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Abstract

Hyperglycemia of type 2 diabetes mellitus (T2DM) develops when pancreatic β-cells damaged by chronic
exposure to elevated blood glucose and lipids (glucolipotoxicity) fail to synthesize and secrete sufficient quantities of
insulin for maintaining plasma glucose level. Despite intensive studies in this field, the molecular mechanism by
which fatty acids (FA) cause β-cell impairment is not well understood. It still remains unknown what are the lipid- or
glucose-derived molecules directly responsible for the impairment of β-cell function? Our studies showed that in
addition to impaired insulin secretion and loss of biphasicity, T2D islets exhibited altered cell bioenergetics as
evidenced by decreased oxygen consumption rate as compared to those of the control islets. We also discovered
that fuel overload (high level of FA and glucose leads to incomplete FA oxidation and results in accumulation of
"toxic" long-chain 3-OH-fatty acids that could induce oxidative stress and disrupt mitochondrial function. Time-
dependent impairments of bioenergetics due to chronic exposure to elevated blood glucose and lipids would be the
consequence leading to pancreatic β-cell failure.
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Glucolipotoxicity and Diabetes
Overconsumption of calorie rich diets increases the incidence of

type 2 diabetes mellitus (T2DM) in genetically predisposed
individuals, which has resulted in the worldwide epidemic of T2DM
now afflicting about 350 million people. Hyperglycemia of T2DM
develops when pancreatic β-cells damaged by chronic exposure to
elevated blood glucose and lipids fail to synthesize and secrete
sufficient quantities of insulin for maintaining plasma glucose level at a
critical level of 5 mM. “Glucolipotoxicity”, the operationally defined
condition resulting from caloric overload, is proposed to worsen or
cause β-cell damage which eventually leads to T2D. The term
"glucolipotoxicity" implies that repeated or continued exposure to high
blood glucose and lipid levels are required for β-cell damage and
functional dysfunction to occur. However, a compelling mechanistic
molecular explanation of “glucolipotoxicity” affecting pancreatic β-
cells is still lacking. In an attempt to model "glucolipotoxicity" in vitro,
pancreatic islets are usually cultured for several days in high glucose
and fatty acids (FA) concentrations. Studies have described multiple
cellular processes involved in the pathogenesis of β-cell dysfunction,
including changes in gene expression [1,2] intermediary metabolism
[3], mitochondrial function [4], ion channel activity [5-7], insulin
synthesis and exocytosis [8]. Different molecular mechanisms of FA-
induced β-cell dysfunction have been proposed including
accumulation of ceramide [9], apoptosis of β-cells due to oxidative
[10-11] and endoplasmic reticulum (ER) stress [12,13] as well as others
mechanisms [14,15]. Many of these mechanisms remain controversial.
For example, the exposure of human islets for 24 hours to elevated FA
and glucose conditions was found in one study to initiate apoptosis
[16], but other studies have failed to find evidence of any significant
apoptosis following long-term exposure. Olofsson et al. reported that

inhibition of glucose-stimulated insulin secretion (GSIS) by long-term
exposure to the FAs oleate and palmitate was not related to any signs of
increased β-cell death, reduced insulin synthesis, impaired glucose
metabolism, KATP channel regulation, or Ca2+ signaling. These
discrepancies could be due to differences in acute or chronic islet
responses [17,18]. Albumin/FA ratios in in vitro studies are often
suboptimal (i.e., ≤3:1), glucose concentrations are often excessive to be
meaningful (i.e., >16 mM), there are significant limitations inherent in
animal models, and there is a lack of a clear definition of the
"glucolipotoxicity" phenomenon [19]. While various molecular and
cellular mechanisms of glucolipotoxicity and their roles in obesity and
diabetes have been described in animal models [19-22], it is unclear
whether these models recapitulate the pathogenesis of human T2D.

Pancreatic Islet Bioenergetics and Diabetes
A faulty bioenergetic process is a plausible explanation for defective

insulin secretion in T2D. Normally the ATP, generated in glycolysis
and oxidative phosphorylation by catabolism of glucose, amino acids,
and FAs, serves as coupling factor in fuel stimulated insulin secretion
[23]. The unique role of ATP as a critical messenger in the stimulus-
secretion coupling was clearly shown in our previous studies with
mouse, rat and human islets where oxygen consumption, glycolysis,
glucose oxidation were related to insulin secretion [24]. Such
measurements allowed us to calculate the ATP production rate in
pancreatic β-cells as a function of the glucose concentration and
insulin secretion. Our calculation was based on a reasonable
assumption that islet glycogen stores are negligible [25] and that
coupling of oxidative phosphorylation is intact. Despite major
differences in insulin profiles (Figure 1A), the ATP-Production/
Insulin-Secretion curves were similar for mouse, rat and human islets.
The data for all species fitted a single sigmoidal curve (Figure 1B),
indicating a clear relationship between ATP production rate and
insulin secretion [24].
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Figure 1: Fusion of mouse, rat and human islets ATP-production/insulin-secretion diagrams. Panel A: Secretion profiles of mouse, rat, and
human islets as function of the glucose concentration. Panel B: Combined energy production/insulin-secretion curve with data on ATP
production and insulin release from all 3 types of islets projected on 1 single continuous sigmoidal curve. ATP production was calculated
based on oxygen consumption and glucose usage data.

The ATP-Production/Insulin-Secretion curve has a threshold for
glucose stimulated insulin secretion at about 16 pmole/islet/min and a
Hill coefficient of about 11. This data indicate a highly cooperative
coupling mechanism between ATP production and insulin secretion
with half-maximal effective rate (ER50) of 22 pmole/islet/min. We
speculate that the “ATP-Production/Insulin-Secretion” curve has
clinical significance comparable to that of the classical “Frank/Starling”
curve of the heart. We also showed that ATP-Production/Insulin-
Secretion curve is modified by GLP-1 and a glucokinase activator
piragliatin [24]. We speculate that the “ATP-Production/Insulin-
Secretion” curve is modified in T2D islets.

The literature proposes various ways by which mitochondrial energy
metabolism can be altered due to fuel overload. FAs may act as
uncouplers and inhibitors of mitochondrial respiration and oxidative
phosphorylation [26], operating as protonophors and by inhibiting the
electron transport [27-29]. In addition, FAs increase the expression of
Uncoupling Protein (UCP2) in pancreatic islets [14,30-31]. FAs may
inhibit complex I [32] and can also inhibit ATP and ADP exchanges
[33]. FAs may promote opening of the permeability transition pore
[34-37].

FAs also increase the expression of PGC-1α which may alter
bioenergetics in pancreatic β-cells [38]. PGC-1α is elevated in islets
from different animal models of diabetes and in human studies
[38-41]. PGC-1α promotes mitochondrial biogenesis in brown tissue
[42], however adenovirus-mediated expression of PGC-1α led to a
marked inhibition of glucose-stimulated insulin secretion [38], by
suppressing glucose oxidation or decreasing the cell's ability to drive
ATP production. PGC-1α increases the transcription of UCP2 [43] by
PGC-1-mediated upregulation of β-cell sterol element binding protein
(SREBP) gene expression. The higher expression of UCP2 may result in
a decreased efficiency of ATP production [44] by translocation of
protons across the mitochondrial membrane. The latest effect should
lead to changes in oxygen consumption and oxidative ATP synthesis.
However, such data are limited and related to insulinoma cells [45] and
only measurements of total ATP reported in islets exposed to FA [8].
Because in pancreatic islets ATP is co-secreted with insulin, it is
difficult to dissociate between the effects of FA on ATP syntheses and

changes of ATP content in insulin granules. In fact, the insulin content
is decreased in islets chronically exposed to FFA [8].

In order to access β-cell bioenergetics and its relationship to insulin
secretion, we performed two sets of experiments: (i) The bioenergetics,
ionic and secretion profiles of pancreatic islets isolated from healthy
and T2D organ donors were examined; (ii) Isolated normal human
islets were exposed to a glucolipotoxicity condition (high glucose and
FFAs) in organ culture and the bioenergetics and insulin secretion
were studied in perifusion experiments. Diabetic islets exposed to a
"staircase" increase in glucose concentration in the perifusion setup
showed a significant decrease in insulin secretion profile (Figure 2A)
and oxygen consumption (Figure 2C) as compared to those of the
control islets. The baselines for both parameters are comparable. The
difference in insulin secretion profile is most pronounced at the 6 and
12 mM glucose stimulation (Figure 2B) indicating decreased rates of
insulin secretion and loss of biphasicity. The glucose-dependency curve
of the OCR of the diabetic islets was right shifted and reduced by 50%
(Figure 2C).

The uncoupler of respiration and oxidative phosphorylation FCCP
(5 µM) stopped insulin secretion instantly and transiently increased
respiration in control and diabetic islets to the same extent indicating a
strong coupling between islets respiration and oxidative
phosphorylation in both types of islets (Figure 2C). Glucose
dependency of oxygen consumption (VO2) was sigmoidal for both
type of islets (Figure 2D). However, islets from T2D exhibited a right
shift and lower maximal stimulation of respiration (Vmax) by glucose.
The S0.5 in T2D islets rose from 4.39 ± 0.01 in control to 5.43 ± 0.13
mM (Figure 2D). Panel E of Figure 2 presents changes in intracellular
[Ca2+] of human islets. Low glucose (3 mM) produced a transient and
high glucose (9 mM) produced a biphasic and a sustained increase in
[Ca2+] of control islets. Diabetic islets did not respond to 3 mM
glucose and the responses to 9 mM glucose were delayed and lower
than in controls.
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Figure 2: Impaired insulin release (A and B), oxygen consumption
(C and D) and intracellular calcium (E) of isolated islets from
control and type 2 diabetic organ donors. Panel A: shows the
insulin release patterns with glucose stimulation using stepwise
increases of glucose from zero to 3, 6, 12 and 24 mM. Panel B:
magnified view of selected section (85-190 min) of the experiment
presented in A to show the loss of first phase of insulin release in
type 2 diabetic islets. Panel C: islet respiration during stepwise of
glucose concentration followed by treatment with 5 µM of the
uncoupler of Ox/Phos FCCP and 1 mM Na-azide. O2 consumption
was determined with a method based on phosphorescence
quenching of metalloporphyrins by oxygen [46]. Panel D: oxygen
consumption rate as function of glucose concentration. Panel E:
represents corresponding changes in intracellular Ca2+ of human
islets due to stepwise increases of glucose from zero to 1, 3 and 9
mM. The Fura-2 method was employed. Typical experiments are
presented (n of the series=3). Hb-A1c levels for the pancreas donors
with T2DM were 9.3, 11.0 and 7.4%. Results are presented as means
± SE (SE when applicable) of 3 experiments.

This data indicates that impaired pancreatic islet β-cell bioenergetics
resulting in reduced ATP production is a critical factor in the
molecular pathogenesis of T2D. Importantly, the glucokinase activator
piragliatin was able to correct the defect of respiration and glucose-
stimulated insulin secretion [24]. In our second set of experiments, the
glucolipotoxicity which is a hallmark of T2D, was mimicked in vitro by
culturing the islets for 3 or 5 days with 0.5 mM palmitic acid or a
mixture of palmitic and oleic acid at 1% albumin, and different
concentrations of glucose: 10, 16 and 25, 46. As a result, chronic

exposure of mouse islets to glucolipotoxic condition led to bioenergetic
failure, as evidenced by decreased OCR and reduced glucose-
stimulated insulin secretion. In addition, the islet ATP levels and
glucose induced ATP rise were reduced as well as mitochondrial DNA
and expression of mitochondrial transcription factor A (Tfam). We also
discovered accumulation of carnitine esters of hydroxylated long chain
FA [47], that have been shown to uncouple the respiration and
oxidative phosphorylation in heart and brain mitochondria [48,49].
We propose that mitochondrial accumulation of unsaturated
hydroxylated long-chain FA uncouples and ultimately inhibits
pancreatic islet β-cell respiration and that this effect of the toxic FA
metabolite causes a slow decline of mitochondrial ATP production
resulting in bioenergetic failure as the main cause of impaired insulin
secretion and reduced β-cell mass, both hallmarks of T2D.

Effects of Fatty Acids in Humans
FAs play an essential role in the function of pancreatic β-cell in

humans [50]. In the fasting state, free FAs support basal insulin
secretion and promote efficient nutrient-stimulated insulin secretion
when the fast is terminated. Elevated plasma FFA levels lead to chronic
hyperinsulinemia in insulin-resistant obese subjects [51]. Removal of
this FFA stimulus by overnight reduction of plasma FFAs with
nicotinic acid impairs insulin secretion stimulated by glucose [51].
Despite the evidence from in vivo studies, the effects of prolonged
elevation of FFA on insulin secretion in humans remain controversial.
Boden and colleagues demonstrated that 48-h elevation of plasma FFA
potentiated glucose-stimulated insulin secretion in healthy subjects at
glucose levels clamped at 8.6 mM [52] but insulin secretion was
defective in T2D patients [53]. In contrast, Carpentier et al. [54] have
reported that acute stimulation of insulin secretion by FA in healthy
humans is lost with chronic FA elevation. This loss of hormone
secretion was specific to glucose because the response to arginine was
normal [55]. It is of interest that obese but not diabetic subjects are
more sensitive to the inhibitory effect of lipids on glucose-stimulated
insulin secretion [56]. Kashyap et al. [57] have studied both insulin
secretion and insulin action in normal subjects with and without a
family history of T2D during a 4-day lipid infusion. The most striking
finding is that a 4-day intralipid infusion stimulated insulin secretion
in normal subjects but inhibits glucose-stimulated insulin secretion in
individuals with family history of T2D [57]. These data suggest that β-
cell lipotoxicity may play an important role in the progression from
normal glucose tolerance to overt hyperglycemia in subjects with a
high risk of developing T2D. In support of this data, the antilipolytic
agent acipimox improved the first phase of insulin secretion in
nondiabetic patients with a family history of type 2 diabetes [58].

Conclusion
To conclude, based on the existing literature it is clear that excessive

glucose and fatty acids levels have time-dependent deteriorating effects
on pancreatic β-cell pathophysiology in diabetes. These effects are
different at the various stages of β-cell dysfunction during
development of T2D. When insulin resistance develops the β-cells
mount a compensatory response that increases insulin biosynthesis,
insulin secretion and β-cell mass. This compensatory β-cell response is
genetically determined [57,59-60] and plays an important role in the
long-term ability to maintain glucose homeostasis during insulin
resistance. In individuals that genetically predisposed to diabetes, β-
cell compensation eventually may become insufficient to maintain a

Citation: Doliba NM (2017) Bioenergetics and Type 2 Diabetes. Biochem Pharmacol (Los Angel) 6: 222. doi:10.4172/2167-0501.1000222

Page 3 of 5

Biochem Pharmacol (Los Angel), an open access journal
2167-0501

Volume 6 • Issue 1 • 1000222



secretory response that meets the demand imposed by insulin
resistance.

The failure of β-cells to compensate for insulin resistance is a major
component of impaired glucose homeostasis and overt diabetes. This
defect is the consequence of a decline of insulin response to glucose
due to functional β-cell deficiency. Bioenergetics of β-cell plays an
essential role in stimulus-secretion coupling and contributes to
molecular pathogenesis of T2D. It is also the consequence of an
inability of the endocrine pancreas to adapt the β-cell mass which
eventually leads to a decrease in functional β-cells. This idea has
resulted in considerable attention being paid to the development of
new therapeutic strategies aimed toward preserving or regenerating
functional β-cell mass [61]. GLP-1 enhances β-cell survival by
activating β-cell proliferation and differentiation, and inhibiting β-cell
apoptosis and thus contributing to the long-term regulation of insulin
secretion by maintaining a functional β-cell mass. It should be pointed
out that any intervention to improve insulin secretion should start
early in the disease when the endogenous insulin secretion and
presumably the number of functional β-cells has not decreased
excessively [62-64].
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