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Introduction
Autoimmune Diseases (ADs) represent a heterogeneous group 

of disorders with genetic, environmental and individual etiological 
factors [1]. The etiopathogenesis of systemic ADs has previously 
been attributed to T cell deficiencies, polyclonal B cell activation, 
macrophage dysfunction and environmental factors [2]. ADs affect 
organs and tissues such as blood vessels, connective tissues, thyroid, 
pancreas, joints, muscles, and skin. Allogenic Hematopoietic Stem Cell 
(HSC) transplantation has been shown to be a relatively successful 
treatment for experimental ADs, and there are a number of reports 
of Bone Marrow Transplantation (BMT) being used to treat ADs 
in various mice [3-10]. For example, the following were all resolved 
after BMT: Insulin-Dependent Diabetes Mellitus (IDDM), in which 
beta cells are destroyed by the immune system; Rheumatoid arthritis 
(RA), which primarily attacks the synovial joints; Systemic Lupus 
Erythematosus (SLE), which is a chronic auto-inflammatory disease 
of unknown etiology; Multiple Sclerosis (MS), which affects the brain 
and the central nervous system, and Autoimmune Pancreatitis (AIP), 
which produces pancreatic masses and ductal strictures [11,12]. ADs 
show abnormal autoimmune responses by auto-antibodies and T- cell 
responses to self-molecules in pathological conditions [13]. Abnormal 
immune regulatory processes are represented as they are characterized 
by activation and expansion of immune cell subsets in response to 
non-pathogenic stimuli. Autologous BMT can treat ADs because it 
can ablate an abnormal self-reactive immune system resulting from 
chemotherapy and regenerate a self-tolerant immune system from 
HSCs [11]. 

ADs: Criteria and Classification 
The criteria for ADs include 1) direct evidence from transfer of 

pathogenic antibodies or pathogenic T cells; 2) indirect evidence 
based on reproduction of the autoimmune disease in experimental 
animals; 3) and circumstantial evidence from clinical clues [14]. ADs 
can be broadly divided into systemic and organ-specific autoimmune 
disorders, depending on the principal clinico-pathologic features 
of each disease. Systemic autoimmune disorders often affect joints 
although they may also affect the skin, kidneys, heart, lungs and red 
blood cells. They include SLE, Sjögren’s syndrome, scleroderma, 
rheumatoid arthritis, and dermatomyositis. As the name suggests, 
organ-specific diseases primarily target one specific organ, and include 

Insulin-Dependent Diabetes Mellitus (IDDM), Hashimoto’s thyroiditis 
and Graves’ disease [15]. Our previous report indicated that both 
systemic and organ-specific ADs could be prevented by BMT [16].

SLE Treated with BMT
SLE is a chronic systemic AD that affects a variety of organs and 

is predominantly seen in females, even though it is unclear how sex 
hormones could promote lupus [17]. These loci which designated Sle 
1, Sle 2, and Sle 3, contain genes that mediate the loss of immunologic 
tolerance to nuclear autoantigens. B-cell hyperactivity and T-cell 
dysregulation have been identified to promote lupus in mice [18]. The 
W/BF1 mouse is known to be an animal model of SLE that produces not 
only anti-DNA antibodies but also anti-platelet antibodies, resulting in 
decreased platelet counts. These mice show a high level of proteinuria, 
increased white blood cell counts, hypertension, and myocardial 
infarction due to the high levels of anti-cardiolipin antibodies [8]. 
They have also been shown to develop lupus nephritis with myocardial 
infarction [19]. The transplantation of bone marrow cells from 
normal mice to W/BF1 mice was found to prevent and cure the lupus 
nephritis, thrombocytopenia and anti-phospholopid Ab syndrome [8]. 
Moreover, the platelet counts were normalized and circulating anti-
platelet Ab levels as well as anti-phospholipid levels were reduced [20].

In MRL mice, the mostly recessive lpr mutation results in both 
the accumulation of CD4-, CD8- CD3+ T cells in lymphoid tissue 
and many features of generalized AD. A mutation of the Fas gene that 
induces apoptosis is -- the lpr mutation -- has been detected in MRL/
Lpr mice, and these mice show severe ADs such as RA and SLE [21,22]. 
Since MRL/lpr mice possess radio-resistant abnormal HSCs, they suffer 
a relapse 5 months after conventional BMT, and we have found that 
there is an MHC restriction between HSCs and stroma cells. BMT plus 
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Abstract
Autoimmune Diseases (ADs) are diseases in which the immune system mistakenly attacks and destroys self-

molecules due to a disruption of immunologic tolerance to auto-reactive immune cells. The goals of treatments 
for ADs are to 1) reduce symptoms, 2) control the autoimmune process and 3) maintain the body’s ability to fight 
disease. Allogenic Hematopoietic Stem Cell (HSC) transplantation has been shown to be a relatively successful 
treatment for experimental ADs. Intra Bone Marrow-Bone Marrow Transplantation (IBM-BMT) has been proven to 
be a powerful strategy for allogeneic BMT due to the rapid hemopoietic recovery and the complete restoration of 
T cell functions even in donor-recipient combinations across MHC barriers. In this review, we summarize the ADs 
treatable with IBM-BMT.
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bone graft prevented the recurrence of ADs in MRL/lpr mice, which 
survived more than 48 weeks after this treatment. These results suggest 
that stroma cells play a crucial role in the prevention of graft failure in 
ABMT [7]. 

The thymus plays a crucial role in the elimination of the autoreactive 
clones involved in the development of ADs [23]. The combination 
of BMT plus Thymus Transplantation (TT) can treat the ADs in the 
MRL/Lpr mouse, because the allogenic T cells newly developed by TT 
are naïve T cells, which show less Fas expression and more resistance 
to apoptosis than the activated memory T cells with their high Fas 
expression [24]. BMT plus TT may induce early and continuous 
supplementation of donor-naïve T cells. In addition, although FasL-
mediated apoptosis is less effective, other cytotoxic molecules such 
as perforin, granzyme, TNFa or TRAIL may be involved in the 
mechanisms to overcome chimeric resistance [25].

MS Treated with Stem Cells
MS is an inflammatory disease in which the fatty myelin sheaths 

around the axons of the brain and spinal cord are damaged, leading 
to demyelination and scarring as well as a broad spectrum of signs 
and symptoms [26]. Genetic variations have been shown to increase 
the risk [27]. Specific genes that have been linked with MS include 
differences in the Human Leukocyte Antigen (HLA) system - a group 
of genes on chromosome 6 that serves as the Major Histocompatibility 
Complex (MHC) [26]. That changes in the HLA region are related to 
the susceptibility to MS has been known for over thirty years. Moreover, 
alleles of IL2- and IL7-receptor a genes and those in the HLA locus are 
identified as heritable risk factors for MS [28].

Stem cell therapy is the therapeutic plasticity by which neural 
precursors can replace damaged oligodendrocytes and myelin, and also 
effectively attenuate the autoimmune process in a local, nonsystemic 
manner to protect brain cells from further injury, as well as facilitate 
the intrinsic capacity of the brain for recovery. MSCs inhibit various 
components of the immune system that contribute to tissue damage, 
and MSCs can access the Central Nervous System (CNS) to provide 
protection against tissue damage [29]. MSCs and the relatively easy 
expansion of autologous cells have opened the way to their experimental 
application in MS. Phase I clinical trials are in progress to explore the 
use of MSC therapy for the treatment of MS [30].

IDDM Treated with BMT
The Type 1 Diabetes Genetics Consortium dataset provides a 

unique resource for genetic analysis because of the large sample size, 
the high-resolution HLA typing, and the quality control procedures 
for the genotype typing. A large number of studies have demonstrated 
that specific alleles at the DRB1, DQA1, and DQB1 loci are strongly 
associated with IDDM [31-34]. However, allelic variation at these loci 
cannot account fully for the pattern of HLA haplotype sharing among 
affected sib-pairs.

The Non-Obese Diabetic (NOD) mouse is a spontaneous mouse 
model of IDDM and has many of the same autoantigens targeted 
by human T cells [35,36]. There are at least fourteen different loci 
linked to disease development in the NOD mouse. The first Idd locus 
recognized, Idd1, is linked to the Major Histocompatibility Complex 
(MHC), and its inheritance and expression are a paradigm for the other 
non-MHC Idd genes [37]. Our previous report stated that when IDDM 
was transferred from NOD mice to normal mice (C3H/HeN), the 
chimeric mice developed both insulitis and overt diabetes more than 
40 weeks after BMT. These mice exhibited elevated glucose levels and 

abnormal glucose tolerance, and beta cells were selectively destroyed 
by the infiltration of T cells [16]. NOD mice that received transplanted 
BALB/c nu/nu bone marrow cells displayed normal T- and B-cell 
functions, and newly developed T cells in the allogenic bone marrow 
recipients were tolerant to cells with both donor- and host-type major 
histocompatibility complex determinants. These results suggest that 
ABMT might contribute to the prevention of islet destruction, and 
to the restoration of self-tolerance [5]. One report has demonstrated 
that BMT promotes beta cell regeneration after acute injury through 
bone marrow mobilization [38]. Another report has described how, in 
rats, the transplantation of pancreatic islets from two MHC-disparate 
donors was achieved in combination with IBM-BMT, resulting in 
improved blood glucose levels and the amelioration of streptozotocin-
induced diabetes mellitus [39]. Bone marrow could potentially serve 
as an autologous source for cells, thus minimizing rejection problems 
beyond the inherent autoimmune characteristics of IDDM [40]. One 
report has suggested that bone marrow stem cell-derived endothelial 
progenitor cells and beta cells regenerate in response to pancreatic 
injury [41]. Furthermore, MSCs significantly suppressed beta cell-
specific T cell proliferation in the pancreas [42].

ADs Treated with IBM-BMT 
IBM-BMT has been proven to be more effective than IV-BMT, 

since it can replace not only the HSCs and MSCs to be recruited, 
thereby preventing the risk of graft rejection, but also allows the use of 
a mild conditioning regimen [43]. IBM-BMT thus seems to be the best 
strategy for ABMT, since 1) no GVHD develops even if whole bone 
marrow cells are injected; 2) no graft failure occurs even if the radiation 
dose is reduced; 3) hemopoietic recovery is rapid and 4) the restoration 
of T cell functions is complete even in donor-recipient combinations 
across MHC barriers [44]. 

MSCs are used in the treatment or amelioration of inflammatory 
diseases and ADs [45]. MSCs from healthy donors and AD patients 
reduced the proliferation of autologous and allogenic Peripheral 
Blood Mononuclear Cells (PBMCs) by up to 90% in a cell dose-
dependent fashion. The immune-suppression was independent of the 
proliferation of the MSCs and was also effective on already proliferating 
cells. Moreover, it was independent of the clinical activity of the AD. 
The MSC dose-dependent pattern of suppression of proliferation 
was observed also with transformed B-cell lines, similar to that 
observed with proliferating PBMCs [46]. MSCs are responsible for 
the normal turnover and maintenance of adult mesenchymal tissues, 
and have been shown to have immune-modulatory properties and 
immunosuppressive capacities, acting on different immune cells both 
in vitro and in vivo. Among animal models of AD, mouse Experimental 
Autoimmune Encephalomyelitis (EAE) has been successfully treated 
with mouse in vitro-expanded MSCs, whereas in a mouse model of 
collagen-induced arthritis (CIA), the disease was exacerbated following 
MSC infusion [47-49]. Autologous bone marrow-derived MSCs have 
been shown to be potently antiproliferative to stimulated T cells from 
normal participants and autoimmune patients [46].

The MRL/Lpr mouse is a suitable model for establishing a safe new 
strategy for ABMT because the MRL/Lpr mouse itself is radiosensitive, 
whereas the abnormal HSCs of the MRL/Lpr mouse are radioresistant 
[7]. IBM-BMT can be used to treat intractable ADs under reduced 
radiation doses without any immunosuppressants. This seems to be 
attributable to the enhanced engraftment of donor-derived cells in 
the early stage after this treatment. IBM-BMT rapidly accelerates the 
proliferation of donor-derived progenitor cells and simultaneously 
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maintains hemopoietic progenitor cells, resulting in the recovery of 
hemopoiesis [43]. The abnormal HSCs of the MRL/Lpr mouse are 
radioresistant, so it is also a suitable model for establishing a safe new 
strategy for ABMT [43].

RA Treatment with IBM-BMT
The SKG/Jcl mouse develops a chronic T cell-mediated AD that 

mimics RA. One report has demonstrated that serum IL-10, TGF 
β-1, and IL-2 concentrations were significantly increased compared 
to the control group when treated with N-acetyl-D: -glucosamine 
(GlcNAc), indicating that this has suppressive effects on experimental 
RA in this mouse model [50]. Bone marrow cells of C57BL/6J mice 
were transplanted into the tibia of SKG/Jcl mice by IBM-BMT. There 
was no evidence of arthritis 12 months after the IBM-BMT and the 
hematolymphoid cells in the recipient mice were reconstituted by 
donor-derived cells. Moreover, the percentages of Treg (Foxp3+/
CD4+) cells, the percentage of receptor activator of NF-kB ligand+ 
cells on the CD4+ T cells and the serum levels of TNFa, IL-1 and IL-6 
were all normalized. IBM-BMT is a viable method of immunological 
manipulation that suppresses the severe joint destruction and bone 
absorption in SKG/Jcl mice and lends further credence to the use of 
this methodology in humans with intractable RA [51].  

Bone marrow-derived MSC therapy has already been implemented, 
the rationale being to exploit its immunomodulatory properties in a 
CNS-targeted manner. In Phase I/II open safety clinical trials, bone 
marrow derived MSCs were delivered intravenously and intrathecally 
into patients with chronic MS who had not responded to conventional 
treatments, and to patients with amyotrophic lateral sclerosis [52]. 
Th17 cells are a subset of T helper cells that play an important role 
in host defense and the pathogenesis of various human autoimmune 
and inflammatory diseases [53]. Elevated IL-17 levels are found in the 
serum and tissues of patients with various ADs, including RA, MS and 
systemic lupus sclerosis [54-56]. IL-17-deficient ABMT prevents the 
induction of collagen-induced arthritis in DBA/1J mice [57]. 

AIP Treated with IBM-BMT
AIP is a chronic pancreatitis with raised levels of serum IgG4, 

responsiveness to immunosuppressive therapy, and no apparent 
underlying cause such as chronic alcoholic pancreatitis. AIP has been 
reported to show chronic pancreatits with pancreatic duct stenosis 
[58,59]. Pancreas-specific autoantigens and significant reactivity to 
lactoferrin, carbonic anhydrase, pancreas secretory trypsin inhibitor, 
amylase-alpha, heat-shock protein and plasminogen-binding protein 
have been detected in the sera of patients with AIP, even though these 
are not specific for AIP [60-66]. Patients with ADs in the liver, intestine 
and blood vessels often show AIP [67]. 

The male wistar Bonn/Kobori (WBN/Kob) rat is known to be a 
unique animal model for chronic pancreatitis with widely distributed 
fibrosis and degeneration of parenchyma because of infiltration 
of lymphocytes. These finding have been shown to be related to 
sex hormone, genetic factor and immune disturbances [68-70]. 
Our previous report demonstrated that WBN/Kob rats develop 
daxryoadenitis, sialoadenitis, thyroiditis, sclerotic cholangitis and 
tubulointerstitial nephritis, and is a useful animal model for AIP and 
Sjögren-like syndrome in humans. IBM-BMT has been shown to 
prevent these ADs in this animal model [12]. However, IBM-BMT has 
a long way to go before an effective standard regimen of AD therapy 
for patients has been developed. There are several important ethical 
problems, as well as concerns regarding graft-versus-host diseases and 
graft rejection, and improvements in life span. Ethical problems center 

on finding appropriate donors, the transplantation phase, and short- 
and long-term follow-up care during the BMT procedure.

In conclusion, most intractable diseases are not only HSC disorders 
but also MSC disorders. ADs show aberrant reactions of adaptive or 
innate immune systems. Stem cell transplantation has been shown to 
improve the functions of immune systems and to be a valuable strategy 
of the treatment various ADs. 
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