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Introduction
Periodontitis is initiated by specific bacterial insult, resulting in the

destruction of tooth-supporting periodontal tissues, and mainly
develops in adults [1,2]. The periodontal tissues are composed of four
major tissues: the periodontal ligament (PDL) tissue, cementum,
gingiva, and alveolar bone. In particular, the PDL plays a pivotal role in
anchoring functional teeth to the alveolar bone, repairing the wounded
periodontium, and maintaining periodontal tissue homeostasis [3,4].
Functional proliferation and migration of PDL cells are essential for
appropriate wound healing and successful periodontal tissue
regeneration. Recombinant basic fibroblast growth factor (bFGF) has
been shown to induce significant periodontal tissue regeneration in
vivo, accompanied by regeneration of the PDL tissue and alveolar bone
[5,6]. In addition, bFGF stimulates the proliferation and migration of
PDL cells, and plays a crucial role in periodontal tissue regeneration
[7].

Sprouty (Spry) proteins were identified as inhibitors of the FGF
signaling pathway during tracheal branching in Drosophila [8]. Spry
also regulates the epidermal growth factor (EGF) signaling pathway
during Drosophila organogenesis [9]. In mammals, four human Spry
homologs (Spry1–4) have been identified [8], and Spry2 specifically
suppresses activation of the extracellular signal-regulated kinase (ERK)
pathway in response to various growth factors such as FGF [10,11].
Moreover, Spry2 interacts with growth factor receptor-bound protein 2
(Grb2), an adaptor protein responsible for communication between
receptor tyrosine kinase (RTK) activation and the Ras/Raf1/ERK
pathway in response to growth factor stimulation [12,13]. The
interaction between Spry2 and Grb2 disturbs the association between
RTK and Grb2 and inhibits RTK-induced signal transduction [10,14].
In addition, both hypoxia and nickel exposure increased the level of
H3K9me2 at the Spry2 promoter by inhibiting histone demethylase
JMJD1A [15]. Since the main histone methyltransferases that required
for the establishment of H3K9me2 are G9a/GLP complex [16],
therefore it is very likely that G9a/GLP complex is recruited to the
Spry2 promoter. Furthermore, as G9a/GLP complex physically
interacts with de novo DNA methyltransferases [17] and is also
involved in the maintenance of DNA methylation in mammals [18],
Spry2 gene could be irreversibly down-regulated by gain of promoter
DNA methylation. This epigenetic mechanism might also explain the
down-regulation of Spry2 in non-small cell lung cancer [19].

Spry proteins have a short region of sequence similarity in their
amino termini that contains a conserved tyrosine residue. In

mammalian Spry2, this tyrosine residue is located at amino acid
position 55 (Y55), and many of the inhibitory functions of Spry2 are
dependent on this residue [20,21]. In a dominant-negative mutant of
Spry2 (Y55A-Spry2), the tyrosine at position 55, which is crucial for
Spry2 function, is substituted with alanine [22]. In a previous study, we
showed that transfection of Y55A-Spry2 promoted RTK signaling by
inducing ERK activation in osteoblasts, thereby increasing osteoblastic
cell proliferation and osteoblastogenesis after co-stimulation of bFGF
and EGF. By contrast, the Spry2 mutation showed decreased ERK
activation and cell proliferation in gingival epithelial cells. Therefore,
we concluded that the topical administration of Spry2 inhibitors,
bFGF, and EGF may effectively promote the growth of alveolar bone,
maintain the wound space, and interfere with the healing wound area
from gingival epithelial down growth, thereby creating favourable
conditions for periodontal tissue regeneration [23]. However, it is
fundamental to determine the effects of Spry2 on the regulation of
PDL cell functions for establishing an effective therapeutic strategy to
promoted new periodontal tissue regeneration.

In our recent study entitled “Sprouty2 inhibition promotes
proliferation and migration of periodontal ligament cells”, we
demonstrated that Spry2 depletion by bFGF and EGF stimulation
markedly enhanced PDL cell proliferation and migration [24]. Spry2
knockdown increased bFGF and EGF-induced ERK activation and
proliferation in PDL cells, and increased cell migration in a scratch
wound-healing assay and Boyden chamber migration assay. In
addition, we showed that Spry2 inhibition promoted lamellipodia
formation via AKT/phosphoinositide 3-kinase (PI3K) and Rho family
GTPases, specifically via Rac1 activation in PDL cells, thereby
activating cell migration upon stimulation with bFGF and EGF (Figure
1). Moreover, Spry2 inhibition induced a highly inhibitory effect on
osteoblastic differentiation by abolishing the mRNA transcription of
osteogenesis-related genes, such as collagen type I, alkaline
phosphatase, bone sialoprotein and runt-related transcription factor-2.
These results suggested that Spry2-downregulated PDL cells could be
clinically applied to facilitate cell proliferation and migration along the
root surface of the tooth, while interfering with the differentiation of
PDL cells into osteoblastic cells, thereby maintaining the periodontal
ligament space and avoiding “dental ankylosis”, which is characterized
by the direct fusion of the tooth roots to the bone. Therefore,
determining whether Spry2 suppression by bFGF and EGF stimulation
is linked to wound healing of the PDL is an important issue that should
be further investigated in vivo.
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Figure 1: Proposed model of the involvement of Spry2 and a Spry2 inhibitor in growth factor signaling pathway for cell proliferation and
migration in PDL cells. Upon growth factors binding to their receptors and activating the signal pathways, Spry2 becomes activated and
interacts with various components of the MAPK signaling pathway. A Spry2 inhibitor suppresses endogenous Spry2, thereby promoting the
growth factor-induced Raf/MEK/ERK pathway and proliferation in PDL cells. In addition, it enhances lamellipodia formation via AKT/PI3K
and Rho family GTPases, specifically via Rac1 activation in PDL cells, thereby activating cell migration.

Furthermore, we recently showed that Spry2 depletion by
interferon-γ and Porphyromonas gingivalis lipopolysaccharide
stimulation leads to a shift toward M2 alternative activated
macrophage polarization, and plays crucial roles in the resolution of
inflammation by producing anti-inflammatory cytokines such as
interleukin-10 in macrophages [25]. We also found that Spry2
inhibition increased the efferocytosis of apoptotic cells by enhancing
Rac1 activation and promoted the production of growth factors such as
bFGF and EGF [25]. In conclusion, our studies show that Spry2

downregulation in combination with bFGF and EGF stimulation could
enhance PDL cell proliferation and migration without inducing
osteoblastogenesis, further supporting a favorable environment for
ideal periodontal regeneration (Figure 2). Collectively, these results
indicate that the local application of Spry2 inhibitors and co-
stimulation of bFGF and EGF to bony defects may create a suitable
environment for periodontal wound healing by orchestrating PDL cell
proliferation and migration, thereby contributing to the prevention of
tooth ankylosis.
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Figure 2: A schematic image for the clinical application of Spry2 inhibitors. The local application of Spry2 inhibitors and co-stimulation of
bFGF and EGF could be used to facilitate PDL cell proliferation and migration along the root surface of the tooth, while interfering with the
differentiation of PDL cells into osteoblastic cells, thereby maintaining the periodontal ligament space and avoiding “dental ankylosis”, which is
characterized by the direct fusion of the tooth roots to the bone. Consequently, this strategy could create favorable conditions for periodontal
tissue regeneration.
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