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Introduction
Serine proteases are the most studied class of proteases having 

a histidine, aspartic acid and serine residue at the catalytic center. 
Microbial serine proteases have attracted growing interest in the 
last decade because they find applications mainly in leather tanning, 
detergent formulation and diagnostics [1-4]. Keeping in view the 
wider acceptability and high industrial demand, serine proteases 
have drawn interest of the researchers and efforts are being made to 
either look for novel proteases [5] or tailor these proteins which can 
withstand extremes of pH and temperature [6]. Although conventional 
methods which involves isolation of microbes and their screening for 
desired products are quite popular and largely followed in industrial 
microbiology yet are time consuming, tedious and cost intensive [7,8]. 
Newer tools and techniques in computational biology have led to 
generate sufficient data available in the biological databases which have 
opened new oppturnities for the researches to analyze various attributes 
of the proteins responsible for their extreme stability at different pH 
and temperatures [9,10]. A comparative study of important properties 
and variation in amino acids of proteins thriving at extreme conditions 
using traditional in vitro approaches is an expensive venture. Advances 
in computational biology and bioinformatics have opened new vistas 
in molecular sciences to analyze and compare gene and protein 
sequences data to deduce and predict site specific amino acids or motifs 
or domains of proteins responsible for their stability under extremes of 
temperature, pH, salt or pressure and organic solvent concentration 
[11-13]. Although some information on serine proteases of microbes 
from various environments is there yet an overall comparison of 
psychrophilic, mesophilic, thermophilic and hyperthermophilic 
proteases till date has not been carried out [14,15]. Some important 
physiochemical properties e.g. molecular mass, theoretical pI, amino 
acid composition, negative and positive charged residues, extinction 
coefficients, instability index, grand average hydropathicity of enzymes 
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exceptionally high in the psychrophilic serine proteases in comparison to their counterpart. Phylogenetic analysis 
using Neighbour Joining (NJ) method distinguished thermophilic, mesophilic, hyperthermophilic and psychrophilic 
serine proteases into their respected groups.

immensely influence their applications and need to be carefully 
studied. Besides to these properties variation in the total count of 
amino acids has been found to play a significant role in stability, 
selectivity and reactivity of the enzymes [11,16,17]. In view of the above 
a systematic comparative in silico analysis of amino acid sequences and 
physiochemical properties of psychrophilic, mesophilic, thermophilic 
and hyperthermophilic microbial serine proteases has been undertaken 
and the observations will be useful for predicting the behavior of a 
given serine protease as mesophilic or thermophilic or psychrophilic 
in terms of its temperature stability is reported in this communication.

Material and Methods 
Data collection and tools

The amino acid sequences of some microbial serine proteases from 
thermophiles, hyperthermophiles, mesophiles and psychrophiles were 
retrieved from NCBI (http://www.ncbi.nlm.nih.gov/protein), UniProt 
proteomic server (http://www.expasy.org/), and MEROPS database 
(http://www.merops.sanger.ac.uk) were downloaded in fasta format. 
ProtParam tool (http://expasy.org/tools/protparam.html) available 
on ExPASy proteomic server, was used for comparison of various 
physiochemical parameters among the different serine proteases. 

http://www.merops.sanger.ac.uk
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To identify and highlight the conserved catalytic triad in the amino 
acid sequence of proteases, multiple sequence alignment of various 
organisms were performed using clustal omega and phylogenetic tree 
was generated.

Statistical analysis

An analysis of variance (ANOVA) was used to calculate different 
physiochemical parameter for each study with the statistical packages 
‘Assistat version-7.7 beta 2016’. F-tests were applied to determine the 
statistical significance. Tukey test was applied for all significant effects 
over the pairwise comparison of mean responses.

Results
Computational analysis of physiochemical parameters of 
various proteases

In the present study comparison of some important physiochemical 
parameters of various groups of serine proteases has been done and 
significant differences are recorded. Overall analysis revealed only 
negatively charged residues (Asp + Glu) to be statistically significant 
among all the groups of serine proteases (Tables 1 and 2). Individual 
comparison among the various group of serine proteases found 
negatively charged residues (Asp+Glu) to be statisctically significantly 
and higher in case of mesophiles (1.61 fold) in comparison to 
thermophiles. On the other hand aliphatic index which is defined 
as the volume occupied by the aliphatic amino acids in proteins was 
found to be significantly higher (1.05 fold) in thermophiles. When 
compared molecular weight and negatively charged residues were 

Sr. No.
Accession number 

(UniProtKB/
MEROPS)

Microorganisms

Thermophiles

1. Q9AER6 Thermoanaerobacter yonseii

2. P41363 Bacillus halodurans

3. P08594 Thermus aquaticus

4. P80146 Thermus sp. (strain Rt41A)

Mesophiles

1. P30199 Staphylococcus epidermidis

2. Q8KH46 Enterococcus faecalis

3. H2JJ14 Clostridium sp. BNL1100

4. MER016986 Streptococcus mutans

Hyperthermophiles

1. F4HL71 Pyrococcus sp. NA2

2. Q5JIZ5 Thermococcus kodakarensis ATCC BAA-918

3. G0EG32 Pyrolobus fumarii

4. B8D5T9 Desulfurococcus kamchaatkensis

Psychrophiles

1. B8CU08 Shewanella piezotolerans

2. K4M7H8 Methanolobus psychrophilus R15

3. Q480E3 Colwellia psychrerythraea ATCC BAA-681

4. Q8GB52 Vibrio sp. PA-44

Table 1: Sources of some microbial proteases from various environmental 
conditions and their accession number.

Parameters
Microorganisms

Significance
1 2 3 4

Number of amino acids

Thermophiles 412.0 361.0 513.0 410.0

ns
Mesophiles 461.0 412.0 564.0 447.0

Hyperthermophiles 422.0 663.0 401.0 411.0
Psychrophiles 608.0 529.0 789.0 530.0

Molecular weight (Da)

Thermophiles 44503.2 38115.8 53913 42876.4

ns
Mesophiles 51813.9 45570.2 59331.1 49196.3

Hyperthermophiles 44986.0 70955.1 42709.8 44143.0
Psychrophiles 61541.0 55101.8 80857.1 55682.5

Theoretical pI

Thermophiles 9.2 6.6 6.9 6.2

ns
Mesophiles 9.4 4.9 5.2 4.9

Hyperthermophiles 5.3 4.8 9.0 5.2
Psychrophiles 4.7 4.9 4.4 4.6

Negatively charged residues 
(Asp + Glu)

Thermophiles 40.0 29.0 35.0 30.0

*
Mesophiles 56.0 57.0 56.0 47.0

Hyperthermophiles 40.0 68.0 34.0 37.0
Psychrophiles 59.0 51.0 80 48.0

Positively charged residues 
(Arg + Lys)

Thermophiles 49.0 27.0 35.0 27.0

ns
Mesophiles 75.0 43.0 45.0 34.0

Hyperthermophiles 33.0 46 43.0 30.0
Psychrophiles 35.0 36.0 44.0 31.0

Extinction coefficients
(M-1cm-1) at 280

nm

Thermophiles 45965 30370 109585 56060

ns
Mesophiles 49405 33810 57300 60740

Hyperthermophiles 81835 123540 55030 79315
Psychrophiles 44975 63050 78325 54945

Instability Index

Thermophiles 31.24 29.93 34.86 28.35

ns
Mesophiles 23.67 28.57 22.52 32.65

Hyperthermophiles 20.33 18.1 30.02 23.82
Psychrophiles 22.79 24.68 30.32 40.18



Citation: Raj T, Sharma Nikhil, Savitri, Bhalla TC (2017) Bacterial Serine Proteases: Computational and Statistical Approach to Understand 
Temperature Adaptability. J Proteomics Bioinform 10: 329-334. doi: 10.4172/jpb.1000459

Volume 10(12) 329-334 (2017) - 331 
J Proteomics Bioinform, an open access journal 
ISSN: 0974-276X

found to be higher (1.16 and 1.35 fold) in mesophiles as compare 
to hyperthermophiles. Aliphatic index was higher in case of 
hyperthermophiles (1.16) in comparison to mesophiles. Mesophilic 
and psychrophilic proteases too showed some significant difference 
with molecular weight (1.12 fold) of the psychrophilic proteases higher 
in comparison to mesophiles whereas, positively charged residues and 
theoretical pI were 1.16 and 1.24 fold higher in mesophiles as when 
compared with psychrophiles. The instability index which estimates 
the stability of the protein in a test tube was alone found significantly 
higher (1.34 fold) in thermophiles in comparison to hyperthermophiles. 
Significant difference was observed for the negatively charged residues 
(Asp+Glu) which were higher in psychrophiles as compared with 
thermophiles (1.32 fold) and statistically significant aliphatic index 
(1.19 fold) higher in hyperthermophilic proteases in comparison to 
psychrophilic proteases.

Computational analysis of twenty amino acid of bacterial 
proteases

Overall comparison of amino acids for various serine proteases 
exhibited amino acids Ala (A), Arg (R), Asn (N), Asp (D), Cys (C), Gly 
(G), Phe (F), Tyr (Y) and Val (V) to be statistically significant (Table 
3). Comparative analysis between mesophilic and thermophilic serine 
proteases revealed Ala (1.70) Gly (1.30), Pro (1.8), Arg (1.2) and Val 
(2.2) to be statistically significant in case of thermophiles whereas, 
Asp (1.6 fold) was significantly higher in mesophiles. A significant 
difference and higher the number of Ala (A), Arg (R), Gly (G) and Val 
(V) (1.5, 2.0, 1.4 and 1.8 fold) were found in case of hyperthermophiles 
as when compared with mesophiles having more number of Asn (N) 
and Phe (F) (2.2 & 1.3 fold). The amino acid residues Cys (C), Gly (G) 
and Val (V) were found to be significantly higher with 9.5;1.5 and 1.28 
fold in psychrophilic serine proteases whereas, Glu (E), Ile (I) and Phe 
(F) were significantly higher with 1.7, 1.5 and 1.3 fold respectively in 
mesophilic bacteria Fink. 

Multiple sequence alignment and phylogenetic analysis

Multiple sequence alignment (MSA) showed the presence of 
conserved catalytic triad of D-130, H-163 and S-315 (Figures 1 and 
2) which is responsible for the catalytic activity in serine proteases. 
Phylogram was generated using Neighbor Joining method to study the 
evolutionary relationship among the bacteria for the four groups of 
serine proteases. 

Discussion
Looking into the fundamentals of protein stability, discovering 

enzymes bearing extreme of temperature and pressure has led to many 

practical applications in the industry and for the scientific community. 
Understanding how these enzymes achieve the ability to bear extreme 
of conditions could lead to design proteins with better selectivity, 
reactivity and stability. The four groups of proteases i.e. mesophilic, 
thermophilic, hyperthermophillic and psychrophillic serine proteases 
amino acid sequences were distinguished using the sequencing 
and statistical methods. Analysis of physiochemical properties and 
amino acid compositions of different groups of serine proteases 
revealed a clearcut segregation as to what makes proteins to work at 
extreme of temperature. Detailed comparative and statistical analyses 
confirmed the separation of the mesophiles from the three classes i.e. 
psychrophiles, thermophiles and hyperthermophiles in terms of the 
amino acids usage. Keeping in view the broad applications of serine 
proteases in the industries which have have drawn a considerable 
interest of the researchers to engineer and produce the proteases with 
better stability and selectivity [6,18] which indeed will be useful in 
economic and environmental benefits [19-21]. The diversity in twenty 
amino acids and their combinations make the proteins to differ in their 
physicochemical properties as well as substrate specificity [11,18,22]. 
The predominance of alanine (A) and proline (P) have less surface 
nonpolar area exposed in both thermostable and hyperthermostable 
proteases making them to be buried in the core [23]. Glycine (G) and 
Valine (V) are responsible for compact core packing and functional 
regulation [24,25]. The hydrophobic core is very necessary for folding 
and stability so more the hydrophobic interactions more stable 
are proteins i.e. these attain higher thermostability [26]. Another 
important amino acid proline (P) which was higher in thermophilic 
proteases provides rigidity and reduces the free energy of the main 
chain [27]. Proline is said to be highly prevalent in thermophilic 
proteins because of its side chain having distinctive cyclic structure 
that locks its backbone and leads to an exceptional conformational 
rigidity in the turns and loops [28]. Cysteine (C) content was 
exceptionally high with 9.5 fold in psychrophilic proteases as compared 
to its hyperthermophilic, thermophilic and mesophilic counterparts. 
Cysteine (C) tend to provide flexibility and are capable of making 
cavities in the core of the psychrophilic protein structure [29,30] which 
imparts extra stability to psychrophilic proteins. Cysteine residues 
also play a dual role by both increasing thermostability by forming 
disulphide bridges and decreasing thermostability when available in 
free form as it is highly sensitive to oxidation at elevated temperature 
[31]. Keeping this in view the trend observed in the present study 
shows with maximum frequency of Cys (C) to occur in psychrophilic 
proteases in comparion to its counterparts. This natural or any changes 
made through mutagenesis under controlled temperature conditions 
can lead to tailor proteases which could be a big boon for the food 
industry and human mankind.

Aliphatic Index

Thermophiles 95.17 90.8 73.68 90.98

ns
Mesophiles 80.3 90.87 81.15 80.94

Hyperthermophiles 98.08 81.21 93.42 100.78
Psychrophiles 73.45 83.53 76.92 79.09

Grand average of 
hydropathicity (GRAVY)

Thermophiles -0.121 -0.111 -0.121 0.054

--------
Mesophiles -0.683 -0.333 -0.165 -0.456

Hyperthermophiles 0.113 -0.186 -0.029 0.155
Psychrophiles -0.02 -0.013 -0.115 -0.181

Thermophiles: 1) Thermoanaerobacter yonseii 2) Bacillus halodurans 3) Thermus aquaticus 4) Thermus sp. (strain Rt41A)
Mesophiles: 1) Staphylococcus epidermidis 2) Enterococcus faecalis 3) Clostridium sp. BNL1100 4) Streptococcus mutans
Hyperthermophiles: 1) Pyrococcus sp. NA2 2) Thermococcus onnurineus 3) Pyrolobus fumarii 4) Desulfurococcus kamchaatkensis
Psychrophiles: 1) Shewanella piezotolerans 2) Methanolobus psychrophilus R15 3) Psychroflexus gondwanensis 4) Vibrio sp. PA-44

Table 2: Physiochemical parameters of various microorganisms calculated using ProtParam tool at ExPASy proteomic server.
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Amino acid composition
Microorganisms

Significance
1 2 3 4

Ala (A)

Thermophiles 8.7 11.6 12.5 13.9

*
Mesophiles 4.6 5.8 10.1 6.5

Hyperthermophiles 10.2 10.0 11.2 9.5
Psychrophiles 14.1 10.8 10.8 7.9

Arg (R)

Thermophiles 2.9 3.9 5.3 4.6

*
Mesophiles 1.7 2.7 1.1 1.8

Hyperthermophiles 4.5 1.1 4.0 4.1
Psychrophiles 2.5 1.1 1.6 3.4

Asn (N)

Thermophiles 6.1 7.8 4.1 3.9

*
Mesophiles 10.2 8.7 5.3 10.5

Hyperthermophiles 4.5 5.3 4.0 4.9
Psychrophiles 6.9 5.7 5.8 6.6

Asp (D)

Thermophiles 5.3 2.5 4.3 4.4

**
Mesophiles 6.5 8.3 6.9 6.5

Hyperthermophiles 5.9 7.7 5.2 6.1
Psychrophiles 6.9 6.4 7.1 7.2

Cys (C)

Thermophiles 0.5 0.0 1.4 1.2

*
Mesophiles 0.4 0.0 0.0 0.2

Hyperthermophiles 0.5 0.0 1.2 0.5
Psychrophiles 1.6 0.9 1.3 1.9

Gln (Q)

Thermophiles 1.5 3.6 3.1 3.9

ns
Mesophiles 2.8 1.7 2.7 5.8

Hyperthermophiles 1.9 3.6 2.7 1.5
Psychrophiles 1.6 1.7 2.9 5.7

Glu (E)

Thermophiles 4.4 5.5 2.5 2.9

ns
Mesophiles 5.6 5.6 3.0 4.0

Hyperthermophiles 3.6 2.6 3.2 2.9
Psychrophiles 2.8 3.2 3.0 1.9

Gly (G)

Thermophiles 9.0 9.1 12.1 10.0

**
Mesophiles 6.9 7.0 8.3 8.3

Hyperthermophiles 11.4 10.3 10.2 10.0
Psychrophiles 13.5 9.8 12.0 10.8

His (H)

Thermophiles 1.5 2.8 1.2 1.7

ns
Mesophiles 1.1 1.2 1.2 1.3

Hyperthermophiles 1.2 1.5 1.5 1.0
Psychrophiles 1.8 1.3 1.3 0.9

Ile (I)

Thermophiles 9.2 6.4 2.7 3.4

ns
Mesophiles 5.9 9.7 6.4 8.5

Hyperthermophiles 5.2 5.4 6.5 7.1
Psychrophiles 5.1 6.0 4.6 4.2

Leu (L)

Thermophiles 7.5 6.9 7.6 10.0

ns
Mesophiles 8.2 7.8 6.6 6.3

Hyperthermophiles 6.4 6.3 7.7 8
Psychrophiles 4.6 5.9 6.1 7.9

Lys (K)

Thermophiles 9.0 3.6 1.6 2.0

ns
Mesophiles 14.5 7.8 6.9 5.8

Hyperthermophiles 3.3 5.9 6.7 3.2
Psychrophiles 3.3 5.7 3.9 2.5

Met (M)
Thermophiles 1.5 1.9 1.4 1.2

nsMesophiles 1.7 2.2 0.5 1.3
Hyperthermophiles 1.4 1.7 1.2 1.7

Thermophiles: 1) Thermoanaerobacter yonseii 2) Bacillus halodurans 3) Thermus aquaticus 4) Thermus sp. (strain Rt41A)
Mesophiles: 1) Staphylococcus epidermidis 2) Enterococcus faecalis 3) Clostridium sp.BNL1100 4) Streptococcus mutans
Hyperthermophiles: 1) Pyrococcus sp. NA2 2) Thermococcus onnurineus 3) Pyrolobus fumarii 4) Desulfurococcus kamchaatkensis
Psychrophiles: 1) Shewanella piezotolerans 2) Methanolobus psychrophilus R15 3) Psychroflexus gondwanensis 4) Vibrio sp. PA-44
** Significant at a level of 1 % of probability (P<0.01)
* Significant at a level of 5 % of probability (0.01 ≤ P<0.05)
ns non-significant (P ≥ 0.05)

Table 3: Comparative analysis of amino acid residues in thermophiles, mesophiles, hyperthermophiles and psychrophiles.
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Conclusion
The presence of Ala (A), Gly (G), Pro (P), Arg (R) and Val (V) 

in thermophiles and Asp (D) in mesophiles clearly discriminates 
the thermophiles from the mesophiles. The amino acid residues 
Ala (A), Arg (R), Gly (G) and Val (V) were significantly higher in 
hyperthermophiles and Asn (N) and Ser (S) in mesophillic bacteria 
demarcate the mesophiles from hyperthermophiles. Similarly, the 
presence of exceptionally high Cys (C), in psychrophiles differentiates 
them from their counterpart. The results of the present study will 
indeed be of great help to understand the role of amino acids especially 
cysteine to develop practical stratagies in engineering serine proteases 
and their potential use in different industries, their role in biological 
and in bioremediation processes.
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