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ABSTRACT

A bioinformatic strategy was proposed for linking ligand Protein Data Bank (PDB) structural fragments to ChEMBL 
IC

50
 bioactivity of Protein Kinases (PKs). A bootstrap procedure, based on exhaustive enumeration, was used to 

assemble, and statistically evaluate, sets of fragments that were enriched for ligands that target PKs in separate branches 
of the kinome tree. Results found that probes comprised of six fragments return 84% correct predictions for branch-
selective PKs ligands. Self-organizing maps were used to cluster the enriched six-fragment probes and, separately, 
the ChEMBL IC

50
 data, to identify branch-selective fragments and branch-chemoselective ligands. A contingency 

table, based on the co-occurrence of branch-chemoselective ligands possessing branch-selective fragments, used for 
Fisher’s exact tests of independence, found an average recovery of 44% for branch-chemoselective ligands. Seven 
percent (7%) of these cases represent exact structural matches to PDB ligands, inclusive of eight Food and Drug 
Administration (FDA) approved oncology compounds. Binding site analysis of enriched branch-selective fragments 
for these FDA ligands found roles for key hydrophobic and non-hydrophobic interactions. Global extension of these 
results found a subset of 402 branch-chemoselective ligands with enriched branch-selective fragments, but without 
crystallographic data, as candidates for selectively targeting PKs. These results extend the use of fragment-selective 
mining of chemical libraries aimed at discovering ligands that target PKs in separate kinome branches.

Keywords: Bioinformatics; Self-organizing maps clustering; Fisher’s exact testing; Ligands

INTRODUCTION

Fragment-based Drug Discovery (FBDD) is a powerful tool for 
discovering leads into small molecule therapies for many human 
diseases [1,2]. The successful application of FBDD is evident from 
the nearly three thousand publications currently listed in PubMed 
Central. FBDD begins with a selection of smaller than ligand 
substructures that are linked together, chemically or in-silico, to 
efficiently propose drug leads; leveraging the reduction of chemical 
space due to fragment-based (versus atom-based) explorations.  A 
significant factor in this success has been the utilization of ligand-
target interaction architecture, especially when seeking selectivity 
[3-5]. Advances in synthetic chemistry have also contributed to 
FBDD’s successes by generating large fragment libraries for testing 
[6]. FBDD offers a broad range of strategies, including, but not 
exclusive to, knowledge-driven focused optimizations of potent 
fragments and fragment-selective surveys of large chemical libraries 
or bioactivity databases [7,8].

Protein kinases (PKs) are exceeded only by G-protein coupled 
receptors as highly desirable therapeutic targets [9,10]. PKs have 
vital roles in cellular signaling, making small-molecule mediated 
interference in signal transduction a highly sought-after goal [11-
13]. Ligands that target PKs achieve potency by having strong 
binding interactions, typically through hydrophobic and hydrogen 
bonding [14]. Finding potent inhibition begins the process of 
achieving selectivity, often addressed using apparently limitless 
medicinal chemistry modifications.  Crystallographic PKs 
complexed with small molecule ligands provide atomic indicators 
for potency and selectivity. Previous studies provide details of PKs-
ligand architecture and others make this information universally 
available [15,16].

Diverse approaches are reported within the body of FBDD literature 
for exploiting PKs ligand binding sites. Notable is the KinFragLib 
effort of Volkamer, et al. [17], where chemically synthesizable 
fragments are used as probes into different regions of the PK’s 
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ligand binding cleft. A slightly different design can be found in 
the work of Lunney, et al. [18] where the Pfizer internal crystal 
database was mined to compile fragments that bind to PKs binding 
pocket. Computational explorations of core structures as templates 
for molecular design appear in Dimova, et al. [19] with supporting 
commentary in Hu, et al. [20]. Many of these FBDD designs are 
aimed at producing large numbers of potentially testable fragments 
(>7k for KinFragLib and uncountable for synthetic 3D fragment 
libraries).

Although the successes of FBDD are widely published, seeking 
improvements that advance the current efforts remains an active 
research goal [21,22].  One area of improvement focuses on assessing 
the performance FBDD for identifying biologically active ligands 
within publicly accessible databases. Strengthening this structure-
activity interface will further enhance the utility of FBDD, by 
providing novel search strategies for identifying ligands that target 
kinome proteins. With these goals in mind, this study proposes 
a joint analysis of kinome ligand fragments and their association 
with biological activity. A two-step design will be used to apply a 
bootstrap procedure that assembles and statistically evaluates sets 
of fragments that are enriched within ligands that target PKs in 
separate branches of the kinome tree and also assess whether these 
kinome branch-selective fragments can be used to mine existing 
databases for ligands with kinome branch-specific chemoselectivity.

The components of this analysis will first, explore ligand 
fragments, derived from existing crystallographic complexes to 
determine statistically validated fragment subsets that are enriched 
for ligands targeting PKs of each kinome branch [23]. Second, 
enriched ligand fragments are used for fragment-selective surveys 
of compounds within public databases aimed at identifying and 
statistically evaluating their co-occurrence with kinome branch-
chemoselectivity. The overarching purpose of this design is to 
link ligand structural features, via their fragments, to PK ligand 
chemoselectivity.

MATERIALS AND METHODS

Study population
PKs constitute one of the largest protein families with over 500 
members encoded in the human genome [24,25]. Kinome-targeted 
inhibitor discovery seeks to find ligands that can bind to specific 
kinases, notwithstanding the fact that all catalytic kinase domains 
share a common folding motif [26]. Two publicly available data 
sources are used such as the Kinase Ligand Interaction Fingerprints 
and Structures (KLIFS) database and the Chemistry European 
Molecular Biology Laboratory database (ChEMBL). The first 
database includes the available crystallographic structures of PKs 
and their co-crystallized ligands. Eukaryotic PKs have been classified 
based on their sequence similarity into seven main branches such 
as protein kinase AGC (AGC), Calmodulin/calcium regulated 
Kinases (CAMK), Casein Kinase1 (CK1), CMGC, STE, Tyrosine 
Kinase (TK) and Tyrosine Kinase-Like (TKL). Sequence variations 
across kinome branches, combined with advances in protein and 
cell-level experimental techniques and an increase in structure-
based knowledge of PKs, finds binding site variations between PKs 
in kinome branches [27,28].  Zhao, et al. [29] have proposed target-
selective binding architectures for these major kinome branches. 
Linden, et al. [45] has also comprehensively examined the inhibitor 
binding site architecture. Across-branch profiling has also been used 
to repurpose Imatinib as an adjuvant treatment for Gastrointestinal 
Stromal Tumors (GIST). The KLIFS database has made the PKs 

crystallographic information freely available, catalogued across 
the major kinome branches. Downloading the KLIFS data yields 
3832 PKs ligands for the seven major kinome branches. The major 
branches with PKs for arms having a unique KLIFS ligand are 
highlighted according to branch color. The Simplified Molecular 
Input Line Entry Specification (SMILES) representation of these 
ligands serves as input for the derivation of fragments. All SMILES 
have been converted to a canonical format using OpenBabel [30].

Second, the ChEMBL database (www/chembl.org) provides 
bioactivity screening results for small-molecule inhibitors of 
kinome PKs [31].  The available dataset (ChEMBL_28) for kinome 
ligands and their targets consists of >500,000 IC

50
 (uM) measures 

across >500 proteins. Filtering these records to eliminate ChEMBL 
ligands with few bioactivity measures (<5) and records with an 
average IC

50
 less than 5.0 and a standard deviation below 0.5, 

yields 22,635 ChEMBL ligands with IC
50

 measures across a total 
of 461 PKs. The threshold-based pruning used here is arbitrary but 
attempts to capture higher IC

50
 ligands while excluding records 

with few measures. This data will be used for associating sets of 
branch-selective fragments to branch-selective chemosensitivity.

Ligand fragmentation
The Rcdk package in the R programming language is used for 
ligand fragmentation. Typically, Murko fragments are considered 
in many Structure Activity Relationships (SAR) studies [32,33]. 
The inventors of this concept define a ring system as one or more 
rings sharing an edge, and a framework as the union of rings plus 
linker atoms connecting them [34]. Rcdk generates fragments 
for rings and linker atoms, requiring, here, a minimum of three 
heavy atoms. Due to the importance of connecting atoms in ring 
systems for binding of ligands to their protein kinase targets, the 
fragments used for analysis consist of rings and their connecting 
atoms (referred to as linkage atoms) [35]. Throughout this analysis 
these sub-structures will be referred to as kinome fragments, or 
more simply, fragments. There are 6347 Rcdk-derived fragments 
for the 3832 KLIFS ligands. Figure 1 displays an example set of 
parent ligands and their Rcdk-derived fragments. The parent 
ligands displayed in this example are all associated with PKs in 
the AGC kinome branch. These ligands target PKAc and have 
the Protein Data Bank (PDB) assigned names of 4uja, 4uj2, 4uj9 
and 4ujb, with NVX, NVV, S3N and BBQ as their ligand names. 
The six fragments associated with these ligands are displayed after 
the parent ligands. Inspection reveals that inclusion of linker 
connected fragments results in shared substructures.  The analysis 
proposed here will treat each fragment as a separate chemical entity 
(Figure 1).

Figure 1: 2D renderings of three kinome ligands that share six RCDK-
derived fragments. The parent ligands are all in the AGC kinome 
branch. Labels for parent ligands include the kinome branch:PDB 
target: PDB name:chain:ligand name. These ligands target PKAc and 
have the PDB targets with assigned names of 4uja, 4uj2, 4uj9 and 4ujb, 
and NVX, NVV, S3N and BBQ as their ligand names. The fragments are 
assigned an arbitrary index (1 through 6347). In this example, fragment 
indices 356, 358, 357, 26, 1 and 9 are ordered by molecular weight. 
These indices and their SMILES appear below each 2D rendering.
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Fisher’s exact test of independence.

Fragment enumeration 
The Boolean data matrix, consisting of 3832 rows (number of 
KLIFS ligands, each identified by its kinome branch) by 6347 
columns is used for analysis. Although the median number of 
fragments per ligand is ~ 6, variations exist, inclusive of fragment 
counts per ligand a high as fifteen and as low as one. The effect 
of these variations on designing a systematic analysis of fragments 
across branches of the kinome tree is illustrated.  The upper 
panel represents a case where three fragments appear in eight 
KLIFS ligands that target three kinome branches (AGC, CK1 and 
CMGC). The lower panel represents a case where many fragments 
(n=12) appear in only six KLIFS ligands, all in the TKL branch. 
In this latter case, only subsets of these twelve fragments appear 
within the six TKL ligands. These extreme cases highlight the need 
to develop a standardized procedure for fragment analysis (Figures 
3A-3C).

The proposed strategy is to enumerate all possible fragment 
combinations per ligand, centered on the population median of 
six; and extended above and below this median, across a range of 
4 to 8 fragments. For future reference, the enumeration results 

Fragment survey
The 15 most frequent KLIFS fragments are displayed in Figure 2, 
where possible International Union of Pure and Applied Chemistry 
(IUPAC) names are assigned. A sample of fragment canonical 
SMILES, chemical names, and IUPAC names are mentioned. 
As expected, phenyl (fragment 1) is the most frequent (n>2k). In 
decreasing order of frequency, fragment 44 is pyridine, fragment 
226 is pyrimidine, a fragment 32 is 7H-purine and fragment 31 
is tetrahydrofuran. Fragment 13 is piperazine, fragment 33 is a 
9-(oxolan-2-yl) purine pyridine and fragment 38 is piperidine. 
Fragments 182 and 125 are different tautomers of 1H-pyrazole. 
Fragment 257 is N-phenylpyrimidin-2-amine, fragment 293 
is cyclopropane, fragment 221 is 1,3-thiazole, fragment 299 is 
morpholine and fragment 412 is cyclohexane. When possible, 
IUPAC fragment names will be referenced, however, fragment 
indices (1 through 6347) with be used throughout the manuscript 
(Figure 2).

Analysis of fragments utilize a Boolean data matrix consisting of 
3832 rows, labelled according to the KLIFS ligand description 
(branch:target name:chain:ligand name), and 6347 columns 
(labeled by fragment indices). The cells in each row are true if 
the ligand contains a fragment and false if it does not. The mean 
number of fragments per ligand is 5.95 ± 3.73, with a median of 6 
fragments per ligand. The determination of fragment enrichment 
is based on whether the sets of ligands within each kinome branch 
(referred to as hits) have fragments that are statistically different 
from fragments in the rest of the kinome branches (i.e., non-hits). 
Branch-specific hits are statistically assessed for enrichment using a 

Figure 2: Summary of the 15 most frequent fragments in the KLIFS 
kinome dataset. Top panel displays the histogram count. Bottom panel 
displays 2D renderings of these fragments and their associated indices. 
Fragments with IUPAC names appear in the text. 

Figure 3: Represents 2D renderings of parent and fragment structures. 
(A): Displays the case of few (n=3) fragments appearing in eight ligands 
spanning three kinome branches.

Figure 3B: Fragments are labelled by their index (1-6437) and molecular 
weight. Parent ligands are labelled by their index (1-3832 PKs), kinome 
branch, PKs name, PDB name for PKs, PKs chain and PDB name for 
ligand.
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will be referred to as 4-mers, 5-mers, 6-mers, 7-mers and 8-mers. 
Enumeration of each -mer is completed as an R-script using nested 
loops. Developing the analysis around these -mers serves two 
purposes. First, the identification of potential PKs based on the 
existence of fragment composition of their ligand is generalized 
to take into consideration the diverse numbers of fragments per 
ligand. For example, a kinome ligand with twelve fragments could 
be used to identify candidate ligands in a screening library that 
possess these twelve fragments. While a ligand with all twelve 
fragments may exist, absence of a hit would yield no information. 
Systematic exploration of ligand candidates with fewer fragments 
can yield screening hits which could be studied further. Second, 
analysis of -mers can be used to apply statistical tests (e.g., Fisher’s 
exact test of independence) for each enumeration to identify sets of 
fragments that are enriched for a specific kinome branch. Therefore, 
the starting Boolean matrix serves as input for enumeration of all 
-mers and subsequent statistical testing for their enrichment within 
each kinome branch.

Fragment enrichment
TThe process begins with the enumerated fragments (i.e., -mers) 
derived from KLIFS. Typically, fragments associated with bioactivity 
are used to conduct SARs. Here, bioactivity is replaced by kinome 
branch and hits are represented by all rows in this matrix that are 
in a kinome branch (either AGC, CK1, CAMK, CMGC, STE, 
TK or TKL). The Boolean matrix, comprised of true and false 
fragment assignments, is used to test whether sets of fragments can 
be statistically associated with hits in a kinome branch. In other 
words, is a ligand’s status of having or lacking a -mer independent 
of its status as a hit (i.e., being in a specific kinome branch).  A 
Fisher’s exact test of independence (McDonald, 2014, Handbook of 
Biological Statistics), applied to each set of enumerated fragments 
(e.g. -mers), yields a p-value for assessing whether fragments 
associated with hit ligands are enriched when compared to their 

appearance in non-hit ligands. Using the example of 6-mers, 
enumeration of KLIFS ligands sharing six fragments (i.e., 6-mers) 
is obtained for the 3832 ligands. These results are segregated into 
6-mers from ligands within (hits) and excluded (non-hits) from a 
specific kinome branch, to generate a contingency table for Fisher’s 
exact testing. Statistically significant cases determine enriched sets 
of -mers within a kinome branch. Quantile-quantile plots (QQ) 
plot [36]. The vector of p-values generated for all kinome branches 
is strongly different from random.

ROC analysis of enriched -mers
Enriched 6-mers can be used to generate ROC curves for determining 
whether their Area under Curve (AUC) values is significantly 
different from random [37]. Testing is based on tabulating the 
enriched fragments within the enumerated results for all ligands 
containing a specific 6-mer and dividing these ligands into those 
included and excluded from a kinome branch.  ROC generates a 
curve for the false positive fraction (cases where an enriched -mer 
occurs for a ligand excluded from a kinome branch) over a range 
of zero to one. The area under each ROC is used to determine 
whether the enrichment results are different from random.

Data clustering of fragments and ChEMBL IC50 data
Numerous statistical tools are now available for clustering data 
[38]. Relying on our prior analysis, the results presented here use 
Self-Organizing-Maps (SOMs) [39-41]. In general, each SOM node 
defines a codebook vector representing the average response for 
members clustered to that SOM node. SOM codebook vectors 
serve as a basis for comparisons to other SOM nodes and for 
statistical testing of within kinome branch preferences. Two data 
sources will be clustered; the first is for fragments with significant 
Fisher’s exact enrichment scores and the second is for the ChEMBL 
IC

50
 data. For purposes of nomenclature, codebook vectors of 

SOMs for each dataset will be identified using subscripted prefixes; 
fragSOM and ChEMBLSOM, respectively. fragSOM patterns are 
used to cluster groups of -mers enriched within a kinome branch, 
while ChEMBLSOM patterns will be used to cluster compounds 
with enhanced chemosensitivity for PKs within a kinome branch.  
While each SOM node represents a cluster of input vectors, 
these nodes can be optimally grouped into meta-clades, based on 
similarity. Statistical methods for deriving meta-clades are based 
on identification of the optimal number of clades from SOM 
codebook vectors. State-of-the art procedures for finding the 
optimal number of meta-clades include the elbow, silhouette and 
gap statistic methods [42].

Identification of ChEMBLSOM nodes with enhanced 
chemosensitivity
Each SOM codebook vector is divided according to IC

50
 values 

within (hit) and excluded (non-hit) from PKs in a kinome branch.  
A Student’s t-test is used to identify IC

50
’s of relatively higher 

chemosensitivity for hit versus non-hit PK IC
50

 values.  Student’s 
p-values less than or equal to 0.05 were further assessed for statistical 
significance by Bootstrap resampling comprised of 1000 Student’s 
t-tests for each SOM node, with random shuffling of each SOM 
codebook [43,44].

Associating fragments to chemosensitivity
ChEMBLSOM provides the framework for linking kinome branch-
specific chemosensitivity, as defined above, to compounds having 
kinome branch-specific 6-mers. To complete this linkage, the 
>22k ligand’s fragments are selected that have enriched branch-
specific 6-mers. The location of each of these compounds on 
ChEMBLSOM will be referred to as its projection, which is based 

Figure 3C: Lower panel represents the case of twelve fragments associated 
with six ligands in the AGC kinome branch.
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2.6% for 8-mers. Speculations regarding this high attrition include 
the fact that many KLIFS ligands have diverse kinome targets, 
thereby making statistical separations between kinome branches 
less likely, based on fragment composition. The boxplots in the 
upper left panel of Figure 6 are used to summarize enriched -mers 
that correctly identify branch-specific PKs. The PKs for all enriched 
-mers are collected and stratified according to kinome branch.  
Each boxplot represents the fraction of correct branch assignments 
(e.g., the number of correctly assigned PKs divided by the total 
number of unique PKs for all -mers).  These results find that the 
fraction of correct assignments has the lowest average value (0.46) 
when using 4-mers and the highest average value (0.84) when using 
6-mers. Qualitatively, the use of 5-mers and above yields a fraction 
of correct cases above 0.7. Superimposed on these boxplots is the 
fraction of starting ligands retained for each -mer after Fisher’s exact 
enrichment filtering. This diagonal line represents the attrition 
discussed above. To review, 4-mers have the largest number of 
ligands and the poorest success rate, while 6-mers yield the highest 
success rate (84%) with the numbers of ligands intermediate to the 
complete range (Figure 6).

Also displayed in Figure 6 are five histograms (one for each -mer) 
where each histogram bar is color-coded according to the fraction of 
PKs associated with enriched branch-selective -mers. For example, 
the leftmost red bar in the 7-mer histogram upper right panel in 
Figure 6 represents the results for the AGC branch. Here enriched 
7-mers for the AGC branch find only PKs within the AGC kinome. 
The remaining histograms for 7-mers consist of mixtures of PKs 
from other kinome branches (i.e., CAMK (2nd bar) has most of 
its PKs in the CAMK branch (yellow), with lower numbers of PKs 
in the STE (blue) and TKL (magenta) branches. In general, the 
majority fraction of each histogram bar is also associated with each 
kinome branch (citing the rightmost TKL histogram for 7-mers, 
where the largest contribution is from PKs in the TKL kinome 
(magenta)). This persists for all -mers; with qualitative differences. 
For example, 4-mers have the highest contributions in each bar 
from PKs in many kinome branches, with no less than 5 branches 
contributing to each bar in the histogram. In contrast, 6-mers have 
the fewest number of histogram bars with contributions from other 
kinome branches. For example, the 6-mer histogram bars for AGC, 

on the best matches of a compound’s input data vector (a vector of 
IC

50
 measures for 461 PKs). The best projection would apply for 

perfect input data. The extent to which the IC
50

 values are less than 
perfect is difficult to determine, however additional measurements 
(costly) may aid in estimating data variation. As an alternative, 
noise can be randomly added to each element of a data vector.  For 
this analysis, noise is obtained from the population distribution 
of standard deviations for all >22k IC

50
 vectors. Re-projecting data 

vectors with 1% error from the population distribution extends the 
best projected SOM node by an average of ± one SOM nodes (e.g., 
2/1056=0.0019).

Flowchart
Figure 4 displays a flow chart summarizing the methods’ 
vignettes. To review, the left arm of the flow chart uses KLIFS 
data as input for deriving fragments, enumeration for generating 
-mers, assessment of statistically enriched branch-selective -mers, 
clustering (fragSOM) and meta-clade assignments. The right arm 
collects the ChEMBL IC

50
 data, identifies the fragments of their 

ligands, clustering (ChEMBLSOM), meta-clade assignment and 
identification of kinome branch-selective chemoselective nodes. 
The two arms merge by associating the enriched branch-selective 
fragments (6-mers) with branch-selective chemosensitivity using 
Fisher’s exact testing for significance (Figure 4).-

RESULTS

Fragment survey
The highest ligand counts are for kinome branches TK (n=1301) 
and CMGC (n=1231) and mirror the high interest for finding 
ligands that target many oncology PKs in these branches. An 
average of 72% of the fragments is unique to each kinome branch 
(range: 81% for TK to 41% for CK1). The relatively high fraction 
of unique fragments supports their consideration, separately, 
or in sets, for mining ligands that might target separate kinome 
branches. Additional support for kinome branch-specific fragments 
appears in Figure 5, where histograms display counts for the 10 
most frequent fragments in the KLIFS dataset, separated according 
to the seven kinome branches. These results reveal that fragments 
are not distributed uniformly, with some fragments being present 
or absent, depending on the kinome branch. Noteworthy in this 
example is the appearance of fragment combinations 17, 314 
and 487, 488, 59, 490 only in the CAMK and CK1 branches, 
respectively (Figure 5).

Summary of enriched -mers 
The enrichment results for all -mers across the seven kinome 
branches are mentioned. In summary, Fisher’s exact filtering 
retains, on average, ~ 10% of the starting ligands for each kinome 
branch, ranging from a high of 15.4% for 4-mers and a low of 

Figure 4: Flow chart summarizing the methods’ vignettes.
Figure 5: Histogram of most frequent fragment counts for all kinome 
branches. The top ten most frequent fragments per kinome branch 
are selected (yielding 22 unique fragments).  Histogram bars display 
the fragment counts across all kinome branches. The legend indicates 
branch colors. Histogram bar for fragment 1 (benzene) has been scaled 
by a factor of four (Ntot for benzene=2283). Note: ( ): AGC; ( ): 
CAMK; ( ): CK1; ( ): CMGC; ( ): STE; ( ): TK; ( ): TKL
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fingerprints, prior SOM analysis has proved an effective clustering 
tool [46]. The top left panel displays the 35 × 20 fragSOM based 
on these fragments. The colorbar at the right of fragSOM identifies 
strongly similar codebook vectors as dark copper, while regions 
with distinct codebook vectors appear as light copper.  The 700 
codebook vectors, organized as a heatmap (R utility gplots: heatmap 
2, Euclidean, Wards.D2), appear in the bottom image. Clustering 
of fragments is evident as colored blocks travelling up from the 
lower left of the heatmap, curving upwards towards the upper 
right. Rather than analyze each fragSOM node (e.g., hundreds), 
the codebook vectors are organized into meta-clades. Using the gap 
statistic in the R programming language, 19 optimal meta-clades 
are found for the 700 SOM codebook row vectors. Meta-clades 
based on SOM codebook rows will be referred to using the capital 
letter ‘C’ followed by the meta-clade number (i.e., C1 through 
C19). The colorbar at the left of the heatmap identifies C1-C19 
optimal meta-clades spectrally from blue to red. The boundaries for 
these 19 meta-clades appear as red lines in the SOM image (upper 
left) and are mapped onto the SOM (upper right), color-coded 
from blue to red according to the colorbar at left of the heatmap. 
Organizing SOM codebook vectors using meta-clades facilitates 
the analysis of fragments within kinome branches. There are 32 
optimal meta-clades based on the 304 SOM codebook column 
vectors (designated FC1-FC32). Their dendrogram and meta-clade 
colorbar appears at the top of the fragSOM heatmap. These results 
find that meta-clades C1-C8, shown in the blue colors in fragSOM 
at the upper left of Figure 7, are associated with relatively few 
numbers of fragments (FC1-FC5). fragSOM meta-clades colored in 
yellow-green-red on fragSOM are associated with column-derived 
meta-clades (FC6 and above) that consist of diverse fragment types. 
Upper right panel in Figure 7 transfers the 19 row-based meta-
clades to fragSOM, preserving the coloring in the bar to the left 
of the heat map. These boundaries appear as red lines in fragSOM 
displayed in the upper left panel (Figure 7).

CAMK, CK1, STE and TKL are dominated by within kinome 
branch cases, with CMGC and TK having small contributions 
from PKs in other branches. Qualitatively these results indicate 
that analyses focused on 6-mers offers the highest potential for 
assigning PKs to their correct kinome branch.

A further check of PKs ligands identified from the 6-mer enrichment 
results, finds many that are designated as important therapeutic 
targets. The number of PKs associated with ligands containing 
enriched 6-mers is displayed as histograms. Noteworthy are the 35 
PKs for the tk kinome branch: with EphA2, ABL1, EGFR and ALK 
as most frequently occurring PKs. Consequently, while attrition 
due to filtering for statistically significant enrichment eliminates 
most of the PKs in the KLIFS database, those that remain include 
many important therapeutic targets.

ROC analysis
The ROC results for six of the seven kinome branches are 
significant; with AGC flagged as degenerate due to the absence of 
false positives in the enriched set. The ROC curves for each kinome 
branch are displayed. The most significant result is for TKL with 
a p-value of 9.52e-23 and a fitted AUC of 0.903, while the least 
significant case is for CK1, with a p-value of 0.0389 and a fitted 
AUC of 0.621. While the utility of ROC measures of accuracy, 
sensitivity and specificity remain under debate, the values listed are 
reasonable, with, for example, accuracy values ranging from 34.7 
(CMGC) to 73.9 (TK) [45].  Collectively, these results support the 
existence of 6-mers specific for each kinome branch.

Data clustering of fragments
Figure 7 displays fragSOM for the 6-mer data. There are 8002 
6-mers with significant Fisher’s exact enrichment scores. There are 
304 unique fragments within this set of 6-mers.  The input matrix 
for SOM clustering consists of 8002 rose by 304 columns, where 
the fragments within each 6-mer are assigned the value of one and 
zero otherwise. Drawing from the analogy of clustering molecular 

Figure 6: Upper left panel displays a composite boxplot summarizing the mean and standard deviation for the fraction of kinome PKs (y-axis) for 
ligands are identified as having enriched -mers. The diagonal solid line (square symbols) indicates the relative fraction of starting ligands that survive 
Fisher’s exact testing. The five additional barplots represent the distribution of ligand counts for 4-mers through 8-mers.  For example, the 7-mer 
barplot in the upper right corner finds that all enriched fragments are associated with the AGC branch, whereas enriched fragments associated 
within the TK branch also include PKs in the TKL and CK1 branches. Note: ( ): AGC; ( ): CAMK; ( ): CK1; ( ): CMGC; ( ): STE; ( ): TK; 
( ): TKL
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Data clustering of ChEMBL IC50 data
The ChEMBL dataset, comprised of 22635 ChEMBL compounds 
with IC

50
 measures against 461 PKs, is used to generate 

ChEMBLSOM. Figure 8 displays ChEMBLSOM (upper left panel), 
the heatmap of codebook vectors (upper right panel) and the regions 
associated with the optimal meta-clades (red boundaries and vertical 
colorbar).  SOM tools (based on the ratio of the first 2 principal 
components of the data matrix) determined a map size of 44 rose 
by 24 columns. Each of these 1056 SOM nodes identifies clusters 
of ChEMBL compounds with similar IC

50
 measures. In this regard, 

the >22k records analyzed using SOMs results in a 22-fold data 
reduction.  ChEMBLSOM nodes are colored in copper (upper left 
panel), indicating codebook vectors that are similar (dark copper) 
and distinct (light copper). Observation finds that the distinctive 
codebook vectors are mostly located around the perimeter. The 
upper right panel displays a heatmap (R utility gplots::heatmap.2) 
for codebook vectors, with the dendrograms at the left and top 
representing row and column clustering of 1056 codebook vectors 
and 461 response vectors, respectively. The colored bar adjacent 
to the leftmost dendrogram identifies, spectrally (blue to red), the 
22 optimal meta-clades for the codebook vectors (R::clus_gap, 
Euclidean, Wards.D2, Hartigan-Wong).  The red boundary lines 
in the upper left panel identify the regions associated with these 
optimal meta-clades. For comparison, associative clustering (R 
utility apcluster) of these codebook vectors also finds the optimal 
number of 22 meta-clades [47,48]. The 22 optimal meta-clades 
are mapped to ChEMBLSOM displayed in the lower left corner, 
organized spectrally from blue to red.

The lower right panel in Figure 8 displays a histogram for the 
topmost 15% of significant ChEMBLSOM nodes for the 22 meta-
clades (C1-C22). Inspection finds meta-clades comprised of a 
single kinome branch (C3, C15 and C17 for CAMK, TK and TKL, 
respectively) and mixtures (C6 and C13 are comprised of TK and 
TKL members, C14 is comprised of AGC and CMGC members). 
At the level of ChEMBLSOM meta-clades, significant nodes based 
on branch-selective chemosensitivity are comprised of a majority 
fraction from only one kinome branch (Figure 8).

Identification of SOM ChEMBL nodes with enhanced 
chemosensitivity
Figure 9 illustrates the kinome branches AGC and TKL. 
ChEMBLSOM is depicted as a wireframe of (44 × 24) hexagons, 
where colored hexagons designate, as the t-statistic, significant 
ChEMBLSOM nodes. Each panel identifies the statistics for each 
node. For example, node (1,13) for AGC has a statistical significance 
of 4.583e-3 when 39 IC

50
 values for PKs in the AGC branch are 

tested against the 103 IC
50

 values not in the AGC branch. The 
sorted IC

50
 values appear as adjacent histograms, where the within-

kinome-branch IC
50

’s are depicted in black (Figure 9).

Associating fragments to chemosensitivity
The intersection of ChEMBLSOM projections with nodes having 
branch-specific chemosensitivity is used to construct a contingency 
table for Fisher’s exact testing. These results report the p-values 
for these tests and their corresponding contingency matrix (true 
positives, false positives, true negative and false negatives).  An 
example for TKL appears in Figure 10. The upper and lower 
panels display the TKL results for perfect and noisy projections, 
respectively.  The panel at the left displays the ChEMBLSOM TKL-
chemosensitive nodes (n=86), while the middle panels display the 
perfect (upper; 224 chembl 6-mers, 82 nodes) and noisy (lower; 241 
chEMBL 6-mers, 323 nodes) projections for ChEMBL compounds 

The fragSOM clustering of enriched -mer data organizes this data 
according to -mer composition. Each fragSOM node’s cluster 
members include labels for the parent ligand containing each -mer 
and its kinome branch. Meta-clades are proposed for grouping the 
clustered data. Therefore, meta-clades utilize codebook vectors, 
organized into an optimal number of meta-clades, to provide input 
for analysis.  fragSOM analysis for each -mer finds a consistent 
number of optimal meta-clades (4-mer:23, 5-mer:25, 6-mer:19, 
7-mer:19 and 8-mer:22). The fractional contribution of kinome 
branch members of all -mers is displayed as histograms. Inspection 
reveals that each histogram has meta-clade bars composed of 
progressively fewer numbers of mixed kinome branches with 
increasing -mer count.  Inspection also reveals that the results for 
7-mers and 8-mers appear to have achieved clustering due to a bias 
towards relatively greater numbers of members in the TK kinome 
branch.  In contrast, the 5-mer and 6-mer results yield comparable 
numbers of optimal meta-clades, with 6-mers having the fewest 
number of optimal meta-clades with mixed kinome branches. 
These results support the use of 6-mers for further analysis. 
For comparison to the fragSOM results, clustering of the 6-mer 
data was also completed using Stochastic Neighbor Embedding 
(R::Rtsne). To summarize, hierarchical clustering of Rtsne results 
was unsuccessful at separating kinome branch members based on 
fragment composition.

Figure 7: Upper-left panel displays fragSOM generated from the matrix 
of 6-mers (8002) by 304 unique fragments.  fragSOM is colored in copper 
where regions of light copper indicate diverse fragments, while dark 
regions indicate cases of similar fragments. The fragSOM dimensions of 
35 × 20 yield 700 codebook vectors, each with 304 fragments. fragSOM 
represent clusters of 6-mers with similar fragments. Each fragSOM 
node represents the average of the 304 fragments in each cluster. The 
lower panel displays the heatmap of codebook vectors. Heatmap colors 
define codebook vectors from high (yellow) to low (purple). fragSOM 
nodes lacking a fragment appear as white. Dendrograms (Euclidean, 
Wards.D2) appear to the left and above the heatmap. Clusgap analysis 
(R:cluster::clusgap) of this heatmap finds 19 meta-clades (C1-C19) 
for the codebook rows and 32 meta-clades (FC1-FC32) for codebook 
columns. The colored bars at the left and above the heat map identify 
these meta-clades (spectrally color-coded from blue to red). Note: ( ): 
AGC; ( ): CAMK; ( ): CK1; ( ): CMGC; ( ): STE; ( ): TK; ( ): 
TKL.
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for true positives/negatives and false positive/negatives. As a result, 
projections, when applying noise to the data, will influence all 
members of the contingency table. Noteworthy is the comparable 
Fisher’s exact p-values for perfect and noisy data. Noise-perturbed 
data does, however, yield greater numbers of true-positive ChEMBL 
compounds when compared to perfect data (Figure 10).

containing TKL-specific 6-mers. The right-most panel identifies the 
intersecting nodes used as the true positive value in the contingency 
table (n=17 and 42, respectively).  The Fisher’s exact p-values for 
these cases are 1.398e-4 and 1.642e-4, respectively. Inspection of 
the ChEMBLSOM projections for noisy data in Figure 10 may 
appear to increase the likelihood of more true positives. However, 
by design, the contingency table for Fisher’s exact testing accounts 

Figure 9: Summary of results for ChEMBLSOM for kinome branches AGC (left panel) and TKL (right panel). ChEMBLSOM appears as a wireframe 
of hexagons, where only the significant Student’s t-tests are colored as their t-statistic. Adjacent to each ChEMBLSOM are histograms of IC

50
 activity for 

nodes (1,23) and (20,13) for AGC and nodes (9,2) and (30,11) for TKL. Colorbars correspond to the Student’s t-static values, (red: high and blue: low).

Figure 8: Upper left panel displays ChEMBLSOM for the 22635 × 461 input matrix. ChEMBLSOM is colored in copper where regions of light 
copper indicate diverse IC

50
 values, while dark regions indicate cases of similar IC

50
 measures. Each ChEMBLSOM node represents a cluster of 

ChEMBL compounds with similar IC
50

 values. The upper right panel displays the heatmap for codebook vectors (each vector has 461 members).  
Heatmap colorbar represents low to high IC

50
 values spectrally from purple to orange. R::Clusgap analysis of codebook vectors finds 22 optimal 

meta-clades (Euclidean, Wards.D2, Hartigan-Wong), designated as C1-C22. The color bar at the left of the heatmap identifies these 22 meta-clades 
spectrally from red to blue. The image in the bottom left maps the optimal meta-clades. The lower right panel displays a histogram for the topmost 
15% of significant ChEMBLSOM nodes for the 22 meta-clades. These results support the clustering of codebook vectors into different meta-clades. 
Note: ( ): AGC; ( ): CAMK; ( ): CK1; ( ): CMGC; ( ): STE; ( ): TK; ( ): TKL



9

Covell DG OPEN ACCESS Freely available online

Drug Des, Vol.12 Iss. 2 No:1000244

meta-clades with memberships associated with only one kinome 
branch (TK:C1,C2,C3 AGC:C4 TKL:C6,C9,C16 CK1:C7 
CMGC:C8,C13 CAMK:C11,C17 STE:C15). In contrast, fragSOM 
meta-clade C19 consists of a mixture of six kinome branches. Based 
on these results, fragment compositions exist for PKs within a 
single kinome branch and shared between kinome branches. The 
middle panel in Figure 12 lists the meta-clades C1-C19 (column 
1) the fragments associated with these fragSOM meta-clades 
(column 2), the number of 6-mers (column 3) and the kinome 
branch (column 4). Fragments associated with meta-clades are 
compiled from the sets of enriched branch-selective 6-mers. The 
most frequently occurring fragments, ordered from the highest 
frequency, are 226,1,13,44,38,88 and 459 and are highlighted 
in yellow. Inspection would indicate that the most frequently 
occurring fragments do not appear to constitute fingerprints for 
specific kinome branches. However, sets of fragments (e.g., 6-mers) 
may represent a more powerful screening tool when compared to 
fragment frequency.

The lower panel in Figure 12 displays a distribution histogram for 
the 32 fragSOM meta-clades (FC1-FC32) across the 19 fragSOM 
meta-clades (C1-C19).  The colors for FC meta-clades are consistent 
with the colorbar in Figures 7 and 11. Inspection of this histogram 
finds a non-uniform distribution of FC meta-clades across the 
fragSOM meta-clades. For example, FC1-FC8 (depicted as shades 
of blue) dominate the TK-specific fragSOM meta-clades C1-C3. 
The middle clusters (C4-C9) include contributions from fragments 
in FC11-FC19 (shades of yellow-orange). The right-most clusters 

Cluster-based association of fragment composition to 
kinome branch
The following analysis is used to associate sets of fragments (i.e., 
-mers) to a kinome branch. The enriched 6-mers used for fragSOM 
clustering represents all unique sets of 6-mers that pass the Fisher’s 
exact enrichment test. Ligands with more than six fragments 
included all combinations fragments in the enumerated 6-mers. 
Such cases will have five core fragments, plus all combinations 
of fragments above five that exist for a ligand, that also pass the 
Fisher’s exact test. Consequently, if a ligand has ten fragments, 
enumeration yields five records composed of the core five 
fragments, repeated for each of the five additional fragments from 
its set of ten. The 32 fragment meta-clades (R::clusgap), labelled as 
FC1-FC32, and their fragment membership (as fragment indices) 
are listed in the top panel of Figure 11. The colorbar at the right 
of this panel is replicated (inverted) from above the heatmap in 
Figure 7.  The lower panel in Figure 11 displays the dendrogram for 
the 6-mer fragments (replicated from Figure 7). Noteworthy is the 
existence of 15 meta-clades with only one fragment. In contrast, 
meta-clade FC32 consists of 163 fragments. The distribution of 
fragment memberships in meta-clades FC1-FC32 will be analyzed 
later based on the 19 ChEMBLSOM meta-clades (Figure 11).

The top panel in Figure 12 displays the 6-mer histogram for the 
19 fragSOM meta-clades (labelled C1-C19) identified (R::clusgap) 
for fragSOM. The histogram bars are color-coded according 
to kinome branch PKs membership (discussed in Methods: 
summary of enriched -mers). These results find thirteen fragSOM 

Figure 10: Summary of results for ChEMBLSOM projections for kinome branch TKL. ChEMBLSOM appears with the 22 optimal meta-clade 
boundaries shown as solid lines. Left-most panel shows ChEMBLSOM nodes that have significant Student’s t-test values for TKL (n=86).  The middle 
panels in both rows display the projection nodes for ChEMBL compounds containing the 6-mer probes associated with each kinome branch, based on 
perfect data(n=82) and noisy data (n=323). The right-most panels identify the intersection ChEMBLSOM nodes from the left and middle panels (n=17 
and 42, respectively). On average 58% (13143/22635) of the ChEMBL compounds are associated with chemosensitive ChEMBLSOM nodes.  Within 
these compounds, 8% (984/22635) have branch-selective 6-mers. These compounds project to 230 and 683 ChEMBLSOM nodes based on perfect 
and noisy data, respectively.
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meta-clades FC1-FC32 displayed above the heatmap in Figure 7.    
Notably, contributions from less frequently appearing fragments 
are important for ligands that target non-TK kinome branches. 
These results indicate the importance of less frequently appearing 
fragments within sets of enriched 6-mers (Figure 12 and Table 1).

have contributions from FC20 and above (shades of red). Note 
that FC32, consisting of 163 enriched fragments, is excluded from 
this histogram. These results are consistent with the heatmap in 
Figure 7 and the dendrogram to the left (displaying fragSOM meta-
clades C1-C19; also shown in Figure 11) and fragSOM fragment 

Figure 11: Top table lists the fragments for each of the 32 meta-clades (labelled FC1-FC32). Color bar at the right corresponds to the 32 meta-
clades (R:clusgap). Dendrogram at the bottom is based on the fragSOM column vectors. The horizontal and vertical color bars represent the 
32 optimal meta-clades. Two-hundred and forty-seven of the 304 (82%) KLIFS 6-mers exist in the ChEMBL fragments. There are 3119 mutual 
fragments between the KLIFS (3119/6347=0.491) and CHEMBL (3119/23411=0.133).
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Figure 12: Left histogram represents the branch membership for the 19-meta-clades (C1-C19) from fragSOM. Right histogram displays the 
distribution of the FC1-FC32 fragment meta-clades for each of the 19 fragSOM meta-clades, colored according to FC composition. Note: ( ): 
AGC; ( ): CAMK; ( ): CK1; ( ): CMGC; ( ): STE; ( ): TK; ( ): TKL

Table 1: Table lists the fragment composition for each fragSOM meta-clade.

fragSOM meta-clade Fragment indicies 6-mers branch

C1 1,13,44,88,226,257,459,2387,2441,2442,2443,2697,2698,2699 943 TK

C2 1,13,44,88,226,257,459,2387,2441,2442,2443,2697,2698,2699 857 TK

C3 1,13,17,38,44,88,226,257,374,375,459,1907,2387,2441,2442,2443,2697,2698,2699,4472 1208 TK

C4 1,38,71,72,73,75,76,77,78,79,81,82 925 AGC

C5 1,125,226,257,293,522,523,524,525,526 210 CAMK

C5 1,26,125,226,229,293,509,522,524,525,527,528,529,530 217 STE

C6 38,182,216,293,2987,3671,3674,3676,3677,3678 86 TKL

C7 182,226,293,412,1268,1269,1270,1271,1272,1273 211 CK1

C8 1,9,13,44,93,226,1662,1988,1993,1995,1998 448 CMGC

C9 1,13,93,498,499,517,518,519,520,3315,3316,3317,3318 212 TKL

C10 1,38,498,499,500,501,502,503,504 84 TKL

C10 1,38,498,499,500,501,502,503,504 84 CAMK

C11 1,13,38,78,754,755,756,757,758,759 211 CAMK

C12 1,13,221,226,232,1573,2768,2769,2770,2771 210 TK

C12 1,221,226,1267,1871,3403,3417,3462,3463 84 TKL

C13 1,226,521,725,2083,2128,2129,2133,2134,2135 211 CMGC

C14 1,44,57,59,1310,1311,2001,2002,2003,2004 210 CMGC

C14 1,59,226,277,1274,1275,1276,1277,1278,1279 210 CK1

C15 1,44,893,1699,2652,3213,3214,3215,3216,3217 211 STE

C16
1,3,44,182,221,299,314,417,423,424,490,498,675,738,877,896,934,941,1118,1285,1379,14

52,1453,1454,1482,1592,2558,2562,2564,3137,3144,3869,3870
218 TKL

C17 1,13,44,93,760,761,762,763,764,765 211 CAMK

C18 1,13,88,459,539,3116,3511,3512,3513 84 TKL

C18 1,9,13,88,226,459,507,3116,3118 80 STE

C19
1,2,3,4,13,38,44,93,125,139,216,293,299,326,468,561,636,637,725,964,965,966,967,1261

,1568,1699,2652,3135,3137,3138,3145,3224,3226,3241,3243,3248,3249,3250
304 STE

C19
1,2,13,38,44,94,125,133,216,221,226,412,513,561,697,759,806,848,1345,15

73,1574,2520,3959,3960,3961,3962,4089,4493,4494,4663,4664,5004,5008,5009
198 TK
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C19
1,2,13,44,93,125,226,396,412,521,787,829,890,982,1029,
3321,3322,3365,3367,3568,3569,3570,3591,3592,3593 31 TKL

C19
1,13,44,93,125,128,138,226,259,293,498,517,703,1040,1044,1114,1193,1194,1195,1196,

1504, 1662,1818,1829,1834,1988,1993,1995,1998,2025,2027 19 CMGC

C19
1,2,9,13,26,38,44,93,139,261,299,459,508,517,561,636,637,660,661,662,663,793,794,85

6,857,858,859,877,934,960,961,962,963,1170,1171
13 CAMK

C19
1,9,17,26,38,121,129,154,155,156,208,209,226,252,253,254,297,299,300,301,308,309,35

6,357,358
11 AGC

Note: CAMK: Calmodulin/calcium regulated Kinases; CK: Casein Kinase; TK: Tyrosine Kinase; TKL: Tyrosine Kinase-Like 

The following result illustrates of the importance of sets of 
fragments (i.e., 6-mers) towards identification of ligands that target 
a specific kinome branch. Thirteen ChEMBL compounds with 
chemoselective IC

50
 activity against PKs in the AGC branch are 

displayed. These PKs ligands contain only three 6-mers: 121, 226, 
297, 299, 300, 301 or 38, 121, 226, 297, 308, 309 or 88, 121, 226, 
297, 308, 309. While each set of 6-mers contain at least one of 
the most frequently occurring fragments, the composition of less 
frequent fragments also plays an important role in targeting to a 
specific kinome branch.

SOM analysis of chemosensitivity
This result identifies ChEMBLSOM nodes with codebook vectors 
that have significantly greater IC

50
 measures for ligands that target 

PKs in each kinome branch. Recall that each ChEMBLSOM node 
represents the average IC

50
 response of the 461 kinome targets. 

A Student’s t-test is used to conduct comparisons between IC
50

 
measures that are included and excluded from each of the 7 kinome 
branches.  Table 2 lists the results for Fisher’s exact testing for the co-
occurrence of ChEMBL compounds with branch-selective 6-mers 
and branch-selective chemosensitivity (cf. Figure 9 for examples of 
branch-selective chemosensitivity). P-values range from the best, of 
2.08e-5, for CMGC to the worst, of 3.67e-2, for CAMK (using noisy 
data). These results find a low of only 3 true-positive ChEMBLSOM 
nodes with projections of 4 ChEMBL compounds for CK1, to a 
high of 82 chemblSOM nodes with 133 ChEMBL compounds for 
TK. The former result, as well as the results for kinome branch 
STE, has the lowest representation in the starting KLIFS dataset 
and the fewest ChEMBL IC

50
 data against their PKs. Despite this 

modest representation, significant Fisher’s exact p-values are found 
for these as well as the remaining kinome branches. The results for 
perfect data yield generally similar results, albeit statistically weaker, 
noting the lower values for true-positive ChEMBLSOM nodes and 
true-positive ChEMBL compounds withing these nodes. Within 
the 984 ChEMBL compounds having enriched 6-mers, 434 (44%) 
share enhanced chemosensitivity (17% with perfect data). This 
result represents a strong hit rate for associating structure (e.g., 2D 
fragment composition) with chemosensitivity (i.e., IC

50
). Retrieving 

the ChEMBL IC
50

 values for these hits followed by identifying the 
median rank of IC

50
 values within chEMBLSOM projections finds 

an average median rank of 29%, with the lowest average median 
rank of 22% for TKL. Collectively, these results indicate that 
rankings based only on branch-selective chemosensitivity of IC

50
 

appear in the upper 3rd of all values (Table 2).

Thirty-two (32) of the true positive ChEMBL compounds (7% 
32/434) share exact 2D matches with KLIFS ligands.  The 
intersection of these ChEMBL compounds with KLIFS data 

finds 93 PKs (71 for perfect data).  The KLIFS records for the 32 
matching ChEMBL ligands are lsited. Evident from this table is 
the appearance of KLIFS ligands bound to numerous PKs; with 
13 having two or more binding partners (STI:13, 1N1:13, DB8:11, 
VGH:9, TAK:5, P06:4, FB8:4, GUI:3, 6QB:3, 6GY:3, T3C:2, 
3FE:2 and QUN:2). These 32 matching ligands are associated with 
42 PDB PKs, with 18 of them appearing more than once (AKL:11, 
ABL1:8, CKD2:6, SRC:5, LCK:4, Erk2:4, BRAF:4, MST2:3, 
EGFR:3, DDR1:3, CHK2:3, TAK1:2, p38a:2, LOK:2, Erbb3:2, 
EphA2:2, CDC2:2, BTK:2 and ALK2:2). Instances of multiple 
targets paired with multiple ligands find nearly all to involve PKs in 
the same kinome branch. For example, 12 of the 13 PKs for STI, 10 
of the 13 PKs for 1N1 and 9 of the 11 PKs for DB8 are in the TK 
branch. In general, ligands targeting multiple PKs in the non-TK 
branches all involve within-branch partners.

Recall that KLIFS data provides PKs and ligand pairs, while the 
ChEMBL IC

50
 data measures IC

50
 for 461 PKs for >22k ChEMBL 

compounds. Merging independently constructed branch-specific 
6-mers and independently constructed ChEMBL compounds with 
branch-specific chemosensitivity finds 32 2D-matching ligands that 
are known to co-crystallize with 42 important oncologic PKs. Co-
occurrence of exact 2D KLIFS matches, that also pass the Fisher’s 
exact enrichment test, appears to be rare, statistically significant 
and yield exact matches to known ligands. It is difficult to assess the 
strength of these results for applications to other public databases. 
However, their existence offers support for this design to yield true 
hits. Of equal importance are the cases without exact matching 
PKs. Here there are 402 (434-32) non-structurally matching PKs 
ligands as candidates for further studies of kinome branch-targeting 
compounds.

ChEMBL compounds with enriched 6-mers and branch-
chemosensitity can also be evaluated for IC

50
 potency within the 

original dataset of >22k IC
50

 values. Figure 13 displays a histogram 
of average IC

50
 values for the true positive ChEMBL compounds 

for each kinome branch. Seven histogram bars are displayed for 
each kinome branch, where bar height in each group represents 
the kinome group average IC

50
 for the true positive ChEMBL 

compounds, with each bar color-coded according to kinome 
branch.  The asterisks identify the IC

50
 values within each kinome 

branch. Inspection finds that AGC, CMGC, STE, TK and TKL 
have their highest average IC

50
 values within their respective 

kinome branch. The exception is for CAMK which is ranked as the 
3rd highest average IC

50
. These results complete the loop, starting 

from data, to analysis and back to starting data, yielding results that 

support the overall design (Figure 13).
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Table 2: Fisher’s exact results for co-occurrence of SOMChEMBL nodes with ligands having branch-chemoselective fragments and SOMChEMBL 
nodes with branch-chemoselectivity. Colum 1: branch, Column 2: #Chembl compounds with branch-specific 6-mers, Column 3: # true positive SOM 
nodes (perfect data), Column 4: # true positive ChEMB compounds (perfect data) in true positive SOM nodes, Column 5: p-value for Fisher’s exact 
testing (perfect data). Columns 6-8 list the values corresponding to Columns 3-5 when using noise-contaminated data. Columns 4 and 7 also list the 
contingency matrix values (tp,fp,fn,tn) for Fisher’s exact testing. Yellow highlighting indicates TP counts. Green highlighting indicates the count of 
ChEMBL compounds in true positive chemblSOM nodes.

 Fragments
#ChEMBL with 

6-mers
#tp SOM nodes

#tp ChEMBL 
cmpds (perfect)

p-value #tp SOM nodes
#tp ChEMBL 
cmpds(noisy)

p-value

AGC 45 5
13              

5,17,42,992
2.01E-03 12

22         
12,79,35,930

3.41E-04

CAMK 86 4
5                  

4,32,47,973
9.07E-02 12

54         
12,133,39,872

3.67E-02

CK1 40 1
1                  

1,10,9,1036
9.98E-02 3 4 C19

       3,47,7,999 9.51E-03 C19 C19 C19 C19 C19 C19

CMGC 263 23
59                 

23,73,75,885
5.24E-06 54

97        
54,319,44,639

2.08E-05

STE 79 3
3         

3,32,7,1014
3.40E-03 5

5           
5,144,5,902

7.31E-03

TK 247 28
49          

28,84,132,812
2.71E-03 82

133         
82,304,78,592

2.66E-05

TKL 224 17
41       

17,65,69,905
1.40E-04 42

119         
42,281,44,689

1.64E-04

Total
984

- 171/984=0.173  - - 434/984=0.441 - 
-0.08

Note: CAMK: Calmodulin/calcium regulated Kinases; CK: Casein Kinase; TK: Tyrosine Kinase; TKL: Tyrosine Kinase-Like; SOM: Self Organizing Maps

DISCUSSION

FBDD has already achieved noteworthy success. Obstacles and 
challenges remain when researching goals aimed at enhancing the 
potential of FBDD.  Auxiliary tools, such as proposed here, aimed 
at discovering ligands that selectively target PKs, offer additional 
ways to explore applications of FDBB. The primary goal of this 

work has been to dissect PKs ligands (KLIFS) into fragments 
(RCDK) and, where possible, assign sets of fragments (-mers) to 
branch selective PKs (Fisher’s exact testing). This step is followed by 
screening and statistical testing of bioactivity databases (ChEMBL) 
for ligands with branch-selective fragments that also exhibit branch-
selective chemoselectivity (IC

50
). The details of this analysis include 

fragment generation, fragment surveys, fragment enumeration, and 

Figure 13: Histograms of the average IC
50

 responses for the true positive ChEMBL compounds. The IC
50

 values for true positive ChEMBL hits are 
grouped by kinome branch and used to generate an average IC

50
 response. The seven sets of histogram bars represent the kinome branch averaged 

IC
50

 for each set of true positive ChEMBL hits. As an example, there are 22 true positive ChEMBL hits for AGC. The average IC
50

 responses of 
these 22 ChEMBL compounds for each kinome branch are, ordered from high to low, AGC (red), CAMK (yellow), TK (purple), CK1 (green), STE 
(blue) and CMGC (teal).  Absence of a histogram bar indicates no IC

50
 values. Note: ( ): AGC; ( ): CAMK; ( ): CK1; ( ): CMGC; ( ): STE; 

( ): TK; ( ): TKL
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assignments of branch selectivity difficult, based only on KLIFS 
structural data, the enriched 6-mers offer a resolution. Recall 
that the enriched 6-mers are specific for each kinome branch and 
a requirement for screening of ligands associated with a specific 
kinome branch is the presence of at least one enriched 6-mer. For 
all the ligands cited above, the anomalous entries do not possess 
branch-specific enriched 6-mers. In other words, co-crystallizations 
outside the majority kinome branch for each case can be excluded 
based on their lack of statistical support for enriched branch-
selective 6-mers [50].

Cases exist where enriched branch-selective 6-mers are shared across 
kinome branches. The 6-mer containing fragment N-(4-piperazin-
1-ylphenyl)pyrimidin-2-amine (fragment 1513) is enriched in both 
the TKL and CMGC branches. There are six TKL and six CMGC 
KLIFS complexes with ligands having fragment 1513. Figure 14 
displays the 2D image for these ligands, where fragment 1513 is 
highlighted in green. Examination of these ligands finds that diverse 
structures have been appended to the base fragment 1513. Ligand 
binding site to target Amino Acid (AA) projections of fragment 
1513 for these 12 structures are displayed [51-55]. Fragment 
1513 is composed of fragment 13 (piperazine) and fragment 257 
(N-phenylpyrimidin-2-amine). PKs AAs nearest (5 Å) to fragment 
257 consist mainly of hydrophobic residues, interspersed with 
non-hydrophobic residues, while fragment 13 is mainly solvent 
exposed. Taking TKL:ALK2:5JUX as an example; KLIFS analysis 
finds hydrophobic interactions for VAL214, VAL222, ALA233,  
LEU263, THR283, HID284, TYR285, HID286, GLU287, 
MET288, GLY289, LEU343 and ALA353, with key interactions in 
the hinge region provided by TYR285(aromatic) and HID286(H-
bond donor).  Variations of this general theme are repeated in the 
other eleven structures in this set, all exhibiting key hydrophobic 
interactions with fragment 1513, inclusive of aromatic and H-bond 
donor and acceptor interactions in the hinge region.  Evident from 
this example is the limitation that enriched 6-mers. While capable 
of excluding most of the kinome branches, in this example, it 
does not distinguish between ligands targeting either the TKL or 
CMGC branch (Figure 14).

fragment enrichment testing for kinome branch selectivity. SOMs 
were used, separately, to cluster enriched fragment and branch-
selective bioactivity data and provide meta-clades for assisting 
in cataloging the results. Each step in this process was aided by 
statistical measures for observed results. In summary, the auxiliary 
tools provided here extend confidence in applications of FDBB for 
discovering ligands that selectively target PKs in kinome branches.

An application of these results can be used to screen additional 
databases. For example, enriched 6-mers can be used to mine the 
Abbott legacy screening dataset published in 2011 [49]. Abbott 
screened 1497 compounds against 172 protein targets. Filtering 
(average (IC

50
)>5.5) and selecting protein targets with a coefficient 

of IC
50

 variation above 0.1, reduced this data to 1056 Abbott 
compounds tested against 156 protein targets. Thirty-three of these 
filtered Abbott compounds have enriched KLIFS 6-mers, yielding 
an apparent hit rate of only 3%. However, applying more stringent 
filtering (average (IC

50
)>6.6) with a target IC

50
 standard deviation 

above 0.7, finds only 37 compounds. Thirty-three compounds are 
shared in the KLIFS and Abbott structures. Intersection of these 
sets finds 10 compounds in common; to yield a hit rate of nearly 
30%.  Parsing the activity values within this intersection finds 28 
protein targets comprised of twenty-three proteins in the TK branch 
(ABL1, ACK1, ALK, AXL, BLK, CSF1R, EGFR, ERBB2, ERBB4, 
FGFR1, FLT1, FLT3, FRK, IGF1R, JAK2, KDR, LCK, LRRK2, 
LTK, LYN, PDGFRB, RET and SRC), two in the CAMK branch 
(PRKCN and PRKAA1), one in the STE branch (MAP4K5), one in 
the CMGC branch (CLK4) and one in the TKL branch (ACVR1).

An apparent anomaly, notably for cases where the same ligand co-
crystallizes with PKs across different kinome branches is displayed. 
Examples include; ligand 1N1 which co-crystallizes with nine PKs 
in the TK branch, two in the STE branch and one in the CMGC 
branch, ligand 3FE (one each in the CAMK and STE branches),  
ligand DB8 (seven in the TK branch, two in the STE branch and 
one in the CAMK branch), ligand GUI (two in the TK branch and 
one in the CAMK branch), ligand STI (twelve in the TK branch 
and one in the CMGC branch) and ligand TAK (three in the TKL 
branch and one in the CAMK branch). While these results make 

Figure 14: 2D renderings of 6 ligands that target PKs in the TKL branch and 6 ligands that target PKs in the CMGC branch. Each ligand contains 
fragment 1513 (shown in green).
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structure represents the linkage of 6-mer fragment 216 (4-pyrazol-
1-ylpiperidine) and fragment 2520 (3-(phenylmethoxy)pyridine). 
These linked fragments appear as fragment 3962 within VGH’s set 
of 9 fragments. The residues within 5 Å of both fragments 216 and 
2520 include hydrophobic interactions with LEU1122, VAL1130, 
ALA1148, LEU1198, MET1199, ALA1200, GLY1202, and 
ASP1203. Hydrophobic interactions exclusive to fragment 2520 
include LYS1150, LEU1196, ARG1253, ASN1254, GLY1269 and 
ASP1270. Key hinge region H-bond interactions with MET1199 
are provided by both fragments, whereas fragment 2520 alone has 
an H-bond interaction with GLU1197.  Fragments 216 and 2520 
are positioned in these images as exact atom matches to VGH. 
A fragment-selective search of the KLIFS ligands with enriched 
6-mers using fragments 216 and 2520 finds only the set of PKs for 
VGH are listed. This result is an indication that fragment-selective 
searches of other databases, using only fragments 216 and 2520, 
may yield candidate ligands structurally like VGH (Table 3).

Visual comparisons of complete ligands and component fragments 
are displayed below. For example, Figure 16 displays in the left panel 
the nearest AAs from the PDB target 2xp2, based in the complete 
ligand VGH (Crizotinib). The right panel displays the nearest AAs 
to the component fragments (26 and 2520). Here, except for the 
H-bonding interaction with GLU1197, the AAs surrounding the 
ligand and fragments are essentially the same (Figure 16).

A similar analysis of Chembl941(STI: Imatinib) finds 13 KLIFS 
structures, 5 for ALB1, 1 for ABL2 , DDR1, FMS, KIT, LCK, 
PDGFRa and SYK in the TK branch and one case for p38a in the 
CMGC branch. The latter case can be excluded based on lacking 
enriched 6-mers in the CMGC branch. STI has 14 fragments 
within its list of enriched 6-mers. There are various combinations 
of fragments that can be selected as representatives of STI. The 
following example links fragment 13 (piperazine), fragment 
459 (N-(phenylmethyl) aniline) and fragment 2387 (4-pyridin-3-
ylpyrimidine). These linked fragments appear as 2699 within STI’s 
set of 14 fragments [56].

The residues within 5 Å of STI in PDB:2hyy:A:STI include 
hydrophobic interactions with LEU248, TYR253, VAL256, 
ALA269, VAL270, LYS271, GLU286, VAL289, MET290, VAL299, 
ILE313, THR315, PHE317, MET318, GLY321, PHE359, ILE360, 
HID361, ARG362, LEU370, ALA380, ASP381 and PHE382. 
Hinge region interactions include MET318 (H-bond) and PHE317 
(aromatic). Interactions shared between fragments 459 and 2387 
include VAL256, ALA269, LYS271, VAL299, THR315, LEU370, 
ALA380 and PHE382. Interactions shared between fragments 
2387 and 13 include GLU286, VAL289, ILE293, LEU354 and 
HID361. Hinge region interactions are provided by fragment 2387 
(PHE317: aromatic and MET318: H-bond). Fragments 13, 459 and 
2387 are positioned in these images as exact atom matches to STI.  
A fragment-selective search for KLIFS ligands possessing frags 13, 
459 and 2387 identifies the PKs are listed for STI. In addition 
this fragment-selective search also yields the ligand MPZ which co-
crystallizes with the PKs SRC in the TK branch (TK: SRC: 1y57: A: 
MPZ). Although the ligand MPZ does not have an exact match in 
the ChEMBL dataset, fragment-selective mining would indicate a 
potential role in PKs inhibition comparable to STI.

The ligand DB8 Bosutinib targets 10 members of the TK branch 
and one member of the STE branch. DB8 consists of three 
overlapping fragments; 517 (quinoline), 518(7-(3-piperazin-1-
ylpropoxy) quinoline) and 520(N-phenylquinolin-4-amine), 
jointly represented as fragment 519. The residues in PKs 3ue4, 

An alternative analysis, focused on the base fragment 1513, 
indicates that this fragment, alone, has the capacity to position 
itself adjacent to key AAs in the binding site. In support of this 
claim, Figure 15 displays the superposition of fragment 1513 for all 
PKs in this set. The average Root Mean Square Deviation (RMSD) 
for this superposition is 0.523 ± 0.06 Å.  The average RMSD for 
superposition for the TKL and CMGC ligands is 1.273 ± 0.250 
Å. The lower panels display the superpositions for the each set 
of ligands (left: TKL, right: CMGC). Superpositions RMSD for 
the TKL and CMGC ligands are 1.18 ± 0.49 and 1.42 ± 0.29, 
respectively. These results find the RMSD for overlapping atoms 
associated with fragment 1513 to be 2-fold better when compared 
the complete ligand (Figure 15).

Eight FDA approved ligands within the KLIFS database are 
listed. These are Brigatinib:6GY (FDA approved for ALK-positive 
metastatic NSCLC), Bosutinib:DB8 (potent TK inhibitor used 
to treat chronic myeloid leukemia), Dabrafenib:P06 (FDA 
approved for targeting V600E BRAF), NVP-tae-684:GUI (FDA 
approved ALK inhibitor), Imatinib:STI (FDA approved to treat 
Chronic Myelogenous Leukemia (CML), Gastrointestinal Stromal 
Tumors (GISTs), Dermatofibrosarcoma Protuberans (DFSP), 
Myelodysplastic/Myeloproliferative Diseases (MDS/MPD), and 
aggressive systemic mastocytosis, Dorsomorphin:TAK (inhibitor 
of Bone Morphogenetic Protein (BMP)) signalling, causing cancer 
initiating cells to lose some stem-cell-like features), Crizotinib:VGH 
(FDA approved for the treatment of patients with metastatic Non-
Small Cell Lung Cancer (NSCLC) whose tumors are anaplastic 
lymphoma. FDA approved for treating relapsed or refractory, 
systemic Anaplastic Large Cell Lymphoma (ALCL) that is ALK-
positive), AZD5438:FB8 (Inhibitor of CDK1, 2, and 9, enhances 
the radiosensitivity of Non-Small Cell Lung Carcinoma (NSCLC) 
cells (Raghavan P, PMC3623267) and Dabrafenib:P06, a selective 
inhibitor of mutated forms of BRAF kinase.

Table 3 lists the ChEMBL ID, ligand name, 2D structure 
(highlighted according to its enriched fragments) and their IUPAC 
names for these eight approved compounds. These FDA hits 
provide an opportunity to apply 2D fragments for substructure 
searching. For example, Chembl601719 (VGH:crizotinib) has 
9 fragments within its set of enriched 6-mers. The parent VGH 

Figure 15: Top panel displays the ball and stick superposition of 
fragment 1513 for the twelve structures displayed. Fragments targeting 
the TK and CMGC kinomes have their carbons colored green and black, 
respectively. Bottom two panels depict the respective superpositions 
for the complete ligands targeting the TKL kinome (left) and CMGC 
kinome (right).
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in the CMGC branch. None of these ligands have exact ChEMBL 
matches.

The KLIFS ligand 1N1 (ChEMBL1421) is not an FDA approved 
drug, however there are ten KLIFS PKs for 1N1 are listed.  The key 
fragments in the 1N1 structure are 1573 (N-(1,3-thiazol-5-ylmethyl)
aniline) and 232 (4-piperazin-1-ylpyrimidine).  Fragment-selective 
searching yields the ligands reported with the addition of the 
ligand 4B7, which also is co-crystallized with ABL1 in PKs 4yc8. 
This result suggests a novel candidate ligand for targeting ABL1.

Ligand F3Z (ChEMBL 3590107) co-crystallizes with 
CMGC:Erk2:6gdm:A:F3Z. F3Z is composed of 3 IUPAC fragments 
2139 (3-pyridin-4-yl-1H-indazole), 1662 (2-phenylpyrimidine) and 
1998 (1-(2-pyrrolidin-1-ylethyl)piperazine). These 3 fragments, 
in combination with 12 other fragments (1,9,13,44,93,121,22
6,1662,1988,1993,1995,1998,2136,2139,2141), each comprised 
of different portions of these three IUPAC named fragments, 
appear in the enriched 6-mers only for the CMGC kinome 
branch.  Fragment-selective searching, using 1662, 1998 and 2139, 
finds that CMGC selectivity also exists for KLIFS ligands FOE 
(CMGC:Erk2:6gjd:A:F0E ) and NOV (CMGC:Erk2:6opi:A:N0V), 
neither of which have exact structural matches to the >22k 
ChEMBL ligands. F3Z and FOE are the only KLIFS ligands 
that share fragments 2139, 1662 and 1998, whereas NOV shares 
fragments 2139 and 1662. These three ligands selectively target 
Erk2 in the CMGC kinome branch [57].

Table 4 summarizes the surface area results for the complete ligand 
and the component fragments of the examples reported above. 
This table lists the target PKs (column 1), the designation of 
ligand or fragment (column 2), unbound surface area (column 3) 
and bound surface area (column 4), the difference of bound and 
unbound surface area (column 5) and the fraction of surface lost 
in the bound state (column 6). These results indicate that greater 
than 80% of the complete ligand’s bound surface area is due to its 
component fragments (Table 4).

within 5 Å of the DB8 fragment, finds hydrophobic interactions 
with LEU248, VAL256, ALA269, VAL270, LYS271, MET290, 
VAL299, ILE313, ILE314, THR315, PHE317, MET318, THR319, 
TYR320, GLY321, LEU370, ALA380 and PHE382. Fragment 519 
is positioned in these images as exact atom matches to DB8. A 
database search of these three substructures identifies the PKs are 
listed for DB8, with the inclusion of the ligand XZN, which targets 
LOK in the STE branch STE:LOK:4bc6:A:XZN. These fragments 
appear as enriched 6-mers in the TK and STE branches. This 
result is an indication that DB8 and XZN share fragments, with 
structures sharing these fragments having activity in the TK and 
STE branches.

The P06 ligand is Dabrafenib (ChEMBL2028663). There 
are 9 fragments associated with P06, with fragment 3403 
(N-phenylsulfanylaniline) and fragment 1267 (5-pyrimidin-4-yl-
1,3-thiazole) representing most of the ligand. Using the PKs of 
4xv2, there are hydrophobic interactions with ILE463, GLY464, 
SER465, GLY466, VAL471, ALA481, LYS483, LEU505, LEU514, 
LEU515, PHE516, ILE527, THR529, GLN530, TRP531, HID532, 
PHE583, GLY593, ASP594 and PHE595. Here the hinge region 
interactions are CYS532 (H-bond) and TRP531 (aromatic). Within 
this set, fragment-selective searching with 3403 and 1267 identifies 
the four ligands associated with P06, with the inclusion of 
TKL:RIPK2:5ar8:A:XYW.  Ligand XYW does not appear because 
it does not have an exact ChEMBL match. However, its shared 
substructure with P06 would also suggest the PKs of RIPK2 in the 
TKL branch for ligands with these fragments.

The KLIFS ligand FB8 is the FDA approved drug AZD5438 
(ChEMBL488436). The structure of FB8 is comprised of 
four overlapping fragments: 1377 (4-(1H-imidazol-5-yl)-N-
phenylpyrimidin-2-amine), 1279 (4-(1H-imidazol-5-yl)pyrimidine), 
257 (N-phenylpyrimidin-2-amine) and 57 ((1H-imidazole). 
Fragment-selective searching yields the ligands reported and the 
additional ligands IM9, FRT, I19 and 4WE for targeting CDK2 

Table 3: Listing of the FDA approved ligands that pass the Fisher’s exact testing for co-occurrence of branch-selective 6-mers and branch-selective 
chemosensitivity. ChEMBL ID (column 1), PDB ligand name (column 2), 2D rendering of ligand colored according to its component fragments (column 
3), fragment index and IUPAC name (columns 4 and higher). Note that in GUI: TAE684 fragment 257 (N-phenylpyrimidin-2-amine) is hidden by 374 
(2-N,4-N-diphenylpyrimidine-2,4-diamine).

ChEMBL PDB Ligand Green Orange Cyan

601719 VGH:Crizotinib 216 (4-pyrazol-1-ylpiperidine)
2520 (3-(phenylmethoxy)

pyridine)
-

941 STI:Imatinib 13 (Piperazine) 459 (N-(phenylmethyl)aniline)
2387 (4-pyridin-3-

ylpyrimidine)

488436 FB8:AZD5438
257 (N-phenylpyrimidin-2-

amine)
57 (1H-imidazole) -

2028663
257 

(N-phenylpyrimidin-
2-amine

3403  (N-phenylsulfanylaniline)
1267 (5-pyrimidin-4-yl-1,3-

thiazole)
-
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288441 DB8:Bosutinib 520 (N-phenylquinolin-4-amine)
518(7-(3-piperazin-1-ylpropoxy)

quinoline)
517(Quinoline)

3545311 6GY:Brigatinib
374 (N,N’-di(phenyl)pyrimidine-

2,4-diamine)
759 (1-piperidin-4-ylpiperazine) -

478629 TAK:Dorsomorphin
500 (1-(2-phenoxyethyl)

piperidine)
502 (3-pyridin-4-

ylpyrazolo[1,5-a]pyrimidine)
-

509032 GUI:TAE684
374 (2-N,4-N-

diphenylpyrimidine-2,4-diamine)
759 (1-piperidin-4-ylpiperazine)

257 
(N-phenylpyrimidin-2-

amine)
Hidden by 374

1421 1N1
1573 (N-(1,3-thiazol-5-ylmethyl)

aniline)
232 (4-piperazin-1-

ylpyrimidine)
-

1229592 0UN
506 (4-phenoxy-N-

phenylpyrimidin-2-amine)
13 (piperazine) -

Note: PDB: Protein Data Bank

Figure 16: 2D projections of the binding site pocket for PKs 2xp2. AAs within 5 Å of fragments 216 and 2520 are displayed as residue name and 
position in the target’s sequence. Colors specify the type of AA (green:hydrophobic, blue:basic, red:acidic). The ribbon around the ligand and 
fragments represents the 2xp2 target surface, colored by nearest AA. Fragments 216 and 2520 are positioned in the binding site according to exact 
atomic matches with the complete ligand.  Images are rendered using Maestro (Schrodinger Release 2022-3: Schrodinger, LLC, New York, NY, 2021). 
Views represent 2D projections of 3D images, where each perspective is internally adjusted to uniformly display AAs. As a result, the location of 
binding site AAs for each ligand will depend on the perspective.
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Table 4: Surface area summary for the PKs discussed above. Target PKs (column 1), designation of target PK or its ligand (column 2), unbound surface 
area (column 3) and bound surface area (column 4), the difference of bound and unbound surface area (column 5) and the fraction of surface lost in the 
bound state (column 6). Results for each PDB are listed as consecutive rows with the same highlighting.

PDB Target/ligand Unbound SA Bound SA Delta Delta/unbound SA

3ue4 ABL1 691.79 216.44 475.36 0.69

3ue4 DB8 826.25 240.44 585.81 0.71

2xp2 ALK 619.97 135.86 484.11 0.78

2xp2 VGH 683.97 134.59 549.38 0.8

2hyy ABL1 782.04 63.08 718.97 0.92

2hyy STI 828.17 73.92 754.25 0.91

4xv2 BRAF 599.29 39.44 559.85 0.93

4xv2 P06 737.19 62.25 674.94 0.91

Note: PDB: Protein Data Bank

The preceding examples illustrate a means to integrate a coarse-
grained 2D fragment approach, combined with chemosensitivity 
data and applications of Fisher’s exact testing to yield results 
that mesh with crystallographic structural details. A widely used 
component of FBDD involves in silico ligand docking to screen 
for candidate PKs. As with FBDD, in silico docking is a vital part 
of the overall task of drug discovery.  Citing the above example 
for the VGH ligand with nine KLIFS complexes, seven for ALK, 
one for MET and one for ROS, all specifically target the TK 
branch.  Superposition of these ligand x-ray structures finds that 
the VGH:ALK structures have Root Mean Square Deviations 
(RMSDs) of less than 0.1 Å, while VGH:MET and VGH:ROS 
deviate from the VGH:ALK set by greater than 1.6 Å. The rmsd of 
VGH:MET and VGH:ROS is 1.32 Å. These results are consistent 
with the KLIFS Internal Profile Fingerprint similarity (IPF) within 
the VGH:ALK set of greater than 0.9, while the IPF similarity score 
drops to 0.64 and 0.62 for VGH:MET and VGH:ROS, respectively. 
Although not done here, a docking search for PK targets using a 
VGH:ALK conformer may not have identified the MET and ROS 
targets. Whereas the coarse-grained approach using 2D fragments, 
combined with chemosensitivity data and applications of Fisher’s 
exact testing, includes VGH within the list of candidate ligands 
[58].

Although these results represent preliminary extensions of 
this analysis, two points for future use can be proposed. First, 
crystallographic ligands that target PKs across different kinome 
branches appear, in the above cases, to be rejected based on their 
lack of branch-specific enriched 6-mers. Contributing to this 
result is, in part, due to the failure of the Fisher’s exact test to 
yield a significant result when fragments are shared across kinome 
branches. As a cautionary note, recall that the best case results for 
using -mers to retrospectively identify correct cases found 6-mers, 
with 84% success and 16% failure rates. Clearly, utilization of 
6-mers for compound screening, while having a relatively high 
success rate, has a non-trivial likelihood for failure. Second, 
utilization of kinome branch-selective 6-mers appears capable 
of providing pharmacophore-based screening strategies. Third, 

necessary components of this analysis include, at a minimum; the 
selection of input databases, filtering thresholds for input data, 
clustering methodologies and variations in statistical methods. 
The balance of these components, as reported here, represents one 
choice. Validation of this and other choices require dealing with 
many options. However, validative assessments will benefit most 
from applying these choices, proposed in the design reported here, 
to the continually increasing quantity of input data.

CONCLUSION

Decomposition of PKs ligands into fragments, followed by 
statistical testing for fragment enrichment within separate kinome 
branches, provides an effective means for identifying kinome-
selective fragment subsets. Associating sets of enriched branch-
selective fragments with ligands also possessing branch-selective 
chemosensitivity is rare however the co-occurrence of exact 2D 
KLIFS matches, that also pass the Fisher’s exact enrichment test, 
yields exact matches to FDA approved ligands. In general, fragment 
composition is an effective means for probing chemical databases 
for candidate compounds that selectively target PKs within kinome 
branches.
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