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INTRODUCTION

The forest structure is critical to the forest ecosystem. The structure 
defines the complicated interactions between biotic and abiotic 
components forming broad ecological units as primary producers 
of biome [1]. Specifically, the quality and variability of forests are

Widely used as the environment and biological diversity measures 
[1-3], and the physiognomy directly impacts the type of biodiversity 
and genetic resources a forest supports [4]. Among the key 
functions of the structure is the regulation of the global carbon 
cycle by providing a robust carbon sink [5]. According to [6,7], the 
tropical structure is estimated to store more than 55% of the above-
ground carbon stocks, therefore, the destruction and alteration of 
the forests contribute to the climate change phenomenon.

The consistent rise in carbon dioxide in the atmosphere and its 
effect on the environment have taken forest carbon accounting 
to the forefront of research and policy agendas [4,8-10], and 
consequently, several allometric models have been developed and 
their performance ensured extensive use for the estimation of 
carbon stocks in the tropics and pan tropics [11]. Nevertheless, 
carbon stock assessment methods are not completely developed 

and, more importantly, the uncertainty associated with carbon 
stock estimations is rarely assessed [6,9,12-14]. The Bayesian 
inference procedure offers a promising approach to these 
limitations [6,13]. Also, the height-diameter allometry, error 
propagations, and specific wood density of individual trees provide 
a reliable assessment of not only the above-ground biomass but 
other structural characteristics of the tropical forest [6,11,13,14].

The Nigerian tropical forest is in a dire state of decline [15-18], 
largely due to anthropogenic related activities that vary from 
overexploitation for timber, slash and burn farming to forest 
land conversion, resulting into large scale habitat destruction 
and biodiversity loss. Besides, the rise in population necessitates 
a stronger demand for raw materials utilization in developing 
countries like Nigeria that lack the infrastructural capacity 
required to successfully convert into a circular economy as in 
developed countries [16,19]. The continuous deforestation of the 
tropical forests extends into designated protected areas [20,21] and 
currently only a few patches of the once luxuriant pristine forest 
remain [16,22]. Previous studies in Nigeria use different types of 
allometric equations to convert forest inventories into carbon stock 
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estimates [6,13,15-16,23,24]. The variation in the methodologies 
and allometry result in variations among estimates that are not 
the effect of nature. For instance, [6] used a derived model from 
the diameter at breast and height of tropical trees to determine 
carbon stocks in the tropical forests of Southwestern Nigeria [25]. 
Furthermore, [26] used a regression model derived from diameter 
at breast height to estimate carbon stock and wood density in a 
morphologically similar forest in Southwestern Nigeria. Errors 
that are often associated with this allometry are rarely calculated 
[6,13]. The Bayesian inference procedures take cognizance of 
error propagations in carbon stock assessment while generating 
uncertainty estimates through testing of different models based on 
root mean square errors. The research, therefore, used the Bayesian 
Inference Procedure [6], to calculate wood density, test height-
diameter models, propagate errors, and estimate carbon stocks in 
the tropical forest of Southwestern Nigeria.

MATERIALS AND METHODS

Study area

The Omo–Shasha–Oluwa forest Complex lies within latitudes 
7°1'7.67"N and 6°44'58.52"N, and longitudes 4°12'31.41"E and, 
4°42'55.82"E (Figure 1). It has an estimated land area of 2,223 km2 
and a distance of about 25 km as the crow flies to the Atlantic 
Ocean from its southernmost boundary [19]. The forest reserves 
were created in 1925 and comprise clusters of contiguous forest 
reserves spanning parts of Ogun, Ondo, and Osun States. These 
reserves include the Omo, Oluwa, Shasha, Ife, and Ago-Owu Forest 
Reserves which in this study is regarded as the Omo-Oluwa-Shasha 
forest complex. Before the creation of the state administration in 
Nigeria, these five forest reserves were all part of the then Shasha 
Forest Reserve [20]. The pristine forest had experienced alteration 
of structure in some parts as early as 1966 when Gmelina arborea, 
Tectona grandis, and Pinus caribeae plantations were established 
in the forest reserves [27]. Recently, uncontrollable logging and 
slash and burn farming practices have further impacted the forest 
leaving it in a deplorable state [17,28].

Sampling technique and biophysical parameters 
measurement 

A stratified Random Sampling technique was used to select 

sampling plots. A sampling grid with 0.5 km by 0.5 km dimensions 
was overlaid on the land use land cover map derived from World 
View Imagery and 5 representative plots each for the vegetated 
land use classes were selected. Garmin 78 Hand Held GPS receiver 
was used to locate the center of the selected plots. The concentric 
plot assessment system (Figure 2) was used to select subplots [29]. 
Each modified plot was a cluster of four circular 17.95 m radius 
annular plots with one central 0.1 ha annular plot, three satellite 
0.1 ha annular plots, four 7.32 m subplots, and one 2.77 m radius 
micro plot. Each modified plot also contained three 17.95 m long 
transects from the cluster center, with the first transect positioned 
at a random azimuth and the others at 60° and 120° from the first 
transect. Diameter at Breast Height (dbh), tree height, and species 
composition were measured for trees within the plots that were 
above 10 cm in diameter.

Bayesian inference procedure

The Bayesian Inference Procedure [6,7] designed with R statistical 
package was used to estimate above-ground carbon from the 
biophysical parameters collected in situ from the study area. The 
datasets were prepared in the Microsoft Office Excel Spreadsheet 
and then imported into R programming software. 

Wood density: Wood density (WD) for the study area was calculated 
using the wood density function on the BIOMASS package. The 
function accessed the Global Wood Density Database (GWD) 
which provided the option to add generalized wood density values 
to undocumented species using the [6,30-32]. Before the wood 
density was calculated, the field data was subjected to taxonomic 
corrections using a function with a link to the online taxonomic 
database [33].

Tree- height allometry: The height-diameter allometry is important 
for the study area because of the closed canopy structure of the 
evergreen rainforest [6,11]. Specific height-diameter allometry was 
selected from the options of five models generated based on the 
Root Mean Square Errors (RMSE) which determines the suitability 
of the model for the study area [34,35].

Aboveground-biomass (AGB) calculation: The generalized 
equation was used to compute the AGB of each tree in Millgram 
after the wood density and height model were determined [6,11]. 
The equations are expressed below; Equation 1	

2In(AGB) = In(  H)++ × ×Dα β ρ ε ……………………[11] Equation (3)

Figure 1: Map of the study area.

Figure 2: Field plot, adapted from (Gonzalez et al., 2010)
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Where α and β are model coefficient, is an error term. ρ [ the 
random variables are identically distributed independently with 
the N (0, r 2)] distribution.

Equation 2
2exp  In (  D )2

∂ = + + estAGB Hα β ρ ………………… (4)

Equation 3

A= ' 2 'In (H) = a + a  In (D) + c  In (D)× + × × +E b ε ……………………… (5)

In previous studies, ln(H) was implicitly assumed to depend on 
ln(D). [23]

Equation 4
2 0.976AGB  0.0673  (  D )

( 0.357,AIC = 3130, df = 4002)
= ×

=
est Hρ

σ   …………………………….. (6)

Where D is in cm, H is in m, and ρ is in g cm

Equation 5
2AGB  0.0559  (  D )

( 0.361,AIC = 3211, df = 4003)
= ×

=
est Hρ

σ
……………………………... (7)

Equation 6a

In (H)=0.893-E+0.760 In (D)-0.0340[In(D)]2………………(8)

(AIC = 47, RSE = 0.243, df = 3998), where E is defined as

Equation 6b

E=(0.178 ×TS-0.938 ×CWD-6.61 ×PS)× 10 -3 …………(9)

Equation 7
2AGB  exp 1.803 0.976E + 0.976 In ( ) 2.673 In (D)- 0.0299 In (D)  = − − +   est ρ …… (10)

Equation 8

AGB=exp⁡(-2.024-0.896.E+0.920.In(WD+2.795.In(D)-0.0461.
[In(D)]2…… (11) 

Where the bioclimatic compound E is similar to that of [11]. 

According to [6], the last equation was necessary to correct errors 
in previous equations. 

Error propagation: All the errors namely; Diameter Measurement 
Error (DME), Wood Density Error (WDE), Height Error (HE), and 
Allometric Model Error (AME) associated with AGB estimation 
are considered before the final error propagation. The errors were 
corrected using specialized arguments in the AGBMonteCarlo 
functions. The final propagation also used the AGBMonteCarlo 
rule where the procedure provided a distribution of the trees 
enumerated in the study area.

The final argument for propagating error in data sets of Omo 
-Sasha-Oluwa forest complex was;

AGBmc←AGBmonteCarlo (D=TropicalHD$D, 
WD=WDdatan$meanWD, H=Hlocals$H, 
errWD=WDdatan$sdWD, errH=Hlocals$RSE, 
Dpropag="chave2004")

Where AGBmc=(AGBMontearlo), D=Diameter at breast height of 
sampled trees, WD=Wood Density of the trees in the study area, 
H=selected H-Diameter allometry, errWD, errH and Dpropag are 
the arguments of all the errors associated with the estimation.

RESULTS

Wood density

A total of 16467 wood densities with 84 taxa were derived from 

all the sampled plots in the study area. The site-specific mean of 
the trees making up the structural network of the tropical forest of 
Southwestern Nigeria was 0.57 g/cm3 belonging to three families 
and tree species namely; Fabacea (Tetrapleura tetraptera), Moraceae 
(Milicia Excelsa), and Meliaceae (Entandrophragma cylindricum) at 
Whereas the general wood density value for species-level had 91% 
while wood density to genus level had an 8% confidence level 
respectively. The lowest wood densities belonged to two species 
from two families which were; Annonaceae (Cleistopholis patens) 
and Malvaceae (Bombax buonopozense) with wood density values of 
0.33 g/cm3 and 0.32 g/cm3 respectively. Furthermore, the highest 
density (0.92 g/cm3) was recorded for Klainedoxa gabonensis , from 
the family of Irvingiaceae.

Height-diameter allometry

The height-diameter model of the study area (Table 1, Figures 3 
and 4) indicated that Log 2 had the least RMSE (4.43) hence its 
selection to determine Aboveground-Biomass for the study area
Table 1: Compared height-diameter models showing distinguished colors, 
rmse and average biases of inventoried trees in the study area.

S/n Model Colour RMSE Average bias

1 Log 1 blue 4.6678 -0.0013

2 Log2 green 4.4328 2e-04

3 Log 3 red 4.4985 8e-04

4 Weibull orange 5.8234 -0.0362

5 Michaelis- Menten purple 5.3665 -0.0182

Above-ground biomass and carbon stock estimates

The result Table 2 showed that Omo Forest Reserve sampled plot 
had the highest AGB and carbon stock (348.5 and 174 MgCa/ha-1 ) 

Figure 3: Height -diameter model of tree species in South-western 
Nigeria. Note: ( ) Log 1, ( ) Log 2, ( ) Log 3, ( ) 
Webull, () Michaelis.

Figure 4: Selected Log 2 model from all allometry due to lowest 
RMSE. Note: ( ) Data, ( ) Model selected.
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while the least AGB and carbon stock from the three forest reserve 
sampled was Sasha Forest Reserve with (156 and 78 MgCa /ha-1) 
respectively.
Table 2: Above-ground biomass in mg/m2, and tonnes/ha-1 and Carbon 
stock estimates of the 1-hectare plot each for Omo, Sasha, and Oluwa 
forest reserves.

Forest reserve AGB (Mg/m2)
AGB estimates 

(MgCa/ha-1)

Carbon stock 
estimates 

(MgCa/ha-1)

Omo 348521558 348.5 174

Oluwa 310566394 310.6 155

Sasha 156650901 156.1 78

Note: 17.92 radius = 1009 m2 .1 hectare=10,000 m2. 0.1 hectare 
multiplied by 10=I hectare. 1 Megagram (Mg)=106 gram=1000 kg=1 
tonnes=1.10 US metric tonnes.

DISCUSSION

The tree structural composition of the tropical forest of 
Southwestern Nigeria is predominantly hardwood species. For 
example, Klaneidoxa gabonensis (0.92 g/cm3), Nauclea diderichii (0.67 
g/cm3), Irvingia gabonensis (0.77 g/cm3), Lophira alata (0.89 g/cm3), 
Diospyros dendo (0.90 g/cm3) and pentaclethra macrophylla (0.84 g/
cm3) are part of the tree species that constituted the emergent layer. 
Some softwood species, however, are found in the emergent layer. 
Triplochiton scleroylon (0.3 g/cm3), Bombax buonopozense (0.32 g/
cm3) and Ceiba pentandra (0.31 g/cm3) where some of the softwood 
species. It was observed that the softwood species in the emergent 
layer have large stem diameters compared with the hardwood species 
even though the softwood species are numerically fewer at the 
emergent layer than the hardwood. This is contrary to the general 
belief that the growth rate of light-demanding trees is characterized 
by low density and average stems. The findings however supported 
other observations. [36] opined that the interspecific variations 
in wood density between tree species within a forest structure 
determine the relationships between stem diameter and that 
wood density decreases with stem diameters. The canopy layer 
had a mixture of hardwood species and softwood species with no 
definite order of magnitude. Also, some emergent tree species were 
found as canopy layer species in the drier extremes of the forests 
this may be because of temperature changes since anthropogenic 
activities may result in slight climatic variations within the forests 
[37]. According to [38], wood density can also serve as an indicator 
of timber quality and plant adaptation strategies to stress. It is as 
well expected that the wood density of emergent layers should be 
higher than the canopy layer. Besides, characterizing the emergent 
and canopy layers into a pioneer and shade-tolerant species may 
improve the understanding of intra and interspecific relationships 
and explain how local differences determine tree height, stem 
diameters, and biomass [38,39].

The Log 2 height–diameter allometry showed that the average tree 
height was 33.2 meters. According to [14] the Bayesian inference 
procedure improves predictions with higher accuracy when 
compared with measured tree heights. This result is consistent 
with field measurements in the study area which places the forest 
height range from emergent tree species to canopy layer tree species 
within the range of 48 meters to 12 meters [14,40-42]. The findings 
also agree with studies carried out in other forest reserves in 
southwestern and southeastern Nigeria [20].

Forest structure and carbon sink

Linkage exists between the tropical forest structure and the carbon 
stocks in southwestern Nigeria. The findings showed that carbon 
stock estimates correspond with the state of conservation as 
primary forests with intact forest structures produced higher carbon 
stocks than the degraded secondary forest. For example, Omo 
Forest Reserve (174 MgCa/ha-1) also known as Queen Elizabeth 
Forest is the most conserved while Sasha Forest Reserve(78 MgCa/
ha-1) is the most degraded of the forests forming the complex. The 
result is similar to previous findings in the region [40-41], which 
generally surmised that deforestation and degradation affect gross 
productivity with an impact on the forest structure. 

CONCLUSION

The Wood Density, Height-Diameter Allometry and error 
propagation using the AGBMonteCarlo in the Bayesian procedure 
offered a robust way for forest carbon accounting in Nigeria 
and other African countries with tropical forests without legacy 
inventory data. Besides, the flexibility of site-specific and species-
specific wood density provided insight into the structural dynamics 
of the tropical forests and how anthropogenic activities and 
climatic alterations especially temperature may affect the ratio and 
distribution of emergent and canopy layer species within a forest 
structure. For these reasons, the tropical forest structure may be 
better identified with light-demanding and shade-tolerant tree 
species for the simplicity that light-demanding trees are found in 
the upper story while shade-tolerant species are found in the canopy 
layer and understory depending on age and forest degradation. 
Also, the species-specific wood density provided a more reliable 
biomass estimate than the generalized average wood density value 
for the tropics (0.5 g/cm3). 

In conclusion, the study has shown that the predominantly 
hardwood tree species which occupy the emergent layer can 
withstand stress from anthropogenic activities indicating forest 
resilience for future regeneration. Furthermore, the study shows a 
possibility of providing reliable regional carbon stock estimates in 
developing countries for Monitoring and Reporting Verification 
(MRV) projects when combined with a cutting-edge remote sensing 
approach for a wall to wall mapping over different vegetation types. 
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