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Introduction
Spurred by the growth of the World Wide Web and the Internet, 

and their similarity to numerous other large, dynamic, real-life 
networks, a truly cross-disciplinary science of complex networks has 
emerged in the past 15 years [1-12]. Hundreds of studies have been 
conducted and papers published exploring properties of complex 
networks—such as, their size, diameter, degree distribution, pairwise-
distance distribution, cliques, communities, clustering coefficient, and 
the like [5-11]. Several growth models of these evolving networks have 
been proposed and studied [5,6]. However, an area of active interest, 
which has not been studied adequately, is that of designing control 
policies to steer the evolution of such a network towards a desired goal 
[8]. In practical situations, such as controlling the spread of diseases or 
the formation of opinions, topological properties, of the network, may 
need to be controlled. It would, therefore, be valuable to have automated 
synthesis [7] of strategies for controlling relevant topological properties 
of complex networks described by, for example, a preferential-
attachment and preferential-deletion model [6]. We propose that an 
automated optimal control of evolving complex networks be achieved 
by leveraging recent results in developing stochastic models for the 
evolution of complex networks in combination with the classical 
results on dynamic-programming algorithms for optimal control [2-4].

Complex Networks
Interactions between multiple entities have been modeled and 

studied as static graphs at small scale for nearly a century. But the study 
of large, random, evolving graphs as models for the World Wide Web, 
the Internet, and other real-life networks took off only about 15 years 
ago. In particular, inspired by the need to understand the evolving 
interactions among multiple entities in sub-disciplines as different as 
cyber-security and metagenomics, the study of complex networks has 
generated a great deal of interest in the computer-science community.

The Erdos-Renyi uniform random graphs exhibit neither the 
degree distribution nor the clustering coefficient of many naturally 
occurring real-world networks. The degree distribution of small-world 
networks is binomial and, hence, disagrees with that of many real-
world networks. Likewise, static models are not capable of providing a 
description of the temporal evolution of real-world networks; thus, the 
recent emphasis on studying dynamic models of real-world networks. 
Such models are usually described by a stochastic graph process, where 
the graph evolves by two broad sets of rules: (i) Preferential attachment 
of a new node to existing nodes, and (ii) Copying. Most of these 
stochastic models have focused on the shape of the asymptotic degree 
distribution of complex real-world networks. 

Much of the recent study of real-world networks identifies broad 
families of complex networks, models their generative processes, and 
suggests algorithms that exploit the properties of these broad families 
of real-world networks. The focus of investigation into real-world 
networks has been on a set of easily measurable properties of graphs: 
e. g, size, diameter, degree distribution, pair-wise-distance distribution, 
cliques, communities, clustering coefficient, connectivity and the
like. Several families of networks, including citation networks, email
networks, twitter networks, social networks, peer-to-peer networks,
metabolic networks, genetic regulatory networks, and web graphs, have 
been well studied using these readily measurable properties of graphs.

Big Data
While the interdisciplinary area of complex networks has enabled us 

to understand, analyze, and predict the evolving complex interactions 
among the network entities; with the advent of rapid data acquisition 
techniques in combination with the dramatic drop in cost of sensing, 
transmitting, storing, and processing data, we are surrounded by Big 
Data. It has now become possible to track the evolution of interactions 
among network entities in real-time. 

While different models have been proposed to account for the 
variety of complex networks observed in natural and engineered 
systems; computational methods for automated synthesis of control 
strategies to steer such evolving interactions towards a desired goal 
have not received adequate attention. Problems requiring synthesis of 
such optimal control strategies for complex networks are all around us 
[8]. Two representative examples are discussed in the following:

Epidemics on Networks
The spread of infectious diseases is often modeled with dynamic 

contact networks--where nodes represent infected individuals [9]. As 
the disease spreads, new nodes are added to this network. The death of a 
patient results in deletion of the corresponding node from the dynamic 
network of infected individuals. In such a setting, the probability of a 
node being added to the network can be controlled through a number 
of tools: isolation, immunization, and quarantine. While it is desirable 
to enforce all mechanisms to prevent an epidemic, we seek to optimize 
the trade-off between the control of the epidemic and the total cost 
of the control methods employed to achieve such a goal. Using the 
optimal control synthesis approach envisioned here, we can synthesize 
optimal strategies for controlling the number of infected individuals in 
evolving epidemiological networks. 

Opinion Networks
The second example of controller synthesis for complex networks 

is the formation of robust opinion networks. The creation of a stable 
opinion network may require the formation of a dense network 
such that the entire opinion network itself is robust and immune to 
deletion of a few nodes. Thus, the topological property of interest for 
such networks is the average edge-density of such an opinion network. 
While the probability of adding a new node can be directly controlled, 
a key question is how to determine the optimal birth process to ensure 
that the edge-density of the network reaches a desired threshold.
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Control Strategy
Here, we propose that dynamic programming based optimal 

control synthesis for stochastic dynamical systems be used to synthesize 
control strategies for stochastic models of evolving complex networks. 
This approach combines the Hamilton-Jacobi-Bellman (HJB) dynamic 
programming algorithm with a stochastic model for the evolution of 
complex networks involving the preferential birth and death of nodes 
in the complex network.

Automated Synthesis of Control Strategy
Recent advances in constraint solving technology have led to 

renewed interest in the problem of automated synthesis [7]. Synthesis 
algorithms for systems as varied as software, stochastic models in 
biology and hybrid and dynamical systems have been developed. 
However, the automated synthesis of control strategies for stochastic 
complex networks has not been studied much. Our approach for 
controlling the dynamics of stochastic complex networks builds 
on existing work in complex networks theory and in the optimal 
deterministic control of stochastic dynamical systems. It involves the 
following three different steps:

1.	 Based on the interactions observed among the entities being 
studied, we first choose an appropriate stochastic dynamical 
model for describing the evolution of these interactions. A 
variety of existing dynamical models have been proposed and 
are available in the literature. Some of these dynamic real-
world network models include those that only permit birth of 
new nodes, while others allow both the birth of new nodes and 
the death of the old ones. Several readily measurable properties 
of the interactions being studied (e.g., degree distributions, 
graph diameter, number and size of communities, etc.) may be 
used to determine a stochastic dynamic model appropriate for 
describing the temporally evolving interactions.

2.	 When a suitable stochastic dynamical model has been 
identified using the topological characteristics of the 
interactions being studied, we still need to determine the 
numerical values parameters that can fit the behavioral 
predictions of the stochastic dynamical model to the empirical 
data corresponding to the observed interactions. For example, 
a stochastic preferential attachment and deletion model 
for complex networks is parameterized by the probability 
that determines the rates of birth and death of nodes in the 
network. The probability must be chosen carefully so that 
the predictions of the model are in close agreement with the 
observed values. A variety of machine learning techniques may 
be used to compute the numerical parameters of the model. 
If the observations are available as time-series data; Kalman 
filtering, Bayesian networks, or evolutionary algorithms may 
be used to determine the parameters of the stochastic model. If 
there are additional qualitative constraints on the interactions 
being studied, parameter synthesis methods based on temporal 
logic and symbolic algorithms may be used to prune the 
parameter search space. At the end of this step, a completely 
defined stochastic dynamical model describing the evolution 
of the complex network is determined.

3.	 We then suggest the synthesis of control strategies using 
dynamic programming based optimal control algorithms for 
the stochastic dynamical model so as to achieve one or more 

desired topological properties of complex networks. In order 
to compute an optimal strategy, we must first define a cost 
function that approximates the desired notion of optimality. 
We recommend using a cost metric involving the state of the 
complex network and the control inputs applied to it, that 
captures two different aspects of an optimal control strategy 
for complex networks: (i) the distance between the current 
topological property of an evolving network and the desired 
state of the topological property, and (ii) the cost associated 
with the input being applied to steer the complex network to 
a desired state. This will drive a complex network to a desired 
topology and minimize the cost involved with the control 
inputs that guide the complex network. 

Conclusion
In this paper, we have outlined how Hamilton-Jacobi-Bellman style 

synthesis of control strategies can be applied to the problem of optimal 
control in complex networks. We have focused on a continuous variant 
of the preferential attachment and deletion model. In future work, one 
should investigate the capability of the proposed framework to design 
control strategies for other stochastic dynamic models of evolving 
complex networks. Further, as the control law is being applied, 
additional observations on the evolving complex network may be 
used to ascertain the efficacy of the control policy. Our ongoing work 
includes investigating the use of online algorithms for controlling the 
evolution of complex networks.

As we encounter the flood of Big Data, much of it being 
unstructured at least on the surface, it is imperative that we seek out 
hidden structures to manage, understand, and exploit Big Data. Graph 
theory and complex network may prove to be a very convenient 
framework for such an undertaking. The optimal control synthesis 
philosophy discussed here may then be deployed to control engineered 
and natural systems whose evolution can be described by structured 
Big Data.
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