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ABSTRACT
The present study aimed to assess the spatial variability and mapping of micronutrients under the sugarcane growing 

block of the Sivagangai district using geostatistics and the Geographic Information System (GIS). Totally, 100 

georeferenced surface samples (0 cm-30 cm) were collected and analysed for soil physicochemical properties. 

Descriptive statistics showed that the variance values coefficient ranged from 7.32% to 49.83%. Geostatistical analysis 

was executed for mapping the soil fertility properties with aid of well-fitted semivariogram models. Through cross-

validation techniques, the Standardized Root Mean Square Error (RMSSE) was computed and utilized for good 

prediction of the model. Geostatistical analysis revealed exponential for pH, EC, free CaCO3 and B, circular model 

for OC and Zn, Spherical for Fe and Mn, and the Gaussian model fitted well for Cu. Multivariate statistics viz., 

Pearson’s correlation coefficient and stepwise multiple regression were carried out and results showed significant 

correlations and interrelationships among the soil parameters. The principal component analysis provides the four 

principal components (PC1, PC2, PC3, and PC4) pertain to eigenvalues >1 and together elucidated 71.29% of 

the pattern variance. The kriged map of available Fe, Cu, Zn, Mn, and hot water soluble B showed areas under 

deficiency of about 57.3%, 52.2%, 50.2%, 44.5%, and 83.2%. The spatial variability of various parameters helps in 

site specific soil nutrient management and crop planning decisions to enhance sugarcane productivity.
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INTRODUCTION
Understanding the spatial variability of the soil properties entails
soil fertility evaluation and refining agricultural practices. Spatial
heterogeneity of soil is inherent in nature due to geologic and
pedologic soil forming factors yet different land uses and
management practices had a considerable impact on soil
properties degradation. Soil nutrient deficiency is one of the
prime restraints on crop production because of crop
intensification, and enhanced application of macronutrients
with less or nil micronutrients. The widespread micronutrient
deficiency in different parts of a country may continuously be

assessed and maps prepared from geostatistics. These deficiency 
maps help policymakers and fertilizers industries for acconting 
the supply and demand of a particular area, and it also useful in 
micronutrient management with the right nutrient, amount, 
form, and place of application which enhances the crop 
production and soil health [1].

Geostatistics has been manifested as a useful tool for assessing 
spatial variability of soil properties and has crucial importance in 
the near future for diagnosing nutrient related limitations and 
their management. Assessment of spatial interpolation which 
involves ordinary or co-kriging techniques paves way for 
forecasting the variable at unknown points  with  known  sampling
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aid of a handy GPS device. Soil samples are labeled and stored
in an airtight polyethylene bag. The soil samples were dried
under shade dry conditions and further crushing and sieving
processes were performed. By following the standard procedures,
the soil samples were analysed for various chemical properties
viz., pH (Potentiometry in a soil water suspension of 1:2 ratio
Jackson), Electrical conductivity (Conductometry in a soil water
suspension of 1:2 ratio), soil organic carbon (Walkley and black
method), free CaCO3 (rapid titration method), and DTPA Zn,
Fe, Mn, (DTPA extract-atomic Absorption spectrophotometer)
and hot-soluble B (Hot water-soluble method).

Statistical analysis

The datasets were analysed using statistics, geostatistics, and
multivariate analysis. Exploration of data was performed using
descriptive statistics that help to examine the central tendency
and variability. The parameters of descriptive statistics such as
mean, median decide the central tendency of the datasets while
the minimum, maximum, Standard Deviation (SD), Coefficient
of Variance (CV), kurtosis, and skewness decide the variability
(spread) of the datasets. Log transformation was performed if
the data sets were not normally distributed. The coefficient of
variance was used to compute the degree of variability in soil
properties. It is categorized into low (<12%), medium
(12%-60%), and high (>60%).

Descriptive statistics, multivariate analysis viz., correlation,
stepwise multiple linear regression and principal component
analysis were carried out using IBM SPSS statistical version 22
and Microsoft excel 2007. Semi-variance analysis was carried out
to quantitively determine the spatial dependence levels of the
variable using Arc GIS 10.8 software. A semi-variogram was
calculated for each property as follows [5].

Different semi-variogram models were used for each soil 
property such as the circular model, gaussian model, 
exponential model, and spherical model. The model fitting was 
recognized by adopting cross-validation techniques which 
evaluate the performance of the selected interpolated methods. 
It also computes the prediction error of the map viz., Mean 
Square Error (MSE), Average Standard Error (ASE), Root-Mean-
Square Error (RMSE) and the Standardized Root Mean 
Square Error (RMSSE). They are defined as follows:
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data. It is developed to create a mathematical model of spatial 
correlation structures with variogram construction both 
isotropically and anisotropically. The variogram and kriging are 
the most commonly used geostatistics and interpolation 
techniques which disclose the best-unbiased result and good fit 
determined by least square sense. Spatial variance data are 
characterized and modeled with the aid of semi-variograms and 
cross-semi variograms that assess the data points related to 
separation distances and through kriging predicted and 
observed values between samples of modeled variance were 
estimated. With these techniques, high resolution soil maps 
which are useful for land use planning and nutrient 
management for crops can be generated [2].

Stepwise Multiple Linear Regression (SMLR) is one of the 
popular statistical algorithms for weighing spatial soil 
information prediction. To determine the interrelationship 
between available micronutrients and soil characteristics the 
simple correlation and step-wise multiple regression coefficients 
were also worked out between certain interrelated pairs of 
parameters to observe their degree of dependence. Principal 
Component Analysis (PCA) is a multivariate statistic that 
provides effective components from other auxiliary variables by 
reducing multidimensional data into small number orthogonal 
linear combinations [3].

MATERIALS AND METHODS

Study area

Sivagangai district is located in the South of Tamil Nadu and it 
is bounded on the North and Northeast by Pudukkottai 
district, on the Southeast and South by Ramanathapuram 
district, on the Southwest by Virudhunagar district, and on the 
west by Madurai district, and on the Northwest by 
Tiruchirappalli district. The district has 9 taluks and 12 blocks 
with a total geographical area of 4189 sq.km between 9°43' and 
10°2' North latitude and between 77°47' and 78°49' East 
longitude with the altitude of 108 M above sea level. The district 
enjoys a tropical climate. The period from April to June is 
generally hot and dry. The district’s highest day temperature in 
summer is between 30°C to 36°C. Average temperatures from 
January to May ranges from 26°C-32°C. The district receives 
mean annual rainfall of 904.7 mm from North East monsoon. 
Paddy is the predominant crop of the district and other crops 
like millets, cereals, pulses, sugarcane and groundnut were also 
been cultivated.

The detailed soil survey was mainly focused in Thirupuvanam 
block which is positioned at the southern side of Madurai 
district. The geographical area of this block is about 1800 ha 
and the experimental site taxonomically grouped as Typic 
Ustropept [4].

Soil sampling and laboratory analysis

In the study area, soil sampling sites were randomly selected in 
major sugarcane growing soils of the Thirupuvanam block. A 
total of 100 soil samples were collected at a depth of 0 cm-30 
cm. A geo-coordinate of the sampling sites was noted  with  the
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Availability of micronutrients B, Fe, Cu, Zn, and Mn ranged 
from deficiency level to sufficiency level. The skewness and 
kurtosis of the variable emphasize the asymmetric distribution 
of the data sets. The variable with positive skewness represents 
the wider limits on the variogram and the least variance 
reliability.

The magnitude of skewness for pH and EC contents were 
negatively skewed or left skewed which depicts that most of the 
values are concentrated on the right tail of the distribution 
graph and asymmetry is present on the left side. Other attributes 
were positively skewed where the asymmetry fall on the right 
side. On the other hand, the Zn and B showed a positive 
kurtosis, whereas the others had a negative one. Based on the 
Standard Deviation (SD) value, the maximum and minimum 
dispersion in datasets were noticed in Fe and EC respectively. 
The Coefficient of Variation (CV) value ranges from low 
(7.32%) to moderate (49.83%) based on the classification 
proposed by Warrick and Nielson. The lowest and highest values 
were obtained for pH and B respectively. The variation in the 
soil properties is due to heterogeneity in nutrient levels in 
surface soil and topographical variation and different 
management practices. Similar results have been reported 
by Ranjbar and Jalali (Table 1) [7].

Soil
properties

Minimum Maximum Mean Std. deviation Variance Skewness Kurtosis CV (%)

pH 6.5 8.5 7.65 0.56 0.31 -0.14 -1.03 7.32

EC (dSm-1) 0.18 0.4 0.28 0.05 0.003 -0.12 -0.47 17.86

OC (g kg-1) 3.1 7.8 5.17 1.22 1.48 0.19 -0.92 23.6

Free CaCO3

(%)
0.3 5.9 2.87 1.43 2.05 0.2 -0.91 38.89

B (mg kg-1) 0.04 0.85 0.36 0.14 0.02 0.72 0.99 49.83

Fe (mg kg-1) 2.08 8.6 4.56 1.72 2.96 0.78 -0.46 37.72

Cu (mg kg-1) 0.65 2.3 1.24 0.38 0.15 0.48 -0.84 30.65

Zn (mg kg-1) 0.75 2.6 1.29 0.41 0.17 0.85 0.48 31.78

Mn (mg kg-1) 1.02 4.65 2.79 0.98 0.97 0.08 -1.44 35.13

Zn (r=-0.674), and Mn (r=-0.771). Followed by it, EC was 
negatively correlated with available Fe (r=-0.046), Cu (r=-0.302), 
Zn (r=-0.371), Mn (r=-0.338), and positively correlated with
organic carbon (r=0.093), free CaCO3 (r=0.029) and 
available boron (r=0.007). Regarding soil organic carbon, 
it had a significant and positive correlation with available Fe 
(r=0.062), Zn (r=0.123), Cu (r=0.062), B (r=0.009), and Mn 
(r=0.081). Finally, considering the free calcium carbonate, it 
showed a highly significant and negative correlation with Fe 
(r=-0.086), Cu (r=-0.134), Mn (r=-0.015), and available B 
(r=-0.073). The  results  showed that available B had 96% 
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The least Residual Sum of Squares (RSS) was taken into account 
to assess the most reliable interpolation method. In some cases, 
where these parameters were equal, the mean square error value 
closest to zero was used. The Degree of Spatial Dependence 
(DSD) of the variables were concerned based on the ratio of 
nugget effect to sill. The nugget effect (C0) reflects the spatial 
variability of the random field and the sill (C0+C) denotes the 
total variation, whereas the Range (R) indicates the separation 
distance, after which the measured data are not spatially 
dependent, the Degree of Spatial Dependence (DSD) was 
classified into DSD ≤ 25% strong; 25<DSD ≤ 75% moderate, 
and DSD>75% weak. The best-fitted model was further preceded 
to interpolation using the ordinary kriging method and the 
thematic maps on each soil property were generated [6].

RESULTS AND DISCUSSION

Descriptive statistics

The summary statistics of the surface soil attributes was revealed 
in Table 1. From these results, it is evident that the soil pH 
ranges from 6.5-8.5 which falls under the category of slightly 
acidic to slightly alkaline and non-saline. The concentration of 
soil organic carbon varied from 3.10 (low)-7.80 g kg-1 (medium). 
The free calcium carbonate content of surface soils was in the 
range of 0.30 (non-calcareous) -5.90% (slightly calcareous).

Relationship between soil properties and nutrient
availability

Simple correlations and stepwise multiple linear regression were 
worked out to establish the relationship between available 
micronutrients and other soil properties viz., pH, EC, OC, and
CaCO3 of the soil samples. The correlation coefficient and R2 

are presented in Tables 2 and 3. Soil pH had a significant and
positive correlation with OC (r=0.044), free CaCO3 (r=0.069) 
and whereas it had a negative correlation with EC (r=-0.350) 
and available B (r=-0.090), available Fe (r=-0.326), Cu (r=-0.477),
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Table 2: Pearson correlation matrix between soil properties and nutrient availability.

Variables Soil pH EC OC Free CaCO3 Fe Cu Zn Mn B

Soil pH 1

EC 0.350** 1

OC 0.044 0.093* 1

Free CaCO3 0.069** 0.029** -0.053* 1

Fe -0.326** -0.046** 0.062** -0.086* 1

Cu -0.477** -0.302** 0.026** -0.134* -0.013** 1

Zn -0.674** -0.371** 0.123** -0.069* 0.196* 0.457* 1

Mn -0.771** -0.338** 0.081** -0.015* 0.195** 0.439* 0.564* 1

B -0.090** 0.007** 0.009** -0.073* 0.095* -0.247* -0.174* -0.021* 1

**Correlation is significant at the 0.01 level; *Correlation is significant at the 0.05 level.

Table 3: Stepwise multiple regression between micronutrients and soil pH, EC, OC, and CaCO3.

Regression equation R2

Available Fe

Y=-0.354+0.0628X1-0.128X2+0.741X3-0.178X4 0.85

Y=-0.357+0.645X1-0.175X2+0.742X3 0.75

Y=-0.163+0.655X1-0.140X2 0.72

Y=0.864+0.518X1 0.67

Available Cu

Y=3.94-3.32 X1-0.857 X2+0.930 X3 +X4 0.9

Y=3.80-3.24 X1-0.590 X2+1.216 X3 0.85

Y=4.24-3.193 X1-0.523 X2 0.82

Y=4.31-3.49 X1 0.75

Available Zn

Y=4.58-3.35 X1-2.56 X2+1.02 X3+0.62 X4 0.92

Y=4.65-3.40 X1-2.53 X2+1.21 X3 0.9

Y=5.10-3.360 X1-2.44 X2 0.87

Y=4.45-3.60 X1 0.85

Available Mn

Y=4.38-3.36 X1-0.721 X2+0.66 X3-1.02 X4 0.93

Y=4.43-3.37 X1-0.956 X2 +0.449 X3 0.89

Vanitha P, et al.

of variation was explained by combination of pH, EC, 
organic carbon, free CaCO3 followed by Mn (93%), Zn 
(92%), Cu (90%) and Fe (85%) (Table 2) [8].

J Geol Geophy, Vol.12 Iss.4 No:10001091 4



Y=4.85+3.45 X1-0.96 X2 0.87

Y=4.83-3.80 X1 0.75

Hot water-soluble B

Y=- 0.146+0.306 X1+1.176 X2+0.02 X3-0.77 X4 0.96

Y=-0.109+0.300 X1+1.05 X2-0.152 X3 0.82

Y=-0.161+0.309 X1-1.075 X2 0.8

Y=-0.126+0.58X1 0.76

Note: X1-soil pH; X2-EC; X3-OC; X4-CaCO3

Zn, Cu, Fe, Mn, and B are negatively correlated with soil pH. In 
the alkaline range >7.85, the hydroxides of zinc are 
formed. Negative correlations between Cu and pH are 
probably due to the precipitation of Cu as hydroxides at high 
pH would have either the part of the lattice or occluded with 
the hydroxides of Fe, Al, and Mn. The reduction in availability 
of Fe is due to the conversion of Fe2+ ions to Fe3+ ions and 
the formation of Fe (OH)2 under a high pH range. Divalent 
(Mn2+) form of Mn get converts into insoluble tri or 
polyvalent ion (Mn3+-, Mn7+). A negative correlation was 
observed with increased pH, as the CaCO3 content increased 
the adsorption of B increased, and the availability of B in 
soils reduced. Positive correlation with organic carbon and 
micronutrients and it is reported that organic matter 
decomposition provides chelating agents to help in the reduction 
of soil pH at the soil locality which renders the solubility of 
micronutrients and their availability get improved. Soil 
micronutrient dynamics are also governed by organic matter build 
which influences the sorption mechanism of the 
micronutrients between soil colloids and solution. Since the 
organic matter has a highly active functional group, high specific 
surface area, action exchange capacity and it led to soluble 
complexes formation. Micronutrients had a negative correlation 
with calcium carbonate which acts as a strong adsorbent. High 
calcium carbonate content may lead to precipitation or fixation 
of nutrients by the adsorption process [9].

Principal component analysis

PCA was performed on variables that decrease the 
dimensionality of the data and recognize the linear 
reconsolidation of the properties that conclude the primary 
drivers of data variability. From the results (Table 4), it was 
obvious that four principal components (PC1, PC2, PC3, and 
PC4) pertain to eigenvalues>1 and together elucidated 71.29%
of the pattern variance. In PC1, the two highest positive 
loadings were Mn and Zn followed by the two strongest negative 
loadings soil pH and EC which explain 33.83% of the structure. 
In PC2, the positive association was ascribed by B and Fe with 
13.78% of the total variance while the organic carbon explained 
12.50% of the variation with a positive relationship in PC3.
PC4 has a positive impact on free CaCO3 described 11.16% of 
the structure. In this connection, the positive loadings decode 
the contribution of variables that increase with increased 
dimensional loading and decrease dimensional loading, which 
depicts negative loading. Similar results were reported by Ali 
and Ibrahim, Jena et al., Kumar, Lal and Lloyd [10].

Principal component Eigenvalues Variance (%) Cumulative variance (%)

PC1 3.045 33.84 33.84

PC2 1.241 13.79 47.62

PC3 1.125 12.5 60.12

PC4 1.1 11.17 71.29

PC5 0.844 9.37 80.66

PC6 0.665 7.39 88.05

PC7 0.481 5.36 93.39

PC8 0.405 4.5 97.89

PC9 0.19 2.11 100

PC loadings

Vanitha P, et al.

J Geol Geophy, Vol.12 Iss.4 No:10001091 5
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Soil pH Mn Zn Cu EC B Fe OC Free CaCO3

PC1 -0.896 0.839 0.823 0.632 -0.558 -0.132 0.332 0.085 -0.001

PC2 -0.073 0.078 -0.104 -0.441 -0.045 0.812 0.573 -0.011 0.054

PC3 -0.054 0.032 0.105 -0.014 0.474 -0.168 0.299 0.848 -0.61

PC4 -0.101 0.016 -0.109 0.253 0.206 -0.009 0.2 -0.117 0.944

The nugget/sill ratio describes the spatial dependency which 
is scaled as: <25% DSD strong; >25-<75% DSD 
moderate and >75% weak spatial autocorrelation. Free CaCO3 
and B have strong spatial autocorrelation which is associated 
with changing the intrinsic factors such as parent 
materials, texture, topography, and mineralogy; extrinsic 
altering factors such as soil fertilizers and cultivation practices 
are habitually connected with a weak spatial dependence. The 
values of micronutrients like Fe, Cu, Zn, and Mn show 
weak spatial variability. Both intrinsic and extrinsic factors 
are responsible for moderate spatial dependence while the 
results of the present study showed that the soil properties pH, 
EC, and OC noted moderate spatial dependence. These results 
were in agreement with the findings [12].

The cross-validation approach provides accurate predictions 
of unknown values of the study area which is used to evaluate 
semi-variogram models for soil properties. The RMSSE (Root 
Mean Square Standardized Error) analyzed for all the 
properties was close to one, indicating a good prediction. The 
ASE and RMSE values are almost nearer with fewer 
differences in deciding a good fit agreement for all the 
properties. By executing these best-fit models and the 
corresponding semi-variogram parameters, the spatial 
variability maps were rendered for each soil property (Figures 1-9 
and Table 5) [13].

Attribute Model Data
transformation

Partial 
sill (C)

Sill (C0+C) Range (m) DSD (%) RMSE RMSSE ASE Spatial
dependence

pH Exponential Log 0.004 0.002 0.006 0.156 73.3 0.56 1 0.56 Moderate

EC Exponential None 0.002 0.001 0.003 0.07 72.4 0.05 0.99 0.05 Moderate

OC Circular None 1.005 0.507 1.511 0.062 66.5 1.22 1.05 1.15 Moderate

Free
CaCO3

Exponential None 0 2.217 2.217 0.031 0 1.51 1.02 1.45 Strong

Fe Spherical None 2.99 0.017 3.007 0.256 99.4 1.74 1 1.74 Weak

Cu Gaussian None 0.153 0.003 0.156 0.155 97.9 0.4 1.01 1.74 Weak

Zn Circular None 0.152 0.02 0.172 0.115 88.4 0.41 1 0.41 Weak

Mn Spherical None 0.874 0.183 1.057 0.082 82.7 0.99 0.99 1.01 Weak
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DISCUSSION

Geostatistical analysis

The semi variogram analysis and cross-validation results for the 
soil properties are presented in Table 5. The best fit model for
each property was exponential for pH, EC, Free CaCO3 and B, 
Circular model for OC and Zn, spherical for Fe and Mn, and 
the Gaussian model fitted well for Cu. Each semi-variogram 
model describes the variation of the soil property. Comparably, 
the same results were reported for Ph, EC, and Cu. Logarithmic 
transformation was performed to stabilize the not normally 
distributed data sets of pH. The nugget, sill, and range decide 
the semi-variogram construction. The nugget effect determines 
the continuity at close distances and the highest value registered 
for Fe (2.990) and OC (1.005) relative to other soil properties. 
Apparently, the highest nugget value might be due to high soil 
heterogeneity resulting in the large spatial variability of the 
nutrients. In the line with the present findings, the soil 
properties. The lowest nugget value (0.000) was recorded for free
CaCO3 and B. The value of partial sill and sill vary from 
0.001-2.217 and 0.003-0.007 respectively. The range value noted 
for the soil property varies from 0.031 m-0.256 m. From this, it 
is well known that the higher the range values the more soil 
uniformity within its own scale. These results conformity with 
the findings [11].

Table 5: Semi-variogram parameters of soil property.

Nugget 
(C0) 



B Exponential None 0 0.017 0.017 0.036 0 0.12 0.99 0.12 Strong

Figure 1: Semi-variograms of soil properties with the 
lines indicating a best fit model of pH.

Figure 2: Semi-variograms of soil properties with the 
lines indicating a best fit model of EC.

 Figure 3: Semi-variograms of soil properties with 
the lines indicating a best fit model of organic carbon.

Figure 4: Semi-variograms of soil properties with the 
lines indicating a best fit model free CaCO3.

Figure 5: Semi-variograms of soil properties with the lines 
indicating a best fit model of available Fe.

Figure 6: Semi-variograms of soil properties with the lines 
indicating a best fit model of available Cu.
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Figure 7: Semi-variograms of soil properties with the lines 
indicating a best fit model of available Zn.



Figure 8: Semi-variograms of soil properties with the 
lines indicating a best fit model of available Mn.

Figure 9: Semi-variograms of soil properties with the 
lines indicating a best fit model of available B.

available Zn ranges from 0.75 mg kg-1-2.50 mg kg-1 was 
observed and the majority (50.2%) of the area falls under 
deficient status. Some parts of the soils were slightly alkaline
and hold an appreciable amount of CaCO3 that probably lead 
to the precipitation of Zn as hydroxides and carbonates. The 
classes of hot water-soluble B displayed in the kriged map 
i.e., 0.04 mg kg-1-0.32 mg kg-1, 0.33 mg kg-1-0.54 mg kg-1, and
0.55 mg kg-1-0.70 mg kg-1. Hot water-soluble B was acutely
deficient in 83.2% of the area and moderate to sufficient in
14.5% of the area. Incessant mining without boron fertilization
and abate or no application of organic manures. High free
calcium carbonate obviously could result in calcium
octaborates formation whose solubility is very less
(Ksp=0.000012@ 25°C-35°C) and adsorption of boron on
clay minerals and fixation via, ligand exchange might be the
reason for lower availability of B and higher concentration of
boron status due to B enriched parent material. About
44.5%, 24.5%, and 25% of the area had available Mn in
deficient, moderate, and sufficient ranges respectively. The
kriged map of Mn revealed classes i.e., 1.0 mg kg-1-2.3 mg kg-1,
2.3 mg kg-1-3.6 mg kg-1 and 3.6 mg kg-1-4.6 mg kg-1. Native
parent material contributes to the sufficiency level of
manganese in soil and the prevailing soil condition
prevents Mn oxidation emphasized by Sudhalakshmi. All these
variations in soil properties are primarily because of
physiography, land use pattern, and soil crop management
practices (Figures 10-18) [15].

Figure 10: Spatial variability maps of soil attributes of soil pH.
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Spatial variability of soil properties

From the Figure 2, the pH of the study area ranges from ≥ 
6.5-7.0 (19.3% of the area), 7.1-8.0 (48.2% of area), and 8.1-8.5 
(31% of area) which is categorized into neutral to slightly 
alkaline. Electrical conductivity ranges from 0.32-0.40 (23% of 
area), 0.27-0.32 (34% of area), and 0.18-0.27 (43%) which 
simplifies the non-saline soil. This may be due to management 
practices and inherent soil properties. Soil Organic Carbon 
(SOC) plays a pivotal role in improving soil properties. SOC 
status ranges from 3.1-4.6 (39.5% of area), 4.7-5.9 (30% of area), 
and 6.0-7.8 (28.5% of area) g kg-1 of SOC. All soils were low to 
medium in status which may be due to the hyperthermic 
temperature regime that causes an exponential rate of 
decomposition which leads to extremely high oxidizing 
conditions and another reason might be the reduced application 
of organic matter [14]. As per FAO classification, the status of 
free calcium carbonate was categorized into non-calcareous 
(<5%), slightly calcareous (5%-15%), and highly calcareous 
(>15%). From this, it is well known that the study area was non-
calcareous (0.3%-4.9%) in 88.7% of the area and medium (≥ 
4.9%-5.9%) in 10.8%  of the area. Similar findings also reported
in Madurai district with moderate levels of CaCO3 i.e., 5%-10%. 
The spatial distribution of micronutrients was categorized as 
deficient, moderate, and sufficient. The kriged map of Fe 
exhibited values ranging from 2.20 mg kg-1-4.0 mg kg-1(55% of 
area), 4.1 mg kg-1-6.0 mg kg-1 (22.5% of the area), and 6.1 mg 
kg-1-8.6 mg kg-1 (20.2% of area). The critical limit of Fe is 3.60 
mg kg-1 below which it is considered deficient. The highest 
value of Fe (>8.0) could be due to the acidic parent materials. 
The Cu status was deficient in 52.2% of the area, moderate in 
40.5% of the area, and sufficient in 7% of the area. The

J Geol Geophy, Vol.12 Iss.4 No:10001091 8



Figure 11: Spatial variability maps of soil attributes of EC.

Figure 12: Spatial variability maps of soil attributes of SOC.

Figure 15: Spatial variability maps of soil attributes of Cu.
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Figure 13: Spatial variability maps of soil attributes of Free 
CaCO3.

Figure 14: Spatial variability maps of soil attributes of Fe.



Figure 16: Spatial variability maps of soil attributes of Cu.

Figure 17: Spatial variability maps of soil attributes of Zn.

Figure 18: Spatial variability maps of soil attributes of B.

CONCLUSION
In this study, spatial variability of soil properties was determined
through semi-variogram analysis and interpolated by using the
best fit geostatistical models. Except for free CaCO3 and hot
water-soluble B, all other parameters show weak to moderate
spatial dependence. The final kriged prediction map decodes
micronutrient deficiency in the majority of the study area which
shows the effectiveness of GIS and geostatistical techniques in
the exegesis of soil nutrients and development of spatial
heterogeneity maps. Soils that have low fertility status could be
improved through organic matter addition, the growing of green
manure crops, application of chelated micronutrients, thereby
enhancing soil health and productivity. The spatial distribution
of soil nutrients assessment can be employed effectually for site-
specific micronutrient management, and bettering fertilizer use
efficiency.
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