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competitive inhibitor of protein-tyrosine kinases and is capable of 
inducing apoptosis in various human tumor cell lines which has been 
documented by several publications [9-13]. It is also reported that beta-
HIVS shows great promise as a potent apoptosis-inducing agent in the 
treatment of hematological malignancies included leukemia, although 
this still retains in research and development stages [14-16]. At present, 
the apoptosis-inducing activity of beta-HIVS on MM as well as the 
way in which beta-HIVS promotes cell death remains to be clarified. In 
consequence, the current study investigated the effect of beta-HIVS on 
U266 cells and traced the underlying mechanism.

Materials and Methods
Materials 

The U266 cell line was purchased from the Chinese Academy of 
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Introduction
Multiple Myeloma (MM) is a plasma cell malignancy accounts for 

more than 10% of hematological malignancies and is characterized 
by the proliferation of malignant clonal plasma cells that produce a 
single immunoglobulin isotype named M-protein [1,2]. At present, 
treatments using alkylating agents, corticosteroids, proteasome 
inhibitors and immunomodulatory drugs have improved the overall 
outcomes of MM during the past decade, and MM patients are now 
undergoing considerable survival rate with respect to those obtained 
with historical treatments. Nevertheless, MM remains in most cases 
an incurable disease, and novel drugs as well as therapeutic strategies 
are still required for continued disease control. In this regard, several 
new agents for MM therapy are currently receiving assessment, some 
of which seemed with promising on the basis of reported initial results 
[3-5].

Currently, a series of novel shikonin derivative analogues bearing 
oxygen-containing substituents were designed, synthesized or isolated 
[6-8], among which, beta-hydroxyisovalerylshikonin (beta-HIVS) 
has been highlighted for the strongest apoptosis-inducing activity 
among various derivatives of shikonin. This drug is an ATP non-
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Abstract
Background: Beta-hydroxyisovalerylshikonin (beta-HIVS) is a compound isolated from the traditional oriental 

medicinal herb lithospermum radix. This drug exerts a role as an ATP non-competitive inhibitor of Protein-Tyrosine 
Kinases (PTKs) and shows great potential for induction of apoptosis against human cancer cells. We investigated the 
effect of beta-HIVS on multiple myeloma U266 cells and clarified details of the primary mechanism in its apoptosis-
inducing activity.

Objective: The aim of this work was to trace the apoptosis-inducing activity of beta-HIVS on U266 cells as well 
as the underlying mechanisms. 

Methods: Cell Counting Kit-8 (CCK-8) test and colony-forming assay were performed in estimating the effects 
of beta-HIVS on U266 cell viability and colony formation. Apoptosis analysis was carried out on the basis of DAPI 
fluorescence staining and DNA fragmentation assays. Real-time PCR was employed to evaluate changes of Bcl-2 
and Bax mRNA expression, while indirect immunofluorescence assay and western blotting were utilized in validating 
the expression of Bcl-2, Bax, caspase-3, caspase-9, PARP and cytochrome c.

Results: CCK-8 test and colony-forming assay showed that beta-HIVS treatment resulted in significantly 
reduced cell proliferation (P<0.05 or 0.01) and colony formation (P<0.01). Real-time PCR results indicated that 
the expression level of Bcl-2 mRNA was reduced at 72h following beta-HIVS co-cultivation (P<0.01), although Bax 
mRNA altered with no significance. Immunofluorescence assay displayed that caspase-3 was activated in beta-
HIVS treated group, accompanied by an increased expression of cytochrome c. Western blotting also exhibited 
that the expression of Bcl-2 protein in beta-HIVS treated group decreased and cytochrome c increased at 72h after 
co-cultivation. Moreover, caspase-3 and -9, as well as PARP were activated, all with P<0.01 when compared with 
the two control groups.

Conclusion: Beta-HIVS revealed remarkable apoptosis-inducing activity in U266 cells, possibly by inhibiting 
proliferation and promoting apoptosis via the mitochondrial pathway.
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Apoptosis analysis

Cell apoptosis was evaluated via DAPI fluorescence staining and 
DNA fragmentation assays. For DAPI staining, cells were collected 
and washed with PBS and stained by DAPI (2 mg/ml) for 3-5 min. 
Morphological changes of the stained cells were examined using the 
fluorescence microscope (Olympus, Japan). (Non-viable apoptotic ratio) 
% = (cell numbers in phase IIb/200 cells) x100%. DNA fragmentation 
analysis was performed according to the instructions of a commercial 
DNA Fragmentation Kit, followed by agarose gel electrophoresis: each 
sample containing 2.5 µg of extracted DNA in 1.2% agarose gel and 
electrophoresis with a constant voltage 20 V for 4h.

Real-time PCR analysis

Real-time PCR test was carried out by utilizing the SYBR Green 
PCR Master Mix under the recommended conditions. The primer 
sequences for Bcl-2, Bax and GAPDH were previously described [17]. 
The comparative Ct method was used to calculate the relative expression 
level of Bcl-2 or Bax as compared with GAPDH.

Immunofluorescence staining

The cell monolayer was fixed with 4% paraformaldehyde, and were 
incubated at 4˚C overnight with rabbit anti-cleaved caspase-3 (Asp175) 
(1:300) and mouse monoclonal anti-cytochrome c (1:400) antibodies. 
FITC-conjugated anti-rabbit and Cy3-conjugated anti-mouse IgG 
were all diluted at 1:1000. DAPI was used to dye the cell nuclei. The 
stained cells were washed with PBS and observed with a fluorescence 
microscope (Olympus, Japan) at x 400 magnification.

Western blotting analysis

Cell lysates were prepared with the aid of RIPA protein lysis 
buffer and the protein extracts were quantified and then subjected 
to electrophoresis on a 10-12% SDS-PAGE gel. The proteins were 
transferred onto the PolyVinylidene Difluoride (PVDF) membranes 
and blocked in Tris-buffered saline (TBS) containing 5% non-fat milk 
powder. The primary antibodies and the dilutions used were: rabbit 
anti-Bcl-2 (1:1000), anti-caspase-9 (1:500), anti-caspase-3 (1:500) 
and anti-cleaved PARP (1:300). Mouse monoclonal anti-cytochrome 
c antibody was diluted at 1:500 and mouse anti-β-actin antibody was 
1:1000.

Statistical analysis

All data are expressed as the means ± Standard Deviation (SD). 
One-way ANOVA, Student’s t-test or the non-parametric test were 
performed for comparison of differences between groups using SPSS 
13.0 software (SPSS Inc., Chicago, IL, USA). P<0.05 was considered to 
indicate a statistically significant difference.

Results
Beta -HIVS inhibits U266 cell viability and colony formation

As shown in (Figure 1A), the effects of beta -HIVS on the viability 
of U266 cells were assessed by CCK-8 assay. The results suggested that 
beta-HIVS treatment led to a detection of 0.312±0.035, 0.433±0.052, 
0.491±0.047, and 0.489±0.076 of the OD values (proportional to the cell 
numbers) at 24, 48, 72 and 96 h following co- cultivation, significantly 
lower than those of DMSO or no treatment cells with P<0.05 or 0.01. 
For the colony formation assay, the colonies of Beta-HIVS treated group 
was fewer and smaller, and the colony numbers were significantly lower 
than those of two contrast groups (P<0.01) (Figure 1B).

Sciences (Shanghai, China). The main reagents are listed as follows: 
beta-HIVS (Dibo Chem, Shanghai, China); RPMI-1640, fetal bovine 
serum (FBS) (Gibco-BRL, Carlsbad, CA, USA); DMSO, methylcellulose 
(Sigma-Aldrich Corporation, St. Louis, MA, USA); Cell Counting Kit-8 
(Dojindo Laboratories, Kumamoto, Japan); SYBR-Green PCR Master 
Mix (Roche Diagnostics GmbH, Mannheim, Germany); RIPA protein 
lysis buffer, paraformaldehyde, DAPI dye, DNA Fragmentation kit, Cy3-
conjugated anti-mouse IgG, FITC-conjugated anti-rabbit IgG, mouse 
anti-human β-actin, anti-cytochrome c, rabbit anticleaved PARP and 
anti-cleaved caspase-3 (Asp175) (Beyotime Institute of Biotechnology, 
Shanghai, China); rabbit antihuman Bcl-2 and anti-Bax (Abcam, 
Cambridge, MA,USA); rabbit anti-caspase-9 and anti-caspase-3 (Santa 
Cruz Biotechnology, Santa Cruz, CA, USA);

Methods

Cell culture

Human U266 cells were maintained in RPMI-1640 medium 
supplemented with 10% FBS, and cultured at 37˚C in 5% CO2.

Cell viability assays

Beta -HIVS was dissolved in DMSO with a stork concentration 
of 8000 µg/ml and the IC50 (1.2 µg/ml) for U266 cells was obtained by 
our previous study. Three groups as beta-HIVS treated group, DMSO 
control group and no treatment group were established. Cells were 
seeded in 96-well plates at a density of 5×103/ml and co-cultivated 
with beta-HIVS at a final concentration of 1.2 µg/ml. CCK-8 test was 
employed in the evaluation of the growth inhibitory effects of beta-
HIVS on U266 cells following the manufacturer’s protocol. The optical 
density (OD value proportional to the cell numbers) was measured 
using a microculture plate reader (BioTek Instruments, Winooski, VT, 
USA) at both 450 and 630 nm.

Colony-forming assay

Concisely, cells were suspended in a concentration of 300 cells per 
ml RPMI-1640 and seeded in 24-well plates. Methylcellulose dissolved 
in RPMI-1640 containing 30% FBS was supplied to each well at a 
concentration of 0.8 g/L. The colonies containing more than 50 cells 
were counted following incubation at 37˚C in 5% CO2 for 14 days.
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Figure 1a: Effects of beta-HIVS on the cell viability and colony formation of 
multiple myeloma U266 cells. (A) CCK-8 assay. The OD value proportional to 
the cell number was detected and plotted on the growth curve.
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Apoptotic cell death was induced in U266 cells by beta-HIVS

The apoptosis-inducing effects were measured with the aid of DAPI 
staining and DNA ladder electrophoresis. As indicated in (Figure 2A), 
U266 cells in beta-HIVS group presented morphology of chromatin 
condensation and shrinkage in phase IIb of the apoptotic phase at 72 
h following treatment, and the apoptotic ratio of phase IIb (%) was 
significantly higher than that of two control groups, with P<0.01. In 
contrast, cells of DMSO and no treatment groups all presented no 
marked apoptotic morphology. DNA degradative fragments were 
detected by DNA ladder electrophoresis, which also displayed typical 
apoptosis ‘DNA ladders’ in beta-HIVS treated group against that of two 
control groups (Figure 2B).

The intrinsic apoptotic pathway is involved in beta-HIVS 
induced cell apoptosis

Real-time PCR, immunofluorescence assay and western blotting 
were performed for the detection of apoptosis-related proteins, 

involved Bcl-2, Bax, PARP, cytochrome c, caspase-3 and caspase-9. 
Data of real-time PCR test evinced that the mRNA expression of Bcl-2 
in beta-HIVS treated group decreased, with P<0.01 vs. DMSO group, 
while the Bax mRNA expression changed unconspicuously (Figure 
3A). At the same time, immunofluorescence analysis displayed that 
caspase-3 was activated in beta-HIVS treated group, accompanied by 
an increase in the levels of cytochrome c, as enhanced red fluorescence 
was observed in the beta-HIVS treated cells, which utilized anti-cleaved 
caspase-3 (Asp175) and anti-cytochrome c antibodies, combined 
by Cy3-conjugated anti-mouse or rabbit IgG. (Figure 3B). Similarly, 
western blotting showed that the expression of Bcl-2 in beta-HIVS 
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Figure 1b: Colony-forming assay. Cell colonies containing >50 cells were 
counted on day 14. Data shown are the means ± SD (n=15) (*: P<0.05; **: 
P<0.01, vs. no treatment cells).
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Figure 2a: Beta-HIVS promotes apoptosis in U266 multiple myeloma cells. 
DAPI fluorescence staining shows the microscopic changes in the nuclei of 
beta-HIVS treated cells observed (72h) via a fluorescence microscope, at x 
400 magnification.The red arrow indicates typical morphology of the nucleus 
following apoptosis at phase IIb. (Non-viable apoptotic ratio) % = (phase IIb cell 
numbers/200 cells) x 100%. Data shown are the means ± SD (n=3) (**: P<0.01 
vs. no treatment cells).  
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Figure 2b: DNA fragmentation analysis. DNA was extracted at 72 h following 
beta-HIVS treatment.
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Figure 3a: Alterations of apoptosis-associated factors in different groups of 
U266 cells. Real-time PCR.
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Figure 3b: Immunofluorescence staining, observed via a fluorescence 
microscope at 72 h after beta-HIVS treatment, at x 400 magnification. Cleaved 
caspase-3 was marked by green fluorescence (FITC), and cytochrome c was 
marked by red fluorescence (Cy3). The nucleus was stained by DAPI.



Citation: He Y, Chen X, Kong L (2014) Beta-Hydroxyisovalerylshikonin Inhibits the Growth of U266 Multiple Myeloma Cells by Triggering the 
Mitochondrial Pathway. J Leuk 2: 155. doi:10.4172/2329-6917.1000155

Page 4 of 5

Volume 2 • Issue 4 • 1000155
J Leuk 
ISSN: 2329-6917 JLU, an open access journal 

group down-regulated, while cytochrome c expression up-regulated, all 
with P<0.01 when comparing the two contrast groups. Cleaved PARP 
was also detected in beta-HIVS treated group. Correspondingly, both 
cleaved caspase-3 and -9 were detected, as a 17 kDa spliceosome for 
pro-caspase-3 and a 37 kDa spliceosome for pro-caspase-9, were all 
observed in beta-HIVS treated group (Figure 3C and3D). 

Discussion
In the present study, we first evaluated the apoptosis-inducing effect 

of beta-HIVS on U266 cells, with a result that this drug suppressed U266 
cell proliferation and colony formation, and induced cell apoptosis. To 
further analyze the mechanism for beta-HIVS-induced apoptosis, we 

carried out real-time PCR, immunofluorescence staining and western 
blotting in the detection of changes of apoptosis-associated factors. Our 
data displayed that beta-HIVS treatment resulted in alterations of the 
expression of Bcl-2, cytochrome c, and an activation of PARP, caspase-3 
and caspase-9 in U266 cells, indicating that beta-HIVS induces U266 
cell death possibly by activating the mitochondria pathway.

Beta-HIVS is an ATP non-competitive inhibitor of protein-tyrosine 
kinases and is capable of inducing apoptosis in various lines of human 
tumor cells which has been documented by several publications [9-
16]. Hashimoto et al, 2002 found that beta-HIVS was able to induce 
cell death more efficiently in DMS114 and NCI-H522 lung cancer cells 
[6]. Xu et al, 2004 also presented the similar results [18]. Masuda and 
his study group had previously validated the effects of beta-HIVS on 
U937 and HL-60 leukemia cells and found both two kinds of cell lines 
all suffered from apoptosis when treated with 10-6 M beta-HIVS [14]. 
Similarly, another proof from Hashimoto et al, 1999 also suggested that 
low concentrations of beta-HIVS between 10-8 and 10-6 M could inhibit 
the growth of various lines of cancer cells included HL-60 leukemia 
cells [15]. In consistant with the above findings, our data revealed that 
cell viability and colony formation of U266 cells were inhibited by beta-
HIVS at a concentration of 1.2 µg/ml. Notably, the apoptosis-inducing 
effects were further validated by DAPI staining and DNA ladder 
electrophoresis assays, suggesting that beta-HIVS may be a potential 
therapeutic agent for MM treatment. 

MM is considered the second most common hematological 
malignancy and is characterized by the clonal proliferation of neoplastic 
plasma cells in the bone marrow [1,2]. The improved understanding of 
the molecular mechanisms of MM development may provide a basis 
for the development of effective treatment strategies. Previous studies 
have demonstrated that beta-HIVS is one of the inhibitors of Protein 
Tyrosine Kinases (PTKs) which play important roles in a number of 
signal transduction pathways that are involved in cancer cell growth, 
differentiation, cell death, and carcinogenesis [19-22]. Particularly, 
beta-HIVS prohibits the activity of v-Src and EGFR in an ATP-non-
competitive manner, and suppresses polo-like kinase 1 (PLK1) after 
inhibition of PTK activity, with resultant induction of apoptosis in 
human leukemia cells [23]. Correspondingly, a study from Xu et al, 
2004 also indicated that beta-HIVS induced apoptosis in DMS114 
cells via a PTK-dependent pathway [18]. Besides, Masuda et al, 2003 
had demonstrated that beta-HIVS suppresses the growth of U937 and 
HL-60 leukemia cells by inhibiting the activity of a polo-like kinase 1 
(PLK1) that is involved in control of the cell cycle [14].

In addition, other singling pathways are involved in beta-HIVS-
mediated tumor cell death as well [15,24-27]. Early in 1999, Hashimoto 
et al. had reported that beta-HIVS was able to activate caspase-3 in 
its anti-neoplastic effect [15]. Then, Wu et al. described that shikonin 
inhibited cell growth in a time- and dose-dependent manner, 
accompanied by a decreased Bcl-2 and increased Bax expression, as 
well as an activation of caspase cascade [26]. Similarly, the present study 
showed that beta-HIVS treatment in U266 cells resulted in changes in 
the expression of Bcl-2, cytochrome c, PARP, caspase-3 and caspase-9, 
characterized by a reduced expression of Bcl-2 and increased expression 
of cytochrome c, although Bax expression altered with no significance. 
The activation of caspase-3 was further verified by western blotting 
and immunofluorescence assays. In addition, cleaved caspase-9 was 
detected by western blotting as well. Importantly, cleaved-PARP was 
also detected, which further provides evidence of the activation of 
caspase-3 and caspase-9. In short, it these data suggest that beta-HIVS 
suppresses cell viability and induces cell apoptosis by triggering the 
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Figure 3c: Western blotting analysis of apoptosis-related proteins at 72 h after 
beta-HIVS treatment.
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mitochondrial pathway in multiple myeloma. Yet, our findings are in 
consistent with the previous studies [15,26,27]. 

Taken together, the present study disclosed the apoptosis-
inducing of beta-HIVS on U266 cells as well as the primary underlying 
mechanisms. However, the evaluation of the apoptosis status of U266 
cells induced by beta-HIVS was limited due to the detection methods 
conducted in this study, and therefore more apoptosis evaluations are 
needed. Moreover, the release of cytochrome c from the mitochondria 
should also be validated. These experiments will be performed in our 
future studies.
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