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Open AccessEditorial

As the most ubiquitous form of energy, thermal energy or simply 
heat is widely involved in almost every aspect of real-world applica-
tions. Better understanding and then “taming” the thermal transport 
processes inside various materials and devices, especially at the na-
noscale, are critical to many fundamental and engineering problems. 
Tremendous research opportunities are opened in this field, ranging 
from the large-scale recovery, storage, and conservation of heat, to im-
proving the thermal safety and reliability of lithium-ion (Li-ion) batter-
ies and electronic devices. Unrestricted to aeronautics and aerospace 
applications, many of these research topics will significantly change our 
everyday lives as well.

The advancement of cutting-edge heat transfer research is strongly 
dependent on the fundamental understanding of heat at the atomic lev-
el. In a dielectric material, heat is carried by the vibrations of atoms or 
molecules, which are essentially sound waves. At each vibrational fre-
quency, quantum mechanics principles dictate that the vibrational en-
ergy must be a multiple of a basic amount of energy, called a quantum. 
The vibrational energy of atoms or molecules is thus “quantized” into 
so-called “phonons”. Similar to photons for light, phonons are virtual 
particles and heat transfer by atomic vibrations is viewed as phonon 
transport. Different from photons that do not interact between different 
wavelengths, rather complicated interactions, also called scattering, ex-
ist between phonons of all wavelengths. In addition, phonons will also 
scatter with defects and electrons in a material, which further increases 
the complexity in the prediction and control of phonon behaviors. For 
experimental studies, it is challenging to “probe” individual phonons in 
the way of real particles such as electron a period [1]. However, more 
details for phonon transport at different wavelengths have been revealed 
by the rapidly developing computational tools (e.g. molecular dynamics 
simulations, [2] first-principles computation [3]) and advanced tech-
niques to study thermal phenomena at nanosized length scale or down 
to femto second time scale [4]. 

In practice, the research of phonon transport targets for either fa-
cilitating or impeding the heat transfer. The former one can be crucial 
for effective heat rejection of Li-ion batteries used for portable elec-
tronics or electric vehicles. Although random explosions from over-
heating are not a widespread problem, millions of Li-ion batteries have 
been recently recalled by various manufacturers (e.g. Sony, [5] GM [6]) 
due to the thermal safety concerns. Simply adding cooling accessories 
does not work well because it will significantly increase the weight and 
volume of Li-ion batteries. To fundamentally solve the thermal safety 
problem, it is critical to identify the bottlenecks of phonon transport 
within an operating battery and then remove these bottlenecks by im-
proving current manufacturing processes, introducing novel materials, 
or employing new designs. Such detailed phonon studies are entirely 
new to Li-ion batteries because all previous studies are heavily focused 
on electrochemical processes inside a battery. With thermal safety and 
reliability becoming the highest priority for Li-ion battery manufactur-
ers now, [7] it is anticipated that much more attentions will be paid to 
this aspect in the next few years.

In many other cases, approaches are developed to impede phonon 
transport. One example here can be thermoelectric (TE) materials that 
have the ability to directly convert heat (e.g. from nuclear reactor for 

space applications, [8] car exhaust gas, [9] body heat, [10] or solar radi-
ation [11]) into electricity (power generation) or instead to use electric-
ity to drive a heat flow (refrigeration) [12]. In principle, good thermo-
electric materials should conduct electrons as a crystal, but scatter pho-
nons as a glass. One way to achieved this is to utilize the nanostructure 
boundaries inside a bulk material to selectively scatter phonons rather 
than electrons. Such embedded nanostructures can be introduced by 
hot pressing ball-milled nanoparticles into a bulk disc, [13] dispersing 
nanostructures (e.g. nanowire, [14] nanoparticle [15,16]) within a ma-
terial, or introducing nanopores inside a material [17]. In these efforts, 
knowledge of phonon transport in TE materials is of importance as 
theoretical guidance for material synthesis.

Above examples are just among many topics that would consider-
ably benefit from the enhanced understanding of phonons as atom or 
molecule vibrations. The advancement of phonon studies requires ef-
fective collaboration and communication across multiple disciplines, 
which echoes the goal of Journal of Aeronautics & Aerospace Engineer-
ing: a wide range of topics, open access, and fast update. We sincerely 
hope that this new journal would play an important role in a variety of 
interdisciplinary areas in the near future.
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