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Upon their epochal finding, Watson and Crick found the radius 
of the double helix is about 1 nm [1]. A later research verified that 
the width of the DNA cross-section is between 2.2 nm and 2.6 nm 
in 0.2−10 mM Na+ aqueous solutions [2]. As early as the discovery 
of this “nuclein” (DNA), Miescher had realized it is fundamentally a 
“multi-basic acid” [3]. Therefore, this macromolecule should be easily 
charged and moved by applied electric fields. According to the sketchy 
geometrical and chemical properties stated above, one may boldly 
imagine that the sequence of nucleobases in a certain DNA could be 
determined by electrophoretically driving a single-stranded DNA 
(ssDNA) through a pore with both nanometer-sized diameter and 
length, in the form of an unfolded string rather than a helix. Since the 
some physical or electrical properties of the pore (e.g., the through-
pore electrical impedance) change with time as it is blockaded by or 
partially filled with different nucleotides (A, C, G or T) in the strand 
that is passing through, the sequencing information of the DNA could 
be decoded by recording and analyzing these changes. Compared with 
classical sequencing techniques, this “imaginary” approach seems 
quite advantageous due to the exclusion of time-consuming and costly 
PCR amplification step or chemical labeling and detecting. Although 
the idea sounds like a scientific fiction whilst DNA sequencing is still 
dominated by techniques based on the Sanger method [4], it has been 
being realized and developed for more than 15 years [5-7].

The first nanopore-structure for DNA sequencing is α-haemolysin 
(αHL) [5], an exotoxin produced by Staphylococcus aureus responsible 
for red blood cell’s lysis. This protein can insert itself, or the pore, onto 
lipid bilayers and therefore forms a trans-membrane channel with the 
diameter of 1.4 nm at the minimum [8]. Under certain applied voltage, 
intermittent drops (less than nano-amperes) in the ionic current 
though the channel were recorded and attributed to the blockage 
by the nucleotides. Engineered αHL mutants were later synthesized 
with the aim to optimize the identification of nucleotides [9,10]. Less 
than ten year after the first trial of αHL, also a protein from bacteria, 
Mycobacterium smegmatis porin A (MspA), which belongs to the 
well-known porins or channels in cellular membranes, was found to 
include a unique structure – a single goblet-shaped through hole with 
the narrowest part, a ~1nm-long, ~1nm-wide constriction, near the 
bottom end [11]. This particular structure is obviously beneficial for 
the spatial resolution of short segments of an ssDNA through the pore 
and thus MspA was artificially mutated and adopted as a nanopore 
for DNA sequencing [12]. In addition, another prion, modified outer 
membrane protein G (OmpG) was reported to possess potentials to be 

However, all these nanopores discussed above are membrane 
proteins that may be subject to denaturation and degradation resulting 
from multiple factors in the environment, such as temperature, pH 
value, the existence of reactive or poisonous chemicals, etc. Moreover, 
sizes of the biological channels are not easily controlled even though 
limited modification could be achieved through protein engineering 
[9,12,13]. Solid-state materials with high processability, tunable surface 
properties, low chemical reactivity, satisfactory durability and good 
biological compatibility seem to be alternatives in the nanopore-based 
sequencing for DNA. Materials that are frequently used in electronics, 
such as silicon, silicon nitride, have turned out to be major options for 
solid-state nanopores. An extra advantage for semiconductor-based 
nanopores is the prospective to incorporate their possible commercial 
manufacture into the microelectronic assembly lines.
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The earliest investigation on solid-state nanopores for DNA 
sequencing was reported in 2001 [14]. A double-stranded DNA 
(dsDNA) containing 500 base pairs was transferred through a 5 nm 
silicon nitride pore fabricated by “ion-beam sculpting”. Two year 
later, silicon or silicon-based silicon dioxide pores with diameter 
down to 2~3 nm were drilled by the electron beam of a commercial 
transmission electron microscope (TEM), which is actually a well-
known cause for specimen damage under TEM whereas the researcher 
utilized it to produce nanopores [15]. Up to now, the majority of 
reported nanopores for DNA sequencing are manufactured by these 
two methods [6,16]. Just as biological membranes (e.g. the lipid bilayer) 
sustain the channel proteins, solid-state nanopores need to be opened 
on suspended solid-state ultra-thin films and the fabrication of films 
with nano-scale thickness, which involves multiple nanotechnologies 
[7], should be accomplished prior to the pore-drilling. Nanopores have 
also been drilled on graphene, the ultra-thin two-dimensional material 
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used as DNA-detecting nanopore though the analyte was not ssDNA 
but a common nucleotide, adenosine diphosphate (ADP) [13].

Abstract
History and current developments of nanopores for DNA sequencing are reviewed. Discussions are primarily 

carried out on the two major categories of the devices, biological and solid-state nanopores. Hybrid nanopores are also 
mentioned. Difficulties defying practical applications are demonstrated as well as some possible improvements. A brief 
prospect is given in addition.
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that is theoretically down to one atom-thick, and the corresponding 
DNA translocation was recorded [17,18].

While last few years have seen significant developments in solid-
state nanopores, progresses in their protein-based counterparts 
never cease. The biological nano-channels are still showing better 
performances in many aspects, especially the reduced translocation 
velocity (will be discussed in the next paragraph), than their solid-state 
competitors [7]. There also have been endeavors to functionalize the 
interior surface of solid-state nano-channels with biological molecules 
in order to improve the selectivity in DNA-sensing [19]. Biological-
solid-state hybrid nanopores have also been studied to sense proteins 
[20].

However, challenges are preventing nanopore sequencing 
from practical applications. The primary obstacle, as mentioned 
or indicated in most research papers and reviews in this area, is the 
extremely high velocity of DNA traveling through nanopores. This 
makes measurements and recording quite difficult. Approaches to 
obtain recordable and decipherable signals primarily include two 
categories: increasing the detention time of nucleotide in the channel 
(reducing the speed) and improving the measurement precision. 
Enormous efforts are devoted to the former. During the last 15 years, 
the DNA translocation speed in biological nanopores has been reduced 
by almost four orders [7]. Researchers are also working on novel 
enhanced measurement techniques. The lower section of a αHL mutant 
was verified to include at least two detecting sites, at each of which a 
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