kinase [78]. These studies
provide a new direction for more potent antitumor drug development
and clinical applications of endostatin.

To control or cure cancer is a systematic process. Here we
summarized our strategy that trinity of nucleolin guide, endostatin
treatment, and plasma Hsp90α monitored, for cancer prevention. In
clinic, we recommend first detecting the expression levels of nucleolin
on the endothelial cell surface of cancer blood vessels of patients before
choosing to use endostatin or other drugs for cancer treatment, and
finally monitoring the treatment efficacy by measuring plasma Hsp90α.
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