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Abstract
Biclustering algorithms have matured from their initial applications in bioinformatics, evolving towards different 

approaches and bicluster definitions, which makes sometimes hard for the analyst to determine which one of the 
available algorithms best fits her problem. As a way of benchmarking these algorithms, several quality measures 
have been proposed in literature. Such measures cover numerical aspects related to the accuracy, the recovery 
power or the capability of retrieving previous biomedical knowledge. However, biclustering apparently remains as an 
uncommon option for biomedicine analysis.

Here we review the impact of biclustering algorithms in biomedicine and bioinformatics with the object of measuring 
and understanding non-numerical aspects of biclustering algorithms focusing on citation-based statistics that can be 
relevant for their application on the domain. In order to achieve this, we performed analyses of the citations impact of 
several clustering and biclustering algorithms, and propose a methodology that can cover this aspect of biclustering 
usage.
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Introduction
It has been 17 years since the first application of biclustering 

algorithms to bioinformatics [1]. After an initial bloom of different 
approaches and concepts of what a bicluster is [2], new algorithms 
continue to be developed at a constant pace. Biclustering has two main 
theoretical advantages over traditional clustering for the application 
to biology. On one side, it provides bi-dimensionality, grouping both 
genes and conditions together, which is much closer to biology, since 
a group of genes can be co-regulated for a given condition but not for 
others. On the other side, it considers group overlaps, allowing genes 
to contribute to more than one activity. Although clustering does not 
cover either of these advantages, it seems that biclustering is far from 
replacing hierarchical or K-means clustering as a first analysis option.

A possible major reason is the lack of standards and benchmarks, 
along with the different interpretations of what a biclustering is. This 
has been addressed in the past years and a good deal of numerical 
quality measures have been developed, narrowing down the number 
of biclustering algorithms that fulfill recovery criteria. Additionally, the 
comparison of biclustering algorithms takes more and more interest 
in the literature. These studies have provided useful surveys of the 
biclustering landscape and also clarified the relative performance of 
several algorithms. Turner et al. [3] proposed an external measure in 
addition to a benchmark in order to assess biclustering algorithms. 
Prelić et al. [4] compared six algorithms on a synthetic dataset as well 
as on two real datasets. Results over synthetic data were evaluated by 
a measure called gene match score. For real data, the biclusters found 
were evaluated by gene ontology enrichment in addition to metabolic 
and protein-protein interaction networks. Bozda et al. [5] compared 
six biclustering algorithms which have the ability to find biclusters by 
means of shifting and scaling models. Impression of some parameters 
like bicluster size, noise and overlap was evaluated on artificial and 
real datasets. To estimate the exactness between found and implanted 
biclusters, the authors defined several external scores. Eren et al. [6] 
presented a comparative study between twelve biclustering algorithms. 
In order to evaluate their results, the authors used eight real datasets 

and some synthetic datasets that present six different bicluster models 
in addition to two external evaluation measures. Horta and Campello 
[7] focused on the definition of necessary properties that must be
satisfied by a biclustering external evaluation measure. Their analysis
is performed on fourteen measures where two of them, namely
Clustering Error and Campello Soft Index, are recommended to use
in such evaluation process. Padilha and Campello [8] presented a
comparative study of seventeen biclustering algorithms. To achieve
their tasks, the authors relied on three synthetic datasets and two real
datasets. For synthetic data, five different experimental scenarios were
studied based on noise, numbers of implanted biclusters, overlap levels
and bicluster sizes, and the results were assessed with several external
measures including those defined in [7]. Gene ontology enrichment
and clustering reliability were used to assess results obtained from real
data.

In spite of their important contributions, all these studies used only 
numerical measures to benchmark biclustering methods. However, 
there are non-numerical aspects of biclustering algorithms which 
have an impact on their success, especially for application fields such 
as biology or medicine, where a skilled bioinformatician is not always 
available. Among these aspects are: source code availability, easy to 
run executables or scripts, clear documentation, easy to parse and 
interpret results, connectivity to visualization tools, available packages 
for common bioinformatics languages such as R/BioConductor [9] or 
Biopython, etc.

An effective method to measure such a heterogeneous non-

mailto:haithem.abdi@gmail.com


Citation: Aouabed H, Santamaria R, Elloumi M (2018) Biclustering Impact in Biomedical Sciences via Literature Mining. Int J Biomed Data Min 7: 134. 
doi: 10.4172/2090-4924.1000134

Page 2 of 9

Volume 7 • Issue 1 • 1000134Int J Biomed Data Min, an open access journal
ISSN: 2090-4924 

numerical bunch of factors can be to determine the final impact of the 
algorithm in the field of study, under the assumption that a citation of a 
biclustering algorithm in a biology or medicine paper might point to its 
actual usage or at least to its consideration or knowledge. On the other 
side, the citation of a biclustering algorithm in a bioinformatics paper 
might be for comparison, benchmarking or background.

These types of literature impact studies form a well-defined field 
of study [10], demonstrating their usefulness in different research 
domains. In fact, literature impact studies have been used to analyze 
bioinformatics, biology and medicine issues. Magana et al. [11] 
reviewed the state of integration of bioinformatics education into 
formal and informal educational settings. The selected publications 
were issued following a search in Google Scholar, Web of Science, 
ACM Digital Library, ERIC, and PubMed. Their search found 113 
documents that were published from 1998 to 2013 and reported three 
types of scholarly publications: journal papers, conference proceedings, 
and magazine articles. The analysis process started by determining 
the frequencies of each type of article along with the year in which 
they were published. Then, the content of the abstracts in each of the 
categories was analyzed in order to extract the themes. Attia et al. [12] 
presented a systematic review on sexual transmission of HIV according 
to viral load and antiretroviral therapy. They searched the Medline 
and EMBASE databases in addition to conference abstracts from 1996 
to 2009. Their search resulted on 305 publications, 56 of which were 
considered as conference abstracts and then statistically analyzed. 
Tseng et al. [13] investigated a review that focused on various biological 
purposes for microarray meta-analysis. They used two main sources: 
PubMed and manual collection. 333 out of 745 papers were found 
related to microarray meta-analysis. These papers were then classified 
by method type, meta-analysis type and purpose for further statistical 
analysis. In Duck et al. [14], the authors defined and investigated an 
evaluation method based on a literature review, measuring the rates 
of usage of databases as well as software in biological and medical 
domains. This comparison is defined over two axes: time and sub-
disciplines of bioinformatics, biology and medicine domains. An 
invented dictionary as well as a rule-based resource recognition system 
named bioNerDS [15] was used to retrieve both old and new database 
and software names. The analysis process was applied on 25 articles 
using the Singular Value Decomposition (SVD) clustering method.

Recently, these types of analysis have been applied in new research 
areas such as Big Data or Cloud Computing and their impacts in 
biology/medicine fields have been evaluated. Hermon and Williams 
[16] proposed a review methodology which consists in finding different 
usage categories of big data in healthcare. The literature search yielded 
40 articles identified from 16 academic journals, including JAMIA, 
Wiley Online and IEEE. These articles were then classified into five 
categories based on the diversity in context. In Baro et al. [17], the 
authors proposed a definition of big data in healthcare based on a 
systematic search of PubMed literature. The search method made use 
of online search amenities such as the Free PMC database, Google and 
Google Scholar, finding 196 papers of interest. These papers were then 
classified either as a paper describing a dataset (further divided into 
three subclasses), a dissertation or a review of the literature. Statistical 
analyses were made, focused on time evolution of the publications and 
the related datasets.

To our knowledge, none of these studies introduced the analysis 
of biclustering literature impact using measures such as the number of 
citations for each paper. In the following sections, we propose a method 
to evaluate the impact of biclustering and clustering papers in different 

fields of study, represented by a set of relevant journals. We reviewed 
several published clustering and biclustering algorithms from the point 
of view of the proposed method, in order to assess their impact in 
bioinformatics and biomedicine.

Methods
Selection of biclustering algorithms

We have chosen seventeen algorithms based on the availability 
and diversity in approaches to solve the biclustering problem, which 
correspond to the algorithms selected by a recent through comparative 
study [8]. The list of biclustering algorithms includes popular ones in 
literature, such as Cheng and Church (CCA) [1], Plaid [18], Spectral 
[19], ISA [20], Bimax [4], xMOTIFs [21], SAMBA [22], OPSM [23] 
and MSSRCC [24]. Furthermore, newer algorithms such as Bayesian 
Biclustering (BBC) [25], COALESCE [26], FABIA [27], CPB [28], 
QUBIC [29], LAS [30], BiBit [31] and DeBi [32] have recently proved 
their effectiveness to handle biclustering issues.

Selection of clustering algorithms

In order to compare biclustering impact with clustering impact, 
we also selected several clustering algorithms and performed the same 
analysis with them. These clustering algorithms were selected based 
on their implementation availability, their popularity (more than 5000 
citations according to Google Scholar) and their ability to handle the 
specific needs of biological fields, such as microarray gene expression 
analysis. Therefore we focused our analysis on seven implementations 
of clustering algorithms: Eisen hierarchical clustering [33], Principal 
Component Analysis (PCA) [34], Support Vector Machines (SVM) 
[35], K-means [36], Model-Based [37], Self-Organizing Map (SOM) 
[38] and CAST [39].

Selection of application fields

The JCR (Journal Citation Report) directory has been used as 
a reference for the definition of fields of application. As a result, the 
papers citing these biclustering or clustering algorithms are classified 
depending on their application field, considering three of them:

• Applied biosciences (from now on, biomed): includes any 
journal found under different biology and medicine subjects 
in the Journal Citation Report (JCR) 2016. See Table 1 in 
supplementary information  for a relation of the subjects and 
Table 2 in Supplementary Information for a relation of the 
journals included in such journals.

• Bioinformatics (from now on bioinfo): includes any journal 
found under the subject Mathematics and Computational 
Biology in JCR 2016. See Table 3 in Supplementary Information 
for a relation of the journals. 

• Others: any other journal not in the former two fields. It also 
includes papers that are not in journals (papers in proceedings, 
technical reports, book chapters, etc.).

With this classification we expect to group most of the algorithms’ 
applications to biology and medicine in biomed, and the algorithms 
‘performance tests, reviews, etc. in bioinfo. Setting hard separations 
on journals’ themes will generate some misclassification (e.g. a 
biomed journal publishing a biclustering performance review), but 
we think that it is good enough for the aims of our study, as shown 
in the results. We also cover this issue by a manual curation of usage 
(see next section). It must also be noted that the biomed field is much 
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larger (1467 journals, compared to 56 in bioinfo) but also much more 
heterogeneous in applications and methods and sparser in biclustering 
citations. Given this and the characteristics of the results found, we 
consider these numbers acceptable for our objectives.

Definition of score metrics
Citations impact is a relevant indicator that helps to discover 

the penetration rate of a tool, a method or even an algorithm in a 
particular domain [40]. We will use this indicator in the study of the 
usage rate of clustering and biclustering algorithms in biomedicine and 
bioinformatics as follows:

Total number of citations= #citations in biomed + #citations in 
bioinfo.

#citations refers to the sum of the number of citations obtained by 
the most important papers citing a given algorithm (from now on, citing 
papers), as of January 2018, in each domain. We limit our analysis to the 
top 50 most cited citing papers, because of citations retrieval constrains 
and to be able to curate them (see below). In order to avoid favoring 
algorithms published long time ago, the number of citing papers and 
number of citations is averaged per year since the publication date.

Finally, in order to characterize citations, we curated the citing 
papers into four categories based on a manual classification process that 
take into consideration the citation semantics:

• Usage if the paper cites the algorithm among their methods or as 
producer of some of the paper’s results.

Table 1: Summary of the studied clustering algorithms. Citation and usage measures for clustering algorithms. The detailed integrative tools and libraries for each clustering 
algorithm are presented in Table 6 of Supplementary Information.

Algorithm
Citing papers 
(per year exc. 

self cit.)

Citing 
papers 
(total)

Usage Usage (exc. self 
cit.) Comparison 

papers
Review 
papers Context

Total 
citations per 

year

Number of 
integrative tool or 

libraryBiomed Bioinfo Biomed Bioinfo
PCA 1.65 32 13 3 13 3 1 9 6 1038.23 2
Eisen 1.26 32 22 0 15 0 0 4 6 5869.68 6

Model-Based 1.12 20 3 0 3 0 2 7 8 474.68 1
SVM 1.60 30 3 3 3 1 2 7 15 2106.11 1

K-means 1.55 33 13 2 8 2 0 10 8 2039.50 4
SOM 1.83 36 10 2 5 2 1 7 16 3694.77 3
CAST 1.77 34 2 3 2 2 3 9 17 1250.31 1

Table 2: Summary of the 17 biclustering algorithms. Citation and usage measures for biclustering algorithms, as defined by the score metrics. The Padilha and Campello 
performance column shows the number of tests (out of 5) for which the algorithm has good results in [8]. The detailed integrative tools and libraries for each biclustering 
algorithm are presented in Table 7 of Supplementary Information.

Algorithm

Citing 
papers (per 

year exc. 
self cit.)

Citing 
papers 
(total)

Usage Usage (exc. self cit.)
Comparison 

papers
Review 
papers

Context
Total 

Citations 
per year

Padilha and 
Campello 

performance

Number of 
integrative 

tool or 
library

Biomed Bioinfo Biomed Bioinfo

Bimax 2.72 32 4 3 4 2 4 4 17 514.18 4 3
SAMBA 1.60 29 3 2 1 0 1 8 15 883.86 4 1

COALESCE 2.37 19 0 0 0 0 5 4 10 263.50 3 1
CCA 1.29 22 0 2 0 2 3 4 13 692.70 0 4
BiBit 1.00 7 1 0 1 0 3 0 3 12.83 4 1
ISA 2.35 35 5 1 3 0 6 2 18 777.94 2 3
BBC 2.22 20 1 0 1 0 3 3 13 73.33 0 0

FABIA 2.85 24 4 4 2 3 4 0 12 97.71 2 3
Plaid 1.46 22 0 0 0 0 1 5 16 630.26 2 2

Spectral 1.64 25 4 0 2 0 2 5 14 434.14 1 2
xMOTIFs 1.85 28 0 2 0 1 3 3 20 402.28 1 4

LAS 1.00 8 3 0 3 0 1 0 3 32.00 3 1
CPB 0.62 8 1 0 0 0 2 1 4 19.75 2 0

QUBIC 2.12 19 3 0 0 0 6 1 9 85.75 1 0
OPSM 1.85 26 0 2 0 2 5 2 17 465 0 1

MSSRCC 0.38 5 1 0 0 0 1 0 3 174.61 1 0
DeBi 2.33 14 0 1 0 1 1 1 11 28.50 0 0

Biclustering Comparison Review Usage Usage (no s.c) Context
Bioinfo (%) 15 7 9 6 69
Biomed (%) 15 20 21 12 44
TOTAL (%) 15 13 14 8 58
Clustering Comparison Review Usage Usage (no s.c) Context
Bioinfo (%) 11 16 18 14 55
Biomed (%) 1 28 46 34 25
TOTAL (%) 4 24 36 27 35

Table 3: Percentage of biclustering and clustering papers classification
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• Context if the paper cites the algorithm in other sections, such 
as the introduction or background, but without actually using it.

• Comparison if the paper is a comparison among clustering or 
biclustering algorithms.

• Review if the paper is a review of clustering or biclustering 
algorithms.

These measures were corrected to remove self-citation or co-
authored usage or citation counts.

Besides usage we also checked if the biclustering or clustering 
algorithms are implemented in broadly spread packages, libraries or 
integrative tools, such as Expander [41], Java TreeView [42], MCLUST 
[43], BicAT [44], BicOverlapper [45], Genesis [46], Bioconductor, HCE 
[47], biclust [48], biclustlib [8], MeV [49] and Sleipnir [50].

Citations retrieval

To retrieve the citations, we implemented bambu, a script based on 
scholar.py (https://github.com/ckreibich/scholar.py), a known Python 
approach to the Google Scholar web search engine (https://scholar.
google.com). The developed tool is available at http://vis.usal.es/bambu 
and can be used for any paper title and list of journals, retrieving the 
top citing papers in the field, and measuring different parameters about 
its impact.

Results
Literature impact of clustering algorithms

Table 1 and Figure 1 show the literature impact for the selected 
clustering algorithms. Figure 1 shows that almost all of the clustering 
algorithms have at least one highly cited citing paper per year on 
biomed journals or, in the case of CAST, in bioinfo journals. About the 
relevance of the citing papers, Eisen algorithm seems to be the most 
relevant, with highly cited papers citing it.

Our curation process found that each clustering algorithm has at 
least two applications in the biomed domain within the topmost 50 
citing papers (see Table 1 for a summary and Table 4 in Supplementary 
Information for a detailed description of the curation). All the methods 
have at least one citing paper per year since its publication. The usage 
ratio varies from methods with low penetration such as Model-Based (3 
citing papers using it), SVM (6) or CAST (5); to more popular methods 
such as Eisen (22 citing papers, all in biomedicine), PCA or K-means 
(13 citing papers in biomedicine).

Most of the clustering algorithms have a larger number of 
applications in biomed than in bioinfo. For example, Eisen method has 
all of its 15 non-coauthored applications in biomed journals; in the case 
of SOM, there are 12 applications, 10 of them in biomed. These findings 
confirm that most of these clustering algorithms have a stronger impact 
in biomedicine, and that this one is a natural field of application for 
clustering. 

Although most of the applications correspond to the usage 
of clustering algorithms in biomedical problems, some of them 
correspond to integrations or implementations of the algorithms 
in other platforms, especially in the bioinfo domain. For example, 
the two bioinfo applications of SOM consist on the implementation 
of the algorithm in a library [51] and its integration in a tool [46]. 
Something similar occurs with the three bioinfo applications of PCA, 
although it is not always the case SVM has two bioinfo applications that 
correspond to microarray data analyses (see Table 4 in Supplementary 

Information). The exclusion of self-citations reveal how dependent on 
the original authors the algorihtm is for actual usage, ranging from 
33% of coauthored applications in Eisen or K-means to 0% in PCA, 
or Model Based algorithms (see Table 1). Only SOM has a coauthored 
application rate larger than one third (41.6%).

Regarding to biomed application details, most of them are used 
for classification of genomic data from different sources, usually gene 
expression data (see Table 4 in Supplementary Information, highlighted 
entries). For example, in the case of CAST, one of its applications is 
for clustering gene expression data to discover a subset of melanomas 
[52] while the second application is about clustering of DNA sequence 
motifs [53].

Literature impact of biclustering algorithms

Table 2 and Figure 2 show the impact and scores for the studied 
biclustering algorithms (see Table 5 in Supplementary Information 
for additional information about curated biclustering citations). Most 
of the analyzed biclustering algorithms have at least one citing paper 
per year, with a general preeminence of bioinfo papers. There is a large 
variation in the number of citations obtained by the citing papers, 
and the most cited ones (ISA and SAMBA) take the larger number of 
citations from biomed citing papers.

We investigated the semantics of citations in biomed and bioinfo 
journals (Table 2, biomed and bioinfo usage). Bimax and FABIA have 
the highest numbers of application papers (5 or more citations each), 
pointing to a stronger impact in biomedicine and bioinformatics. In 
the case of COALESCE and Plaid model, although their high number 
of citing papers (19 and 22 respectively), none of these papers either 
in biomed or bioinfo journals is an application of the algorithm, 
although for COALESCE two of its citing papers are biclustering 
comparisons in which it has good results [54,55]. Notice that these 
biclustering comparisons are both published in biomed journals 
(Genome Biology and Nucleic Acids Research). In the case of 
Bimax, 7 out of 32 citing papers in biomed and bioinfo journals are 
actual applications. Among these applications, 4 of them represent 
actual applications of the algorithm in biology. Thereby, Bimax has a 
prominent role for identifying groups of genes with similar expression 
profiles, using it as the preferred classification method for; A. thaliana 
gene expression [56], cancer data [57], co-regulated genes with drugs 
[58] and Adverse Drug Events in the United States Food and Drug 
Administration’s (FDA) Spontaneous Reporting System [59]. In the 
case of SAMBA, with a considerable number of citations of its journals 
in the two fields (biomed and bioinfo), 5 out of the 29 citing papers are 
applications of the algorithm. Focusing on the biomed domain, there 
are 3 papers out of the 5 which are actual applications of SAMBA in 
biology. The first application uses a modified version of the algorithm 
to bicluster gene expression data [60]. However, this is a paper where 
two of the original authors of SAMBA appear as co-authors, so it can 
be considered as proof of the usage in the biology field but not as a 
third-party corroboration of successful usage. The second application 
consists in biclustering usage on a gene set matrix constructed from 
an association of lincRNAs data with their functional gene sets [61] 
while the third one, another co-authored paper, uses the algorithm as 
a principal method of biclustering from the Expander tool [62]. For 
CCA biclustering algorithm, only 2 out of its 22 citing papers can be 
considered as actual applications [44,63]. Note that these applications 
are in bioinfo domain. In the case of ISA, 6 out of 35 citing papers are 
applications in biomed and bioinfo domains. Note that there are 3 other 
papers for ISA in bioinfo that represent new versions of the algorithm; 
USA [64], EDISA [65] and PISA [66]. Moreover, in the case of LAS and 
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despite its low number of citing papers, 4 of its 8 papers are considered 
as applications of the algorithm. As for ISA, there is a paper in bioinfo 
where a new version of LAS was proposed based on a preprocessing 
technique named localization [67]. In the case of FABIA, 8 out of its 
24 citing papers are considered as actual applications (3 co-authored).
Among these 8 papers, there are 4 of them that can be considered as 
applications of the FABIA algorithm on biology domain. The first two 
ones used FABIA as the preferable method of identification. The first 
paper used the biclustering algorithm to identify very short Identity by 
descent (IBD) segments characterized by rare variants [68] while the 
second one used FABIA to identify transcriptional modules [69]. We 
mention that these 2 applications are co-authored. The third FABIA 
application used the algorithm for biclustering of microbiome data 

[70] while the last biology application used FABIA to classify gene 
expression profiles [71]. About the remaining biclustering algorithms, 
BBC, BiBit and DeBi have one third-party citing paper using the 
algorithm [72-74]. MSSRCC, QUBIC and CPB also have papers using 
them, but linked to their original authors.

Discussion
Clustering and biclustering impact comparison in the biomed 
domain

Based on our compiled results (Table 3), algorithm usage is less 
frequent on citing papers for biclustering (14%) than for clustering 
(36%). The difference is threefold if we remove self-citations (8% vs 

Figure 1:  Literature impact of selected clustering algorithms in each domain
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27%). Biclustering is mostly cited as context (58%), while clustering 
is less cited as context, especially in biomed journals (25%). This may 
suggest that biclustering is known in the field but is not so frequently 
used as clustering. The penetration of biomed comparisons in 
biclustering is also remarkable (14% of total biomed biclustering citing 
papers) compared to clustering (1%), which might also point to a stage 
of competition among methods in performance or quality. 

A comparison of algorithm usage respect to algorithm citation 
(corrected per year) on both clustering and biclustering shows that 
clustering usage spikes faster than biclustering usage with the increase 
of citations (Figure 3, linear regression slope of 0.68 vs. 0.18).

Although the first biclustering algorithm dates back to 1972 
[75], this paradigm only started to draw the biomedical community’s 
attention after its first application [1]. Most biclustering algorithms, 
measures or methodologies have been developed since then. At the same 
time, in 2000, the clustering literature was rather mature, with decades 
of research and improvements [76]. Many clustering algorithms, 
evaluation measures and benchmarks were available. So, we believe 
that this could be one of the main reasons that clustering methods are 
still more popular than biclustering methods in biosciences and there 
is a clear timing advantage in favor of traditional clustering algorithms 
due to a previous consolidation in statistics, rather than to a previous 
publishing of the methods themselves.

Figure 2: Literature impact of selected biclustering algorithms in each domain
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Another possible explanation of clustering dominance is that 
clustering is easier to understand (no overlaps, only one dimension) and 
also fits well with very rooted biological concepts such as taxonomical 
trees, as in the case of hierarchical clustering.

Possible catalyzers of biclustering impact

Only two biclustering algorithms have more than 0.5 citing papers 
using them per year on average: Bimax and FABIA, although a total 
of 9 biclustering algorithms have more than 2 citing papers per year 
on average. Although all the biclustering algorithms have a publicly 
available implementation, some of them are not included in easy to use 
libraries or integrative tools, such as BBC, MSSRCC, QUBIC and Debi; 
all of them with more than 2 citing papers per year. On the other side, 
Bimax has at least three implementations (R package biclust and visual 
integrative tools BicAT and BicOverlapper) and FABIA has its own 
BioConductor package. This availability could be one source of success 
for biclustering algorithm usage. Another possible indicator of this is 
the fact that self- citation rate in usage is larger in biclustering (43%) 
than in clustering (25%), suggesting that the biclustering tools are less 
approachable without an expert involved in the algorithm co-working 
on its application to a given problem.

Taking into account the recent and exhaustive biclustering 
comparison by Padilha and Campello [8], good performance in 
benchmark tests is another candidate pre-condition for biclustering 
usage. The average usage ratio per year of all the algorithms without 
superior results in any of Padilha tests is below 0.2. Bimax, with a usage 
ratio above 0.6 fulfills 4 out of 5 Padilha’s tests (Table 2). However, other 
algorithms with good performance like BiBit or COALESCE have low 
usage impacts (Table 2 and Figure 1 in Supplementary Information ) 
pointing that a moderately good performance may be a necessary but 
not sufficient pre-condition for usage.

Finally, another interesting fact is that one of the most successfully 
used algorithm according to this analysis is Bimax, a biclustering 
algorithm with a very simple definition of what a bicluster is (constant 
biclusters based on data binarization), which might encourage 
researchers to use and interpret its results, rather than more complex 
definitions (scale and shift, coherent evolution biclusters).

Conclusion
Biclustering algorithms have been available in bioinformatics 

analysis since 2000, almost from the first genome-wide expression 

Figure 3: Citation vs. usage of biclustering and clustering algorithms in biomed domain (based on data from Table 3).
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analyses [33]. In this time, in the light of our review, they have become 
known in biomedical domains, some of them appearing in highly 
cited papers and reviews on journals such as Nucleic Acids Research, 
BMC Biology, Nature Genetics or Cancer Research. However, their 
penetration into this domain as a popular tool to be used by non-
experts is still far from the penetration of clustering algorithms.

The success of clustering over biclustering can be due to, in one hand, 
the relative novelty of biclustering algorithms, not in bioinformatics but 
in statistics, respect to clustering. In other hand, clustering might be 
favored by a more consistent presence in the field of statistics and its 
easier interpretation of results, maybe combined with the familiarity of 
concepts such as hierarchical classification. However, there is room for 
biclustering in biomedical applications, as shown for some algorithms 
that present biomedical penetration in reviews and some approaches, 
especially if they succeed at the issues of availability, benchmarking and 
easiness of usage and interpretation.

It is possibly of interest for the field to consider these aspects, in 
order to make biclustering a more useful and used approach for one of 
the major research fields it is intended to.
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