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B-cell epitope prediction for peptide-based vaccine design:  
towards a paradigm of biological outcomes for global health  

Salvador Eugenio C. Caoili 

Abstract  
Global health must address a rapidly evolving burden of disease, hence the urgent need for versatile generic  
technologies exemplified by peptide-based vaccines. B-cell epitope prediction is crucial for designing such 
vaccines; yet this approach has thus far been largely unsuccessful, prompting further inquiry into the underly-
ing reasons for its apparent inadequacy. Two major obstacles to the development of B-cell epitope prediction 
for peptide-based vaccine design are (1) the prevailing binary classification paradigm, which mandates the 
problematic dichotomization of continuous outcome variables, and (2) failure to explicitly model biological 
consequences of immunization that are relevant to practical considerations of safety and efficacy. The first  
obstacle is eliminated by redefining the predictive task as quantitative estimation of empirically observable 
biological effects of antibody-antigen binding, such that prediction is benchmarked using measures of corre-
lation between continuous rather than dichotomous variables; but this alternative approach by itself fails to 
address the second obstacle even if benchmark data are selected to exclusively reflect functionally relevant 
cross-reactivity of antipeptide antibodies with protein antigens (as evidenced by antibody-modulated protein 
biological activity), particularly where only antibody-antigen binding is actually predicted as a surrogate for its 
biological effects. To overcome the second obstacle, the prerequisite is deliberate effort to predict, a priori, 
biological outcomes that are of immediate practical significance from the perspective of vaccination. This de-
mands a much broader and deeper systems view of immunobiology than has hitherto been invoked for B-cell 
epitope prediction. Such a view would facilitate comprehension of many crucial yet largely neglected aspects 
of the vaccine-design problem. Of these, immunodominance among B-cell epitopes is a central unifying 
theme that subsumes immune phenomena of tolerance, imprinting and refocusing; but it is meaningful for 
vaccine design only in the light of disease-specific pathophysiology, which for infectious processes is compli-
cated by host-pathogen coevolution. To better support peptide-based vaccine design, B-cell epitope predic-
tion would entail individualized quantitative estimation of biological outcomes relevant to safety and efficacy. 
Passive-immunization experiments could serve as an important initial proving ground for B-cell epitope pre-
diction en route to vaccine-design applications, by restricting biological complexity to render epitope-
prediction problems more computationally tractable. 

BACKGROUND 
 

Immunoinformatics and computational immunology are 

widely regarded as powerful approaches to the analysis, 

modeling and prediction of immune function in both 

health and disease [1-9], notably to facilitate the expe-

dited development of novel vaccines based on available 

genomic and proteomic data [10-21]. Such vaccines, par-

ticularly those against infectious diseases that contribute 

extensively to morbidity and mortality worldwide, are of 

vital strategic value from the perspective of global health. 

 

Global health has been defined as "collaborative trans-

national research and action for promoting health for 

all" [22]. It thus transcends the traditionally parochial 

pursuit of public health by nation-states within their re-

spective geographic territories. Furthermore, it encom-

passes both human and veterinary medicine, which are 

inextricably linked through the concept of "One 

Health" (i.e., health among interacting human and animal 

populations as tightly integrated components of a shared 

global ecosystem) [23-26]. This concept is key to com-

prehending disease in terms of epidemiologic transition 

theory [27, 28].  

 

Classic epidemiologic transition theory [27] holds that, 

during the shift from agricultural to industrial society, 

human population growth accelerates rapidly due to de-

clining death rates borne of widespread health-promoting 

developments (e.g., public-health interventions against 

infectious disease) but subsequently decelerates due to 

declining birth rates borne of multiple factors (e.g., de-

ferred and less frequent childbearing consequent to in-

creased educational and employment opportunities); by 

this account, the classic epidemiologic transition is a shift 

in the human disease burden from infections resulting in 

premature death to chronic conditions developing with 

cultural and environmental changes that accompany in-

dustrialization. The chronic conditions whose incidence 

tends to increase with industrialization include disorders 

of immune function, notably those characterized by hy-

persensitivity in the form of allergic and autoimmune 

reactions [29-32]. This trend reflects immune             
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dysregulation that may result in part from inadequate 

exposure to natural stimuli such as environmental micro-

organisms and helminths [33-43].  

 

An extended framework of epidemiologic transition the-

ory [28] identifies the classic epidemiologic transition as 

the second of three epidemiologic transitions. Of these 

transitions, the first accompanies the shift from hunter-

gatherer to agricultural society and is characterized by a 

rise in infectious diseases  favored by poorer nutrition 

(due to decreased diversity of dietary sources of nutri-

ents), increasing human population density (particularly 

with the advent of sedentism and subsequent urbaniza-

tion), and greater contact between humans and domesti-

cated animals (leading to various zoonoses). The third 

epidemiologic transition, already underway, is character-

ized by a resurgence of infectious diseases due to acceler-

ated globalization of human disease ecologies that in-

creasingly favors pandemics of emerging and re-

emerging pathogens. This ongoing epidemiologic transi-

tion reflects the current socio-ecological regime, which 

motivates the unsustainable pursuit of unlimited growth 

of material production and consumption [44]; the result-

ing environmental degradation compromises the global 

ecosystem as a whole, for example, by way of climate 

change that expands the geographic ranges of pathogens 

and disease vectors [26].  

 

Epidemiologic transitions have thus resulted in a rapidly 

evolving double burden of infectious and non-infectious 

diseases [45-47], hence the urgent need for versatile ge-

neric technologies exemplified by peptide-based vaccines 

[48-50], which elicit antipeptide antibodies that modulate 

protein function to prevent or treat disease. B-cell epitope 

prediction is employed in the design of such vaccines to 

presumptively identify segments of protein sequence that 

as peptides induce beneficial antibody responses [12, 14]; 

each segment thus identified contains one or more puta-

tive B-cell epitopes, i.e., molecular substructures whose 

defining feature is their capacity for binding by antibod-

ies [51].  

 

A B-cell epitope is therefore antigenic (i.e., potentially 

recognizable by the immune system) by virtue of its po-

tential to be bound by antibodies (and, more generally, by 

immunoglobulins, which include both B-cell surface im-

munoglobulins and antibodies); if it can also induce the 

production of such antibodies (e.g., consequent to its 

binding by B-cell surface immunoglobulins), it is immu-

nogenic as well. Accordingly, the properties of being 

antigenic and of being immunogenic are antigenicity and 

immunogenicity, respectively.  One B-cell epitope may 

be more or less immunogenic than another under a given 

set of circumstances, for which reason immunogenicity 

(in the sense of potential to induce an immune response 

of a certain intensity) is better represented as a continu-

ous rather than dichotomous variable. Furthermore, if an 

immunogenic B-cell epitope thus induces the production 

of antibodies, these antibodies may also bind a structur-

ally different B-cell epitope (which may be non-

immunogenic or of low immunogenicity) provided that 

the two B-cell epitopes share sufficient structural      

similarity and are both physically accessible to the anti-

bodies, which are then said to react with the first 

(immunogenic) B-cell epitope and to cross-react with the 

second (possibly non-immunogenic or poorly immuno-

genic) B-cell epitope; this phenomenon (i.e., binding of 

one B-cell epitope by antibodies elicited by another) is a 

form of antigenic cross-reactivity (i.e., recognition of 

different molecular features by a common immune-

system component). Such cross-reactivity is the basis for 

peptide-based vaccination whereby vaccine peptides in-

duce the production of antipeptide antibodies that react 

with B-cell epitopes of the peptides and also cross-react 

with B-cell epitopes of proteins (e.g., toxins as well as 

pathogen-associated adhesion molecules for binding to 

host surfaces) that are the intended antibody targets 

(noting that a peptide B-cell epitope and a protein B-cell 

epitope are structurally distinct even if they share the 

same amino-acid sequence, owing to differences in over-

all molecular context that invariably arise but are often 

overlooked) [51]. Additionally, one B-cell epitope may 

be more immunogenic than another under a given set of 

circumstances (e.g., if both are present on the same mole-

cule, and especially so if they physically overlap with 

one another), such that the more immunogenic one 

(which is thus described as immunodominant in relation 

to the other) may induce production of antibodies to itself 

while effectively suppressing production of antibodies to 

the other; this phenomenon (i.e., bias of antibody produc-

tion towards an immunodominant B-cell epitope) is 

known as immunodominance, which is highly context-

dependent in that a B-cell epitope may appear to be either 

immunodominant or non-immunodominant depending on 

its relationships to other B-cell epitopes (e.g., if it is more 

or less immunogenic than others to which it is physically 

linked) in the course of an individual host immune re-

sponse. Among peptides, for example, immunodomi-

nance can arise in the setting of neighboring or overlap-

ping B-cell epitopes (i.e., with proximate or overlapping 

amino-acid sequences), particularly where antibody pro-

duction becomes biased towards a B-cell epitope due to 

its prior induction of specific B-cell clonal expansion 

[52]. Hence, a peptide B-cell epitope may be worth incor-

porating into a vaccine if it is immunodominant (insofar 

as it induces adequate production of antibody to itself as 

part of a vaccine peptide) and induces antipeptide anti-

bodies that cross-react with a target protein so as to pro-

duce a biological effect that is beneficial rather than 

harmful; paradoxically, potentially harmful effects may 

result, as exemplified by autoimmune antibody responses 

(i.e., targeting of autologous or self biomolecules) and 

also by antibody-dependent infection enhancement, 

which is the amplification of infectious processes by anti-

bodies (typically to pathogens or products thereof).  

 

Various computational methods for B-cell epitope pre-

diction have thus been proposed. The prototype of these 

methods [53] assigns a numeric hydrophilicty value to 

each of the 20 canonical proteinogenic amino acids and 

evaluates the arithmetic-mean hydrophilicity over a slid-

ing window several residues in width along the entire 

sequence of a polypeptide chain, generating a sequence 

profile whose peaks correspond to putative B-cell      
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epitopes. Many variant methods have been devised using 

alternatives to the original hydrophilicity values and av-

eraging scheme [54, 55], in turn giving rise to composite 

predictive approaches based on consensus among such 

methods [56-58]. These classical sequence-profiling 

methods are both computationally expedient and applica-

ble where only protein sequence is known, but they have 

been criticized for their unrealistic unidimensional view 

of B-cell epitope prediction [55, 59]. This criticism is 

avoided by other methods that either explicitly consider 

detailed three-dimensional protein structure rather than 

sequence alone [60-67] or aim to enhance predictive 

power by using computational techniques for sequence 

analysis that are of much greater sophistication than the 

classical sequence-profiling methods [66, 68-80]. Unfor-

tunately, the benchmarking of B-cell epitope prediction 

methods is commonly subject to uncertainties that poten-

tially confound efforts to systematically refine the meth-

ods to better support the design of peptide-based vaccines 

[81].  

 

Despite more than a quarter century of attempts to enable 

successful development of peptide-based vaccines that is 

based on analysis of available biomolecular data, only 

marginal progress has been realized towards clinically 

proven applications [48, 82, 83]. This may largely reflect 

multiple technical problems, such as peptide instability in 

vivo and low adjuvanticity, which might yet be solved 

through appropriate revision of protocols for immunogen 

preparation and immunization [48, 84, 85]. However, it 

also raises serious concerns regarding the feasibility of 

peptide-based vaccine design as currently conceptualized 

under an overly simplistic paradigm of B-cell epitope 

prediction focused on antibody binding per se rather than 

biological consequences thereof [81, 86, 87]. The present 

work examines key limitations of this prevailing para-

digm to outline a proposed alternative that effectively 

circumvents them, thereby facilitating the systematic 

refinement of methods for B-cell epitope prediction as 

applied to peptide-based vaccine design, with cautious 

regard for the complexities of global health.  

 

Paradigm evolution 

Basic requirements  

 

Reasoning entirely from first principles is unlikely to 

ever yield a practicable solution to the problem of B-cell 

epitope prediction, considering both the computational 

demands of rigorous quantum-mechanical calculations 

for antibody binding and the uncertainties introduced by 

any simplifying approximations [88]. A more realistic 

way to develop methods for predicting B-cell epitopes is 

through iterative cycles of incremental refinement guided 

by parallel benchmarking against subsets of judiciously 

selected empirical data that are partitioned according to 

the complexity of the predictive task (e.g., due to local-

ization of proteins in biological membranes, viral capsids 

or other supramolecular complexes), such that the meth-

ods are systematically revised to perform more reliably 

under increasingly challenging circumstances [81]. Pre-

requisites for this are rational benchmark-data selection 

criteria [67, 89] and a corresponding objective function 

that correlates predictions with benchmark data to ex-

press reliability [81]. 

 

Consistent with the intended application of peptide-based 

vaccine design, the fundamental criterion for selecting 

benchmark data is their generation through experiments 

that are adequate to detect  cross-reactions of polyclonal 

antipeptide antibodies with proteins [67, 89]; moreover, 

at least some of the benchmark data must reflect func-

tionally relevant cross-reactivity manifest as antibody-

mediated modulation of protein biological activity (e.g., 

enzyme inhibition by antibodies) [81]. Full definition of 

the selection criteria depends on paradigm-specific de-

tails, as does the choice of objective function.  

 

Binary classification  

 

Binary classification underlies the prevailing paradigm 

(hereafter referred to as the binary classification para-

digm), the essential feature of which is a presupposed 

dichotomy between sequences with and without potential 

to serve as B-cell epitopes under given sets of conditions 

[90-92]; accordingly, both predictions and benchmark 

data are either positive or negative. A positive prediction 

regarding a sequence often implies predicted potential to 

serve as a B-cell epitope in two distinct capacities: first, 

as part of an immunizing peptide, to elicit antipeptide 

antibodies; and second, as part of a cognate protein of the 

peptide, to mediate cross-reaction of the antibodies with 

the protein [67]. This follows from the convention that 

the immunizing peptide sequence is a subsequence of the 

cognate protein, notwithstanding the potential of antibod-

ies elicited by an immunizing peptide to cross-react with 

a protein of apparently unrelated sequence [93-95]. 

 

As the vast majority of published benchmark data per-

tains to peptides and proteins whose B-cell epitopes have 

not been (and possibly cannot be) precisely mapped as 

sequences [51], predictions are generally amenable to 

benchmarking only if they apply to peptide-protein pairs 

rather than individual B-cell epitopes [67], in which case 

immunodominance must be accounted for. Among B-cell 

epitopes of immunizing peptides, immunodominance is 

the bias of antipeptide antibody responses towards so-

called immunodominant B-cell epitopes, which is proba-

bly at least partly due to mutual steric exclusion between 

competing immunoglobulins (in particular, between rap-

idly produced antibodies to immunodominant B-cell epi-

topes on the one hand and, on the other, B-cell surface 

immunoglobulins that can recognize non-

immunodominant B-cell epitopes) such that early and 

stable binding of immunodominant B-cell epitopes by 

antibodies suppresses the production of antibodies to non

-immunodominant B-cell epitopes (consistent with pep-

tide-immunization studies [52] and modeled by a simple 

affinity-based hierarchical steric-exclusion scheme for 

predicting B-cell epitope immunodominance in peptides 

[67]). If a positive prediction is rendered for a certain 

combination of immunizing peptide and cognate protein, 

this implies  

that the peptide contains at least one putative immu-

nodominant B-cell epitope whose sequence both elicits  
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antipeptide antibodies and, as part of the protein, medi-

ates their cross-reaction with the protein. Likewise, posi-

tive benchmark data are instances of empirically con-

firmed cross-reaction between antipeptide antibodies and 

a cognate protein of the immunizing peptide which was 

used to elicit the antibodies. 

 

Under the binary classification paradigm, two major cri-

teria may be defined for selecting benchmark data [81]. 

The first major criterion confirms positive benchmark 

data; it requires evidence of functionally relevant cross-

reactivity (posited in the preceding subsection, "Basic 

requirements"). The second major criterion confirms 

negative benchmark data; it requires evidence of genuine 

absence of cross-reactivity, which is established by a 

negative result in a fluid-phase immunoassay (e.g., im-

munoprecipitation) to avoid the confounding apparent 

absence of cross-reactivity due to artifactual inaccessibil-

ity of B-cell epitopes that arises in solid-phase immuno-

assays (e.g., enzyme-linked immunosorbent assays) [96-

98]. In addition, a minor criterion further restricts the 

admissible positive benchmark data to those for which 

the immunizing peptide bears a lone predicted immu-

nodominant B-cell epitope whose sequence occurs as part 

of the cognate protein in exactly one distinct structural 

context, thereby avoiding ambiguity in the attribution of 

cross-reactivity to individual putative B-cell epitopes 

[81]. The exact form of this minor criterion depends on 

details of the chosen method of B-cell epitope prediction, 

notably assumed lengths of B-cell epitope sequences, 

such that positive benchmark data are excluded for ex-

cessively long immunizing peptide sequences. 

 

To evaluate the objective function, predictions must first 

be qualitatively appraised in relation to the benchmark 

data. By convention, predictions are deemed either true if 

they agree with the benchmark data or false if otherwise, 

such that every prediction falls into one of four mutually 

exclusive categories, namely true-positive, true-negative, 

false-positive and false-negative; the numbers of predic-

tions falling within these categories are often denoted by 

TP, TN, FP and FN, respectively. This allows calculation 

of sensitivity as TP/(TP+FN) and specificity as TN/

(TN+FP), which both range from 0 to 1 and would both 

be equal to 1 for a perfect predictive method [99]. Insofar 

as predictions are rendered by dichotomizing a continu-

ous variable (e.g., local average hydrophilicity value [53] 

or estimated free energy change of antibody binding [62, 

67]) using an arbitrary cut point (i.e., threshold value), 

both sensitivity and specificity can be calculated over a 

range of cut points. Most commonly, a receiver operator 

characteristic curve (ROCC) is generated that reflects the 

inherent tradeoff between sensitivity and specificity 

[100]; by convention, the ROCC is a plot of the true-

positive rate (TPR, i.e., sensitivity) against the false-

positive rate (FPR, equal to 1-specificity), and the objec-

tive function is the area under the ROCC (AUROCC). 

Typically, the ROCC of a useful predictive method ex-

tends from the origin to the point where both TPR and 

FPR equal 1, above the diagonal line defined by 

TPR=FPR, such that AUROCC exceeds 0.5; and the goal 

is to approach as closely as possible the theoretical    

maximum AUROCC value of 1. 

 

Problems of the binary classification paradigm are 

mainly due to the dichotomization of benchmark data. 

Just as qualitative predictions are obtained by dichoto-

mizing continuous variables, so are qualitative bench-

mark data. Because the cut points used for this are arbi-

trary, unstandardized and often unknown (e.g., as implic-

itly set by the undetermined limit of detection for a quali-

tative immunoassay), the dichotomization of benchmark 

data entails loss of information [101] and introduces the 

possibility of investigator selection bias (e.g., in the des-

ignation of weak yet statistically significant experimental 

results as positive).  

 

Continuous outcomes  

 

The above-mentioned problems of the binary classifica-

tion paradigm are avoided by dispensing with dichotomi-

zation in both the rendering of predictions and the defini-

tion of benchmark data. This redefines the predictive task 

as quantitative estimation of biological effects due to 

binding by antibody. Mathematically, such an effect may 

be expressed in terms of a continuous variable A that is a 

measure of some biological activity (e.g., enzyme activ-

ity); if A is cast as a function of antibody concentration 

C, the absence of antibody-mediated biological effects is 

associated with the value A0 of A for which C is 0, such 

that division by A0 normalizes A. Generalizing this ap-

proach, benchmark data comprise values of continuous 

variables that represent measurements of biological ac-

tivities, such that normalization of both prediction results 

and benchmark data facilitates combined analyses ac-

commodating many diverse forms of biological activity 

[81]. 

 

By thus replacing the binary classification paradigm with 

an alternative based on correlation between prediction 

results and benchmark data that are both expressed in 

terms of continuous rather than dichotomous variables, 

the dichotomy of positive and negative benchmark data is 

rendered obsolete. Consequently, selection criteria are 

necessary for only a single category of benchmark data 

that reflect functionally relevant cross-reactivity, albeit 

over a continuous range of possible values. Of the selec-

tion criteria formulated under the binary classification 

paradigm, the criterion for negative benchmark data loses 

all meaning; but the major and minor criteria for positive 

benchmark data remain useful if applied to continuous 

rather than dichotomous outcome variables. As to the 

choice of objective function, the Pearson correlation co-

efficient (PCC) may be used in place of AUROCC [81], 

with the goal of approaching as closely as possible the 

theoretical maximum PCC value of 1. 

 

While the paradigm shift just described resolves the issue 

of dichotomization, it fails to solve a much deeper prob-

lem, namely the failure to explicitly model biological 

consequences of immunization (as opposed to binding by 

antibodies irrespective of its biological consequences). 

This deficiency is masked by the use of benchmark data 

on functionally relevant cross-reactivity, when in fact the 
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predictions fall short of committing to definite biological 

outcomes (e.g., a certain fractional enzyme inhibition for 

a given set of conditions such as enzyme and antibody 

concentrations) because only binding by antibodies is 

actually predicted as a surrogate for its biological effects. 

This opens the possibility of investigator selection bias, 

particularly where prospective benchmark data might be 

excluded on the grounds that the observed biological 

effects are too weak to be informative; because binding 

by antibodies does not uniformly produce biological ef-

fects, benchmarking against data on weak biological ef-

fects risks exposing as unreliable a method that purports 

to predict biological effects but in reality predicts only 

binding by antibodies as a surrogate. 

 

Nevertheless, preliminary steps have already been taken 

to address biological effects more explicitly in B-cell 

epitope prediction for vaccine design, as notably exem-

plified by the development of machine-learning ap-

proaches with benchmarking against experimental data 

on HIV that reflect biological activity relevant to vaccine 

efficacy [70]. Continued progress in this direction, par-

ticularly to further elaborate on the biological outlook in 

ways that address both safety and efficacy, might be real-

ized as described below.  

 

Biological outlook  

 

To avoid problems that arise where binding by antibodies 

is treated as a surrogate for its biological effects, these 

effects themselves could be the express object of B-cell 

epitope prediction for the design of peptide-based vac-

cines. In practice, this could serve to prioritize the predic-

tion of biological outcomes that are practically relevant 

to both safety and efficacy (e.g., hypersensitivity reac-

tions versus prophylactic activity) [102, 103]. These bio-

logical outcomes may reflect both direct and indirect con-

sequences of binding by antibodies. The direct conse-

quences are due to binding by antibodies per se, as in the 

case of enzyme inhibition resulting from occlusion of 

enzyme active sites by antibodies. In contrast, the indi-

rect consequences are realized through downstream im-

mune effector mechanisms that are initiated by antibodies 

already complexed with their targets (e.g., pathogens). 

The downstream mechanisms include complement acti-

vation, which in turn can lead to both lysis of target 

membranes and enhanced phagocytic uptake of targets. 

To the extent that they result in protection against patho-

gens, the direct and indirect consequences respectively 

underlie what have been designated as class-I and class-II 

protectivities [73]. Like the direct consequences, the indi-

rect consequences may be regarded as instances of anti-

body-mediated modulation of protein biological activity, 

in the sense that binding by antibodies extends the func-

tion of the target proteins to encompass biological out-

comes of activating downstream immune effector mecha-

nisms. However, maintenance of native target protein 

conformations tends to be a prerequisite more for the 

direct than the indirect consequences; the latter may be 

realized even where target proteins are denatured, pro-

vided that they are bound by antibodies.  

 

The explicit prediction of biological outcomes completes 

the evolutionary development of a new paradigm, the 

essence of which is uncompromising focus on continuous 

variables that correspond directly to the biological effects 

of binding by antibodies, for both B-cell epitope predic-

tion and the benchmarking thereof. Interestingly, this 

circumvents the problem posed by ambiguous attribution 

of functionally relevant cross-reactivity among putative 

B-cell epitopes, which is otherwise avoided by applying 

the minor criterion for selecting benchmark data (invoked 

in the preceding subsections, "Binary classification" and 

"Continuous outcomes"). In retrospect, the problem ex-

ists only where binding by antibodies is predicted as a 

surrogate for its biological effects; if these effects are 

themselves predicted, the burden of resolving ambiguities 

is properly assigned to the predictive method, such that 

the minor criterion is rendered obsolete. Upon discarding 

the minor criterion, more benchmark data (e.g., on immu-

nizing peptides of arbitrarily long sequence) are admissi-

ble as their selection is unconstrained by peculiarities of 

chosen predictive methods. What then remains as the sole 

criterion for selecting benchmark data is the basic re-

quirement for evidence of functionally relevant cross-

reactivity. 

 

Implications 

 Systems view  
 

Historically, B-cell epitope prediction has been attempted 

primarily through superficial analyses of protein structure 

alone, mostly using sequence as a surrogate for detailed 

three-dimensional structure [53-55, 59];  yet structural 

analysis is merely an initial step towards modeling the 

consequences of vaccination under the paradigm of bio-

logical outcomes which is developed in the preceding 

section. Migration to this paradigm thus calls for greater 

emphasis on functional correlates of structure [87]. 

 

Initially, one could resort to predicting functionally im-

portant structural features of proteins that are prospective 

vaccine targets (e.g., putative enzyme active sites) [88]; 

such a first approach might be useful for special cases 

wherein biological activities of interest are fortuitously 

inferred from analyses of protein structures in isolation 

from one another, but not where the activities are mainly 

emergent properties that arise through the association of 

proteins with their interaction partners (e.g., of pathogen 

proteins that are virulence factors by virtue of their inter-

actions with host biomolecules). In general, the pervasive 

interdependence of biological activities via exquisitely 

complex and dynamic molecular interaction networks 

compels the study of target proteins in multiple contexts 

that reflect numerous combinations of possible interac-

tion partners and various potential roles at progressively 

higher levels of structural and functional organization 

[104], inevitably requiring a full transition from descrip-

tive bioinformatics to systems biology [105]. This is im-

plicit in the current functional annotation of B-cell epi-

tope data, which addresses both direct and indirect conse-

quences of binding by antibody (discussed in the preced-

ing subsection, "Biological outlook"); notably, the indi-

rect consequences entail extended target protein function 
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that encompasses biological effects of activating down-

stream immune effector mechanisms, which epitomizes 

the conceptual domain of systems biology. Systems 

analysis of antibody-mediated biological phenomena thus 

presents unprecedented opportunities to enrich the func-

tional annotation of B-cell epitope data in ways that ulti-

mately enhance computational capabilities for vaccine 

design. This endeavor has already begun to yield promis-

ing new results that may serve to guide vaccine develop-

ment [106]. 

 

Thus adopting a systems view for B-cell epitope predic-

tion, the fundamental problem of elucidating biologically 

relevant antigen structures on which to base predictions 

is more fully appreciated. This problem may often be 

inadequately addressed by exclusive reliance on direct 

structural elucidation of antigens ex vivo (e.g., by crystal-

lography), particularly in their purified forms. Purified 

antigens may yield structural models that can be misin-

terpreted as suggesting the absence of interactions with 

other biomolecules, such that apparently accessible anti-

gen surfaces are actually inaccessible in vivo due to lo-

calization in biological membranes and other su-

pramolecular complexes [81]; conversely, purified anti-

gens may be found to exist in oligomerization states that 

are biologically irrelevant [107-110], such that actual B-

cell epitopes may be mistaken for buried sites. More gen-

erally, experimentally observed statistical distributions of 

antigen conformational states may be of uncertain bio-

logical relevance. For instance, conformational freedom 

may be artificially restricted by packing constraints in a 

protein crystal lattice [111], and the addition of ligands to 

promote protein crystallization may yield crystals 

wherein the observed protein conformations are unrepre-

sentative of ligand-free proteins [112]. In extreme cases, 

intrinsic disorder (i.e., dynamic random-coil behavior in 

the native state) might be masked by folding of natively 

disordered protein segments that is induced through the 

formation of ligand-protein and crystal contacts [113]. 

Alternatively, natively folded structures might fail to 

form from their disordered precursors if appropriate in-

teraction partners that can induce folding are unavailable 

[114]. 

 

Considering the issues just enumerated, experimentally 

derived (e.g., crystallographic) antigen structural models 

per se may therefore be suboptimal bases for B-cell epi-

tope prediction applied to vaccine design, in which case 

they might be better utilized indirectly to devise alterna-

tive structural models that more accurately represent the 

antigens as biologically relevant targets of antibody-

mediated immunity. The experimentally derived models 

might thus serve as starting points for molecular dynam-

ics simulations under conditions of the actual molecular 

milieu in vivo (e.g., aqueous solution containing potential 

interaction partners and other solutes at physiologic con-

centrations). Such an approach may, for example, allow 

for relaxation of a crystal structure with realistic local 

unfolding of protein segments that are natively disor-

dered, thereby rendering them more accessible for bind-

ing by antibodies. A much more challenging potential 

application would be simulation of flavivirus maturation 

wherein a critical target of neutralizing antibodies is the 

conserved E-glycoprotein fusion loop, which they prefer-

entially recognize among immature rather than mature 

virions due to its decreasing accessibility in the course of 

virion maturation [115, 116]. The affinity of the antibod-

ies is thus lower for mature virions than for immature 

virions, such that the antibodies may actually enhance 

infection of certain cell types (e.g., macrophages) by ma-

ture virions via Fc-  receptor-mediated entry, particu-

larly where the occupancy of potential  antibody-binding 

sites on the virions is low [117-120]. Interestingly, this 

antibody-mediated infection enhancement can be sup-

pressed by complement-based mechanisms. For example, 

complement component C1q can bind Fc regions of cer-

tain virion-bound IgG-class antibodies to restrict anti-

body-mediated infection enhancement [121] by cross-

linking the antibodies in a manner that potentiates their 

capacity for neutralizing infectivity [122]. Additionally, 

mannose-binding lectin (MBL) can bind mannose-

bearing N-linked glycans on virions to restrict antibody-

mediated infection enhancement via complement activa-

tion leading to neutralization of infectivity and immune 

clearance [123]. 

 

Antibody-mediated infection enhancement (often re-

ferred to as antibody-dependent enhancement of infec-

tion) has been documented among infections due to taxo-

nomically diverse viruses [124-128], including  HIV [129

-132], and even cellular pathogens such as bacteria and 

protozoa [133, 134]. Fc-  receptor-mediated entry is 

thus frequently exploited by viruses to infect host cells, 

but it can also serve as a means for host-cell internaliza-

tion of virulence factors (e.g., toxins) elaborated by cellu-

lar pathogens [135, 136]. In such cases, the role of com-

plement is highly context-dependent; in the case of HIV 

infection, complement appears to initially restrict but 

subsequently promote antibody-mediated infection en-

hancement as host immune status deteriorates [132]. An-

tibody-mediated infection enhancement may also occur 

via mechanisms other than Fc-  receptor-mediated en-

try, as in the case of the Panton-Valentine leukocidin 

secreted by Staphylococcus aureus; binding of this cyto-

toxin by antibodies can prevent it from activating certain 

innate immune mechanisms, thereby impairing the over-

all host immune response to the pathogen [137]. In view 

of these phenomena, vaccine-induced antibody responses 

may produce biological effects that paradoxically harm 

rather than protect the host, which complicates the task of 

vaccine development [138]. This realization underscores 

the need for a systems view of immunobiology to support 

vaccine design.  

 

Unifying themes  

 

For a systems view of immunobiology to cost-effectively 

support vaccine design, it should enable sufficiently ac-

curate modeling of biological outcomes that is based on 

available empirical data, most especially those  data 

which are efficiently generated in bulk using high-

throughput technologies (e.g., for genome sequencing). 

Building upon existing foundations of structural biology, 

this would ultimately relate molecular structure to      
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biological activity at organismal and even higher levels 

(e.g., of populations and ecosystems). A powerful unify-

ing theme therein is the invariance of physicochemical 

constraints imposed by thermodynamics and reaction 

kinetics on biological activity. As reaction kinetics may 

be formulated in thermodynamic terms of transition state 

theory [139] and diffusion control [140], biological activ-

ity conceivably can be predicted largely from molecular 

structure by way of a link to thermodynamics. Such a 

link is found in structural energetics, which relates the 

structure of biomolecules to the thermodynamics of their 

folding and binding [141-143]. 

 

Structural energetics provides a means to estimate affini-

ties and kinetic rate constants for the binding of putative 

B-cell epitopes by antibodies, in turn to predict the extent 

of binding by antibodies over time [81]. If this scheme is 

to be maximally utilized in support of B-cell epitope pre-

diction for peptide-based vaccine design [62, 67], struc-

tural energetics must be extended to more adequately 

describe binding kinetics vis-a-vis biological activity. A 

particularly instructive case in point concerns immu-

nodominance (as defined above in the "Binary classifica-

tion" subsection): it is positively correlated with affinity 

for antibody in primary antibody responses [144] but is 

arguably the result of differential binding kinetics, as 

suggested by the positive correlation between kinetic on-

rate and clonal selection of B-cells in T-cell dependent 

secondary antibody responses [145]. For a B cell to com-

petitively recruit T-cell help [146], kinetics should permit 

sufficiently rapid and stable binding of antigen by surface 

immunoglobulin to favor receptor-mediated endocytosis; 

yet excessively stable (i.e., high-affinity) binding that 

translates to very slow dissociation of antibody-antigen 

complexes limits antigen availability for surface immu-

noglobulin, which may explain the apparent upper limit 

of affinity for sustainable T cell-dependent clonal selec-

tion of B cells [147]. Binding kinetics that facilitates en-

docytic uptake of antigen may also entail B cell receptor-

mediated signal transduction that decreases cellular death 

rates [148] and increases B-cell ability to bind and ac-

quire antigen from follicular dendritic cells [149], 

thereby further promoting positive selection of B cells 

that recognize immunodominant B-cell epitopes. De-

tailed modeling of these processes is imperative, as im-

munodominance is a central unifying theme in immuno-

biology [14].  

 

The origins of immunodominance can be fully compre-

hended only in relation to mechanisms that render B-cell 

epitopes non-immunodominant. One mechanism already 

alluded to herein is positive selection of B cells whose 

surface immunoglobulins bind immunodominant B-cell 

epitopes, whereby activation of other B cells is sup-

pressed (e.g., through preemptive binding of immu-

nodominant B-cell epitopes by antibodies that renders 

other B-cell epitopes sterically inaccessible). Another 

mechanism is tolerance, i.e., difficulty of eliciting anti-

bodies to certain B-cell epitopes even in the absence of 

immunodominant competitors, due to negative selection 

against either B cells themselves or T cells that might 

otherwise provide T-cell help to the B cells; this normally 

suppresses production of antibodies to self molecules and 

food components, thereby preventing deleterious hyper-

sensitivity reactions [150-154]. These mechanisms are 

subject to imprinting, that is, the influence of past im-

mune responses on future ones; as an immune response 

selects certain lymphocyte clones at the expense of oth-

ers, it biases subsequent immune responses towards cer-

tain B-cell epitopes and away from others. For example, 

a prior antibody response to some B-cell epitope X may 

bias subsequent antibody responses towards X such that 

antibody responses to another B-cell epitope Y are sup-

pressed if Y is accompanied by X, as in the phenomenon 

of original antigenic sin [155-157]; additionally, toler-

ance to B-cell epitopes may be either induced or broken 

in the course of an immune response [39, 158]. Immu-

nologic imprinting thus alters the potential for mounting 

antibody responses against particular B-cell epitopes, 

possibly in highly context-dependent ways (e.g., enabling 

T-cell independent activation of memory B cells to pro-

duce antibodies against viral envelope proteins in re-

sponse  

to whole virions but not soluble monomeric forms of the 

proteins [159]). Such imprinting points to the plasticity 

of immune systems. 

 

The plasticity of host immune systems has evolved to 

defend against pathogens, yet it is exploited by pathogens 

through deceptive imprinting that suppresses antibody 

responses to B-cell epitopes whose binding by antibodies 

interferes with infection [160-162]; pathogens thus pre-

sent highly immunodominant B-cell epitopes as decoys 

[163-165] and even mimic normally tolerated B-cell epi-

topes (e.g., of host biomolecules) [166], although at-

tempts at such mimicry may break normal tolerance to 

induce deleterious hypersensitivity reactions (e.g., anti-

body-mediated autoimmune destruction of host bio-

molecules) [151, 158]. In principle, deceptive imprinting 

and its sequelae can be overcome with vaccines that refo-

cus antibody responses towards critical B-cell epitopes to 

suppress, disrupt or otherwise circumvent pathophysi-

ological mechanisms (e.g., of infection and autoimmu-

nity) [156, 164, 167]; but to actually design such vac-

cines demands comprehensive knowledge of disease-

specific pathophysiology, which for infectious processes 

is complicated by host-pathogen coevolution [81].  

 

Unique histories  

 

In a broad sense that encompasses somatic evolution 

(e.g., through somatic hypermutation during B-cell affin-

ity maturation), host-pathogen coevolution entails host 

immune responses that impair pathogen function and 

thereby direct pathogen evolution to evade them, thus 

initiating new cycles of host response and pathogen 

counter-response. This is most readily apparent among 

infections due to rapidly evolving viral quasispecies 

[156, 168], for which the mutation rates are so high that 

each round of viral replication may yield a population of 

distinct genomic variants from a single progenitor ge-

nome. In an individual host, the many possible outcomes 

of infection (e.g., latent infection and chronic disease) 

and paths between these [169-171] are challenging to 
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model, as each instance of infection represents a unique 

history of ongoing host-pathogen coevolution and prior 

imprinting (e.g., due to passive and active immunization, 

including past infection), which impact vaccine safety 

and efficacy yet are neglected by overly simplified at-

tempts at vaccine design based on static molecular views 

of both host and pathogen. 

 

The significance of unique histories among prospective 

vaccinees extends to vaccine design for both infectious 

and noninfectious diseases, as biological outcomes of 

vaccination are invariably influenced by genetics and 

imprinting, which are themselves inextricably linked to 

the much wider socioeconomic and environmental con-

texts of individuals. All this tends to be obscured by con-

ventional statistical analysis of vaccinee populations as if 

they were homogeneous groups, yet it must be properly 

addressed in accordance with emerging ethical regimes 

that increasingly reject traditional reductionist notions of 

biomedicine [172]. 

 

The preceding considerations transcend the notion of 

vaccines as highly standardized products intended for 

mass administration on a global scale, arguing instead for 

at least some degree of customization in vaccine design 

to suit individual circumstances. Such customization 

might selectively favor the production of antibodies 

against key B-cell epitopes to confer protective immunity 

without inducing deleterious responses (e.g., autoimmune 

and other forms of hypersensitivity reactions). However, 

active immunization with individually customized vac-

cines fails to completely exclude the possibility of im-

printing that may subsequently contribute to antibody-

mediated pathophysiological processes, for example, via 

antibody-dependent enhancement as occurs in dengue 

disease [173]. To avoid this inherent risk of active immu-

nization, passive immunization might be performed in-

stead by administering exogenous antibodies of prede-

fined immunological characteristics (e.g., of antigenic 

specificity and immune effector function) to confer 

highly specific forms of protective immunity while 

avoiding exposure to the target B-cell epitopes them-

selves. Among humans, this might be accomplished us-

ing appropriately humanized monoclonal antibodies of 

non-human animal origin. Such an approach would 

largely obviate concerns over human safety in the predic-

tion of B-cell epitopes. 

 

 

With regard to issues of both safety and efficacy, the 

distinction between active and passive immunization 

strategies further clarifies the scope of B-cell epitope 

prediction for peptide-based vaccine design. To guide the 

design of peptide-based immunogens that induce antipep-

tide antibodies for passive immunization, B-cell epitope 

prediction must explicitly apply to functionally relevant 

cross-reactivity in the context of clinically important bio-

logical outcomes (i.e., adverse and beneficial effects of 

exogenously supplied antipeptide antibodies), which oc-

cur in response to administration of the antibodies rather 

than active immunization with the peptide-based immu-

nogens; in principle, the antibodies could be purified to 

some desired degree of functional homogeneity (e.g., as 

monoclonal antibodies), and their biological effects could 

be modeled along the lines of conventional pharmacoki-

netics and pharmacodynamics (e.g., with calculation of 

time-dependent antibody concentrations in blood plasma 

and other compartments). However, if the immunogens 

are used as vaccines for active immunization to elicit 

endogenous antipeptide antibodies, B-cell epitope predic-

tion must explicitly apply much more comprehensively 

to the entire course of events from the administration of 

the initial dose of vaccine onwards, as influenced by ge-

netic background, prior immunologic imprinting and 

other factors. A major challenge therein would be the 

estimation of time-dependent concentrations of vaccine-

induced antibodies to self and nonself B-cell epitopes, as 

a prerequisite to predicting biological outcomes of vacci-

nation (e.g., prophylaxis against or enhancement of infec-

tion at successive post-vaccination time points).  

 

Future directions  

 

In view of the extent to which the prevailing binary clas-

sification paradigm dominates the theory and practice of 

B-cell epitope prediction for peptide-based vaccine de-

sign, the most immediately pressing problem is the cur-

rent unavailability of benchmark data that reflect func-

tionally relevant cross-reactivity as continuous variables 

(e.g., fractional enzyme inhibition) qualified in terms of 

other pertinent continuous variables (e.g., in relation to 

fractional enzyme inhibition, the concentrations of both 

enzyme and antibody). This problem is unlikely to be 

solved anytime soon, if at all, by the classic default strat-

egy of gleaning benchmark data from published litera-

ture, hence the urgent need to generate new empirical 

results that are sufficiently qualified for use as bench-

mark data. Until the demand for such data is thus met, 

dichotomous benchmark data might be used instead [81], 

subject to the loss of information and possibility of inves-

tigator selection bias that are discussed above in the 

"Binary classification" subsection. 

 

Yet, the shift from dichotomous- to continuous-variable 

benchmark data entails the problem of biological vari-

ability in antibody responses among individuals even 

where populations are essentially homogeneous (e.g., 

among genetically identical animals reared under rigor-

ously controlled laboratory conditions); a completely 

analogous problem is actually encountered with dichoto-

mous variables, in that both positive and negative experi-

mental results are sometimes obtained for purported rep-

licate trials despite diligent efforts to minimize biological 

variability. This necessitates the acquisition of continu-

ous-variable data in quantities (as gauged by sample 

sizes) that are adequate to compensate for biological vari-

ability, which may reflect inherent stochastic processes 

(e.g., in the somatic rearrangement of immunoglobulin 

genes) and be more pronounced in real-world situations 

(e.g., among human and wild-animal populations) than 

under laboratory conditions, so as to avoid errors due to 

reliance on insufficiently sampled data. 

 

Meanwhile, development of computational tools could 
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anticipate future availability of more appropriate bench-

mark data by aiming to actually predict biological out-

comes in terms of changes in molecular, supramolecular 

and higher-order structure with respect to time [174, 

175]. Pending definitive empirical validation, this would 

be provisionally justified if based on well-established 

physicochemical premises (thermodynamics, reaction 

kinetics, etc.) and pursued within the framework of sys-

tems biology to gain deeper insights into key phenomena 

(e.g., immunodominance and host-pathogen coevolution) 

with a strong emphasis on individual uniqueness in terms 

of genetic background, imprinting and other factors that 

impact vaccine safety and efficacy. B-cell epitope predic-

tion might thus be initially developed in two successive 

phases: The first phase would focus on developing an 

approach to support the design of peptide-based immuno-

gens that induce antipeptide antibodies for passive immu-

nization, and the second phase would extend the ap-

proach to support the design of peptide-based vaccines 

for active immunization based on endogenous antipeptide 

antibodies. The second phase could be facilitated by 

more detailed and comprehensive modeling of immune 

function, with due emphasis on key molecular events that 

lead to B-cell activation [149, 176-178]. 

 

What has been outlined thus far is but one of many con-

ceivable paths towards further development of B-cell 

epitope prediction for peptide-based vaccine design. This 

particular path is most immediately useful for illustrating 

how progress might be realized within an evolving para-

digm of biological outcomes as proposed in the preced-

ing section, "Paradigm evolution," mainly to inform the 

development of alternative paths for expediting vaccine 

design without demanding comprehensive and mechanis-

tically detailed computational simulation of biological 

systems. Such alternative paths could be charted by ex-

tending certain machine-learning approaches that have 

served to advance the understanding of B-cell epitope 

prediction for vaccine design. One pioneering example of 

these approaches [73] has pointed to the importance of 

sequence variability and posttranslational modification as 

confounding factors, which has been interpreted as argu-

ing for the exclusion of variable and posttranslationally 

modified sequences in the design of vaccine peptides; 

this could, however, also be interpreted as arguing for the 

development of more sophisticated computational meth-

ods to predict both immunological cross-reaction among 

variable sequences and immunogenicity of posttransla-

tionally modified sequences, rather than simply discard-

ing such sequences from the outset. More generally, fac-

tors that complicate B-cell epitope prediction tend to 

limit the utility of predictive methods, suggesting that 

systematic refinement of the methods is contingent upon 

the appreciation of such factors as they relate to the pre-

diction problem [81]. 

 

As a corollary to the concept of factors that complicate B

-cell epitope prediction, available predictive methods 

may optimally complement one another if each is selec-

tively applied only in circumstances under which it out-

performs all others. This argues for the pursuit of multi-

ple alternative paths towards B-cell epitope prediction 

and of diversification within each path to develop a ver-

satile repertoire of prediction methods (e.g., that are cus-

tomized for various categories of proteins, as might be 

defined by structural characteristics and biological local-

ization). Accordingly, comparative benchmarking of pre-

dictive methods plays a vital role in identifying subsets of 

benchmark data (e.g., on categories of pathogen proteins 

for various host-pathogen combinations) for which a par-

ticular method is most well-suited; where performance is 

found to be relatively poorer for certain subsets of bench-

mark data, individual methods could be revised to ad-

dress the deficiencies and possibly extend the applicabil-

ity of the entire repertoire to a broader spectrum of input 

data. Iterative cycles of such revision, supported by a 

continually growing body of benchmark data, might 

eventually enable the routine design of safe and effica-

cious peptide-based vaccines. This could be founded 

upon the rich variety of extant methods for B-cell epitope 

prediction, representative examples of which are briefly 

referenced above in the "Background" section. As a rule, 

these methods actually render predictions as quantitative 

scores, which are subsequently dichotomized for com-

patibility with available qualitative benchmark data under 

the prevailing binary classification paradigm. The quanti-

tative scores could otherwise be used to render predic-

tions on biological effects of binding by antibody in 

terms of continuous variables, and the resulting predic-

tions could be directly compared with corresponding 

benchmark data that are likewise expressed in terms of 

continuous variables under the full-fledged paradigm of 

biological outcomes. 

 

With regard to the general practice of computationally 

aided design of peptide-based vaccines, functional  pro-

tein annotation will increasingly suggest new potential 

vaccine targets as it is progressively enriched through the 

advancement of systems biology. These potential targets 

may include those that elicit antibodies in the natural 

course of disease and, perhaps more importantly, those 

that do not. The latter command special attention in that 

protective immunity may be conferred by vaccine-

induced antibodies that bind them, although such anti-

bodies might just as well produce deleterious effects 

(e.g., autoimmune and other hypersensitivity reactions). 

This reasoning may be extended to predicted B-cell epi-

topes: if they correspond to potential vaccine target re-

gions that fail to elicit antibodies in the natural course of 

disease, they merit further scrutiny with respect to both 

safety and efficacy as possible vaccine epitopes. 

 

At any rate, caution is warranted in all attempts to induce 

antibody responses against particular B-cell epitopes. 

This holds where antibody-dependent enhancement of 

pathogenetic processes is cause for concern and also 

more generally where antibody-independent immune 

mechanisms may be beneficial. Most current vaccination 

strategies rely mainly on antibody responses, yet anti-

body-independent immune mechanisms (notably those 

mediated by T cells) can serve as a complementary or 

alternative basis for protective immunity [179]. For ex-

ample, although currently available influenza vaccines 

induce antibodies that are protective against only a      
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relatively small subset of viral strains, this limitation 

could conceivably be overcome by alternative vaccines 

that induce immunity based on cytotoxic T cells capable 

of recognizing epitopes present in a broad range of viral 

strains [180]. Furthermore, antibody responses can inter-

fere with the induction of antibody-independent immune 

mechanisms, biasing helper T-cell responses towards 

excessive Th2 function at the expense of Th1 function 

and thereby impairing cell-mediated elimination of intra-

cellular pathogens [134]. Similar helper T-cell dysfunc-

tion may also result from other factors such as nutritional 

imbalances [181] and helminthic parasitism [41], which 

remain widely prevalent among developing regions of 

the world. B-cell epitope prediction may therefore find 

practical application less in vaccine design and more in 

the design of immunogens to produce antibodies for pas-

sive immunization, for both prophylaxis against and 

treatment of disease. Moreover, B-cell epitope prediction 

may ultimately play an even more important practical 

role in the development of immunodiagnostics, for which 

binding per se rather than biological consequences 

thereof is typically the primary consideration (and the 

benchmarking problem thus may be more readily tracta-

ble, although still decidedly non-trivial in view of the 

biological variability of antibody responses in both 

health and disease). 

 

Conclusions 
 

To advance the development of B-cell epitope prediction 

for peptide-based vaccine design, efforts must focus on 

predicting clinically relevant biological outcomes ex-

pressed in terms of continuous rather than artificially 

dichotomized variables. For this purpose, appropriate 

benchmark data must be generated to empirically vali-

date the requisite predictive methods, which themselves 

may be provisionally justified on the basis of physico-

chemical arguments articulated from the perspective of 

systems biology. Most importantly, issues of safety and 

efficacy should be addressed with due attention to the 

individual uniqueness of prospective vaccine recipients. 

As epidemiologic transitions play out in the course of 

climate change and other environmental transformations, 

vaccine-design initiatives as a whole must broaden in 

scope to encompass a growing number of diseases 

among human and animal populations, within an expand-

ing ecological framework that increasingly enables cost-

effective intervention based on systems analyses. Such 

analyses would be better enabled by further extending 

the application of immunoinformatics and computational 

immunology to progressively higher levels of biological 

organization, so as to capture key emergent phenomena 

(e.g., host immunomodulation by commensals and para-

sites) that arise in real-world scenarios. In this context, B

-cell epitope prediction must complement T-cell epitope 

prediction to support the design of peptide-based vac-

cines that confer protective immunity while avoiding 

vaccine-induced adverse reactions. 

 

Notwithstanding the overall bias of currently employed 

vaccines towards induction of antibody responses, active 

immunization may result in harm due to antibody-

dependent enhancement of pathogenetic processes, in 

which case carefully controlled passive immunization 

with exogenously supplied antibodies might offer a safer 

path to protective immunity. Such passive immunization 

could serve as an important initial proving ground for B-

cell epitope prediction en route to application in the de-

sign of peptide-based vaccines: B-cell epitope prediction 

could aid in the design of peptide-based immunogens to 

induce the production of antipeptide antibodies for pas-

sive immunization, which in turn would provide an op-

portunity for empirical validation of predictions on clini-

cally relevant biological outcomes in a setting of reduced 

complexity relative to active immunization. This scheme 

could facilitate the preliminary development of B-cell 

epitope prediction for peptide-based vaccine design, spe-

cifically by restricting biological complexity (e.g., due to 

prior immunologic imprinting) in passive-immunization 

experiments to render epitope-prediction problems more 

computationally tractable. At the same time, the passive-

immunization protocols thus devised might themselves be 

useful for prophylaxis against or treatment of disease. 
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