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Introduction
AdSiF can be defined in general terms as a declarative scripting 

language. The structure of AdSiF is a combination of multi programming 
paradigm and state-oriented programming (Hocaoglu, 2005). The 
structural integration of Object-oriented programming (OOP), logic 
programming, Agent-based programming, and Aspect-oriented 
paradigms define ontological aspect of AdSiF. The paradigms covered 
by AdSiF as well as reusability, interoperable and flexibility properties 
are in accordance with the world view. The integration of each paradigm 
with its world view provides a significant infrastructure for agent-based 
simulation modeling. This approach ensures that the application will be 
able to responsive with the characteristic of behavior planning and has 
autonomous and anthropomorphic ability, at the same time; simulation 
models will be more social, flexible and interoperable. Due to fact that 
the models reach available information in their environment and make 
reasoning based on collected information are two of main advantages 
of logic programming paradigm. Hence, it provides a Dual-world 
representation for simulation models.

In this study, the AdSiF solution approach of aspect based 
programming paradigm is handled. Then, the conceptual model of 
solution and its contributions to the modeling techniques are discussed 
and exemplified. Thereinafter, the background information about 
aspect-oriented programming paradigm is explained comprehensively. 
In section 3, the solution of aspect-oriented programming paradigm, in 
section 4, a case study in the field of simulation will be provided. Lastly, 
the benefits of AdSiF aspect-oriented programming are dealt with in 
the conclusion part.

Motivation

The motivations of the study are summarized under three 
categories. These are 1) to give a programming approach based on agent 
programming to aspect oriented programming, 2) to propose a solution 
for simulation time management modeled as an aspect and not coded 
into simulation kernel to make simulation execution algorithms plug-
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Abstract
While object-oriented programming paradigm gives a vertical software design, aspect orientation enhances this 

vertically deep design by horizontal association. An agent based solution is offered for aspect-oriented programming 
paradigm in agent and simulation development. Agent driven simulation framework (AdSiF) is technological background 
of the study. AdSiF provides a declarative scripting agent programming language and it combines object oriented 
programming, logic programming, and agent based programming in state oriented programming paradigm as a 
surrounding paradigm. State-oriented programming paradigm is at the background of script and it allows programming 
by extended state charts. In this paper, the solution given by AdSiF for aspect-oriented programming paradigm that 
draws a solution background related with scattered codes, scattered requirements and tangled requirements is 
examined. It is explained how to distribute states and behaviors to satisfy scattered requirements, to behaviors and 
behavior lists, respectively and how behavior phase transitions are used to activate specific behaviors and behavior 
lists (a group of behaviors) to satisfy a set of requirements and to show different behavioral aspects of an agent and/
or a simulation entity. The solution also provides a solution by shifting modeling aspects conditionally in run time 
for conceptually different modeling requirements as well as tangled requirements. From this respect, the solution 
carries aspect oriented programming from design time to execution time and provides a dynamically manageable, 
flexible, loosely coupled and high coherent simulation and agent design. Using dynamic aspect management, parallel 
simulation synchronization algorithms are modeled as behaviors and each of them is grouped as an aspect and a rule 
based reasoning mechanism is developed to shift between algorithms depending on control criteria.

play loosely-coupled software components, 3) to manage simulation 
time synchronization in parallel/distributed simulation as a behavioral 
aspects. A time synchronization behavioral aspect consists of a set of 
behavior that manages time synchronization among simulation entities, 
time management, and event management. 

Definitions

State: A state is defined as a definite mode in which a simulation 
model/an agent is. States are the most atomic element in agent and 
simulation model development in AdSiF. A state has a set of phases 
named as entry phase, exit phase, and external transition phase. A 
function is assigned to each phase and it is called if the state is in the 
related phases. A state may have, instead of sub-states, temporally 
related behaviors. A state sends event attached to it in exit phase and 
it is possible to make a state connected with any other behaviors based 
on its phases. This allows a state to activate, cancel, suspend, and/or 
reactivate other behaviors in the phase they are connected and this is 
named as temporal relation.

Behavior: A behavior is constituted by a series of states, temporal 
relations, drive conditions, a guard constraint, trigger event-entry state 
couples, phase functions, drive conditions, and events attached. A 
behavior is defied so that it success a specific goal or gives a meaningful 
result. For example, if a “step” is defined as a state, “walking” is defined 
as a behavior and it is constituted by the state “step”. 

Behavior list: A behavior list consists of a set of behavior. A 
simulation model or an agent may have more than one behavior list but 
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with reusability, modularity and extendibility metrics. A considerable 
amount of literature has been already published on modularity and 
much more information has become available to modularity strengthen 
[16].

In the application of safety and mission critical system includes 
non-functional requirements like error tolerance, tangled and scattered 
non-functional requirements are provided by AOP design pattern. 
These patterns are improved for error detection, error management, 
recovery mechanism and leakage controls in safety systems [17]. 

The essential approach in use of AOP in AdSiF is accepted as 
a model integrated computing (MIC) solution platform [18,19]. 
Generally speaking, in model integrated computing environment, the 
main concern is model and a software system is seen as a collection 
of models at different levels of abstraction. Every collection represents 
a different perspective of the system and from this perspective, each 
engineering task is considered to be the description of a model [20].

AdSiF Aspect Based Programming Solution
In the AdSiF modeling approach, a model contains all modeling 

perspectives and each of the different modeling perspective is 
considered as a behavior category. All the behaviors that an agent and/
or a simulation model have are grouped under logically separated 
categories [21]. A category consists of semantically close behaviors. 
For example, behaviors related with moving capability for a human 
model are collected in a specific behavior category by separating them 
other behaviors such as capabilities of cooking, reading, and writing. 
Separating semantically different behaviors from each other into 
categories gives modelers the ability to manage models according to 
behavioral aspects. Furthermore, AdSiF provides a solution for the 
scattering requirements by scattering behaviors or states which meet 
the requirements to behavior and behavior sets. Aspect J that has similar 
perspective executes point of injections in the time of synchronization 
status operating, internal state transition, behavior triggering and 
event sending. This provides a solution with low cohesion and high 
consistency [22]. The thing done in the solution approach is to separate 
different behavioral aspects into behavior lists (categories) instead of 
modeling each as a single model. A behavior list can be defined as a 
set of behaviors which provides a particular modeling perspective and 
behavior lists are arranged to meet requirements that they aim to satisfy. 
A model has at least one active behavior list and the number of active 
list is not limited by one. A behavior list is activated or deactivated 
depending on the conditions that are attached to them. Activation of a 
behavior list containing behaviors that provide a group of requirements 
depends on the satisfaction of the relevant activation condition. 
Similarly, deactivating a behavior list means there is no need for the 
behaviors any longer that the list contains or necessary conditions to 
execute the behaviors are not satisfied. To satisfy structurally different 
requirements is achieved by keeping the behavior lists that satisfy the 
related requirements active. 

Aspect separation carries out significant flexibility to manage 
cohesion and contradiction. Keeping mutually exclusive behaviors from 
each other (i.e., that causes conflict from time to time) in separated 
behavior lists, and being able to use the behaviors inherited from root 
(parent) models in derived models provide high flexibility.

Behavior lists and inheritance 

In this section, how a behavior list is extended by any other 
behavior lists and how scattered and tangled requirements are satisfied 
are shown. 

at least, they must have one behavior list active. It is possible to execute 
behaviors that are in an active behavior list. 

Aspect Oriented Programming
Aspect-oriented programming (AOP) aims to categorize different 

design objectives and to structure modular software. The essential 
interests of aspect-oriented programming are especially scattered 
requirements and tangled requirements. Scattered requirements can 
be accepted as a significant obstacle to modularity. In the approach 
simulation environment, a model is interpreted that it is able to 
categorize anticipated behaviors by modeler for different conceptual 
world and resolution [1-3]. 

Aspect-oriented programing solution is considered as a solution 
which starts from requirement phase and consists of coding and 
modeling level includes analysis and architecture design. The AOP 
does not introduce a completely new design process but just a new 
means to enhance design [4]. As procedural programming brought 
functional abstraction and object oriented programming gave birth to 
object abstraction, aspect-oriented programming introduces concern 
abstraction [4,5]. 

Aspect-oriented programming has been seen as an important 
support in software metrics especially in terms of modularity, simplicity 
and readability [6]. There has been relatively limited number of studies 
available in the literature on computational aspect of AOP parameters 
[7]. Kersten and Murphy have showed in NPY applications the success 
of AOP with the practical implementations and developed codes of 
practice [8].

In the literature, Aspect J-Like and Hyper J-Like solutions are 
commonly preferred. The essence of Aspect J-Like approach is defining 
point cuts. In the Hyper J-Like approach, the combining of state graphs 
belongs to independently developed models are provided and it requires 
refactoring differently from Aspect J-Like. In the article of Walker et al., 
an initial view of usability metrics for AOP has been provided [9]. Soares 
et al. have indicated the high performance of Aspect J applications 
particularly in web-based applications. The most remarkable study 
among other researches is carried out by Garcia A et al. [10], due to fact 
that it is directly related to our application area, AdSiF, which is agent-
based application and provides agent programming language. They 
provide a computational assessment between template-based approach 
and Aspect-based programming for multi-agent programming systems. 
In this study, it is also concluded that agents provide an advanced 
modularity for cross cutting requirements. 

Among previous studies on the integration of OOP design 
template-based software development and AOP, Vaira and Čaplinskas 
concentrate on generating design templates independent of the software 
paradigm. Additionally, they claim that design templates which can 
be applied to different paradigms are also available [11]. Tsang et al. 
have evaluated the interest separation performance of AOP. In the 
study, CK metrics [12] is utilized and the comparison of OOP and real 
time systems of AOP is clarified. In the result of this investigation, a 
developed modularity and a reduction in cohesion are observed [13]. 
The work on cohesion measurement properly in AOP is undertaken 
by Kumar et al. [14] and they provide a generic framework to define 
cohesion.

Not only studies on generating abstracted designs and separation 
of design aspects created by AOP but also some studies especially 
pointing to solve semantic confusion between the designs of aspects 
are carried out recently [15]. Also, it is investigated from article that the 
coordination and cohesion of design aspects can be improved in parallel 
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As shown in Figure 1 FsaListBase is defined as public and it is 
extended by FsaList.0 and FsaList.1 It has two behaviors namely, 
Behavior.C and Behavior.D which is defined as private and public, 
respectively. A Public behavior is created by derived behaviors using 
inheritance and considered as a behavior which is able to perform 
functions executed in both two behavior lists (parent and derived). In 
the Figure 2, there are two separate behavior lists named as FsaList.0 
and FsaList.1, which consist of different behavior sets belonging 
different model aspects. Logical expressions called Act.1 and Deact.1 
enable FsaList.0 behavior list and passivates, respectively, at any time 
they are satisfied in run time. FsaList.0 is set as startup behavior list of 
the relevant model and its initial behavior is set as Behavior.5.

Managing scattered requirement

AdSiF provides a set of solutions to satisfy scattered requirements 
based on concepts of states, behaviors, and behavior lists. These are:

·	 State distribution: A state invokes a set of functions that 
satisfy a scattered requirement in its related phases. It is placed to the 
behaviors so that the behaviors activate the state to satisfy a requirement 
such as logging operations. 

·	 Behavior and state distribution: A whole behavior that 
satisfies a set of specific scattered requirements is put into behavior 
lists. The behavior is activated anytime that is needed by an activation 
condition or an event received. 

·	 Temporal relation: The usage given below is based on a 
behavior that satisfies a scattered requirement set. In his usage, a behavior 
directly invokes the behavior that satisfies a scattered requirement set, 
in the phase, the behavior being activated, attached. As seen in Figure 3, 
Behavior.0 activates Behavior.1 in its State.0 entry phase. 

·	 Behavior conditional phase transition: It is possible to 
determine phase transition condition including activation condition of 
a behavior depending any other behavior state transition. In Figure 2, it 
is seen that a set of phase transition conditions is attached to the behavior 
Fsa_logging. The first and the second conditions mean if any behavior 
enters a state transition named State_0 (state enter phase transition) or 
exits from State_1 (exit phase), the behavior Fsa_Logging is activated. 
It is assumed the behavior Fsa_Logging is a behavior that satisfies a set 
of scattered (crosscutting concern) requirements. Similarly, as seen 
from the third condition, if the state Step, which belongs to Fsa_Step, 
the behavior Fsa_Logging is activated (driveType) after a duration 
determined by attribute0, if and only if the condition given in the guard 
block (if Func_D returns true) is satisfied. The fifth condition means if the 
behavior Fsa_Analyze is finished the behavior Fsa_Logging is activated. 
It is also possible to declare a guard for all declarations as is done in the 
third declaration. As an opposite approach, in Figure 3, if the behavior 
Fsa_A enters State_1, the behavior Fsa_B is activated. The usage allows 
modelers make more specific definitions. The opportunities make 
aspect programming a declaration issue, not a function programming 
issue. The main point is that scattered requirements are met by behaviors 
placed into behavior lists or states placed into behaviors that invoke 
functions that satisfy the requirements. The behaviors have their own 
semantics that are being able to be overridden in any simulation entity/
agent situated in inheritance hierarchy and also behavior lists have 
activation and deactivation conditions providing immediate reactions 
to the requirements arising in run time. Being able to satisfy a scattered 
requirement by a set of function wrapped by a state or a behavior 
provides designers a state and behavior phase based function execution. 
The designer may define a specific state transition phase to execute a set 
of function and he/she wants it to execute any time the phase transition 

happened. The conditional phase transition does not intervene model 
behaviors and functions because it is an indirect invocation.

To be able to see in more detail, we can examine the example given 
in Figure 2. As seen in the figure, the function Func.0 is called by State.C 
and the state is distributed the behavior in behavior lists. Similar way, 
the behavior Behavior.1, which satisfies a specific requirement or 
requirements, is distributed into behavior lists and it is connected to a 
specific phase of behavior or states or an activation condition defined 
for the behavior. This ensures to activate the behavior a set of certain 
situations defined by modelers.

Behavior.1 and State.C in FsaList.0 are activated by internal state 
transition, whereas Behavior.1 that is triggered by an event in FsaList.1 
and State.C processes a set of functions. By this design, software design 
deepening in vertical axis is extended and associated with the horizontal 
axis (Figure 4).

In addition to the solution, if a model is composed with other 
models as composition or aggregation, the compound model 
undertakes time and event management of sub-models. In the design 
presented in Figure 5, a composition relationship between Model.A 
and SubModel.0 is defined. Model.A is associated Submodel.1 and 
SubModel.2 with aggregation type of relation. Model.A is incharge of 
time management and event handling (distributing event to the sub 
models, not processing them) of the models it is aggregated. When it is 
considered that each combined model manages different aspects, as is 
done in MIC. In this sense, distributing aspects into models is carried 
out by a higher abstracted model.

Each behavior list is designed to meet a set of requirements. As 
mentioned earlier, it is possible and offered to design a behavior list 
with a well-defined purpose aiming to satisfy a bunch of requirements 
connected each other. Since they may have activation and deactivation 
conditions, it is possible to react any requirements at the time they arise. 
This is also named as dynamic aspect management. 

Dynamic aspect management

Dynamic aspect management is related with being able to activate 

Figure 1: Structure of behavior list.

Figure 2: Indirect phase transition.
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Figure 3: Direct activation with temporal relation.

Figure 4: Aspect management with behavior list.

Figure 5: Compound models.

or deactivate behavior categories in run time depending on constraints 
associated with them as an activation condition and deactivation 
condition, respectively. Since each behavior list or a set of lists represent 
an aspect, an activated behavior list transits to the aspect that suitable 
for the state that is defined by its activation condition. An activated 
aspect dynamically loads the function libraries that consist of functions 
to be reached by the behaviors. A deactivation condition also works as 
similar to an activation condition and it deactivates the aspects that are 
not suitable for conditions or the states that the entity is in. 

Aspect management with relation 

A relation is defined between two entities and it has two sides named 
left side and right side. Both sides may have more than one entity. A 
relation is defined depending on application domain conceptual model. 
For example, the sentence “A commander commands the soldiers” 
consists of a relation such as “commanding” between commander and 
soldiers or “An F16 carries Type-A missiles” defines a relation between 
F16 and type-A missiles. It is possible to make definitions more general 
based on their inheritance structure. A relation defined over root level 
entities is valid for the derived ones. A relation serves basically for two 
tasks. 

1.	 Messaging: The main point in messaging, to provide a 
mechanism for the entity that sends a message without necessity to know 
exactly what entity to be sent. Let us assume there is a relation between 
two entities named Rel. The entity sending a message says “I am sending 

this message (event) to the entity that has a relation named Rel with me 
and located on left or right side of the relation” instead of saying “I am 
sending this message (event) to EntityA”. This provides an opportunity 
to be able to change the entity that receives message without making 
any change on the entity that sends the message. In other words, the 
relations establish a loosely coupled interaction between entities. 

2.	 Behavior management: It is possible to declare a set of 
behavior lists and actions to activate, any time a relation is established 
between two entities or detached. The declarations are done for both 
sides and consist of what behavior category or categories are activated 
and what actions are executed. Establishing a relation may be seen as an 
activation condition for an aspect and detaching is vice versa. 

Especially, behavior management with relation concept is strictly 
related with dynamic aspect management, since it can be used as an 
aspect activation and deactivation constraints. 

Aspects and Simulation Concerns 
The simulation concerns that are separated using aspect oriented 

programming approach are examined under two categories. The 
first category is named as simulation execution and it consists 
of synchronization, event scheduling policies, optimization, and 
distribution [4]. The second one is about business layer. Business 
layer means what we expect from simulation entities do. While the 
simulation layer concerns deal with execution of simulation itself 
and it is independent from any implementation domain, the business 
layer is strictly related with implementation domain and the focus is to 
manage tangled and cross-cutting requirements by arranging behaviors 
so that entities have behavior lists that consist of behaviors satisfying a 
group of requirements and behaviors and/or states that satisfy scattered 
requirements such as logging, security, graphical representations are 
scattered among different behavior categories. 

Simulation execution concerns 

The concerns taken into consideration under this category are 
established by many simulation tools more direct way and it is mostly 
not possible to change their solution approach. In this study, the 
main motivation is to make event scheduling policy, synchronization 
algorithms (parallel simulation execution), and distributed execution 
changeable, even in run-time. The main idea is to switch from an 
aspect to another depending on the condition the entity is in. An aspect 
may consist of a set of behavior either belonging domain (business) 
or belonging simulation management. Since the aspects that consist 
of managerial behaviors have higher importance, the behaviors that 
they have are executed before the domain behaviors. That means the 
simulation management functions are run before the domain functions. 
If a modeler desires to change the simulation management algorithm, 
he/she defines activation and deactivation conditions for the behavior 
lists that each consist of a specific simulation management algorithm 
such as optimistic simulation algorithm, conservative algorithms etc. 
The behavior list with satisfied activation condition is activated and 
it undertakes the simulation management. The fact that simulation 
management functions such as collecting and distributing events, 
requesting interval state transition times, requesting temporal relation 
time between behaviors are common function and a state surrounding a 
set of functions are used in different behaviors representing simulation 
management and they are located in different behavior lists. To be able to 
design our own time warp algorithm, a set of behaviors, which execute 
the algorithm, are designed and they are put into a behavior list with an 
activation condition and deactivation condition. For each management 
algorithm, a behavior list is designed and they are grouped as an aspect. 
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Time management and synchronization: Time warp mainly focuses 
on time management and event handling to be able to satisfy local 
causality constraints. For parallel/distributed simulation, it guaranties 
that a parallel/distributed simulation execution gives the same result 
with a local execution. For both local and parallel/distributed execution, 
the algorithms for time management and event handling are designed 
as behaviors. Because of their high importance, the behaviors are 
processed before the domain behaviors. The management algorithms 
are collected in separated behavior lists. The management behaviors 
are interpreted by core script engine as is done for all behaviors. 
Modelers may design different time management, event handling and 
synchronization algorithms defining their algorithms as behaviors.

In Figure 6, a time advance based time management algorithm is 
modeled as a behavioral aspect. Atomic actions for time management 
such as collecting time requirements (by the function transitiontime), 
collecting and distributing events (ScheduledEventTime), handling 
temporally related behaviors (TemporalRelationTime) (activating, 
cancelling, suspending, or reactivation a behavior from a state or any 
other behavior), and determining event processing orders are called 
from management behavior states for a local simulation execution. 
Until all time requirements are determined and the minimum time 
selected, simulation time advance is not allowed (SetAdvanceTime). 
This is achieved by the synchronization object Sync. The events to 
be processed are sorted according to their importance criteria and 
importance parameter is calculated by a function declared by modelers. 
While the algorithm is based on scheduled events and state transition 
times (including temporal relations), it is possible to design a set of 
behaviors as another aspect based on next event time. In this case, 
next time to advance is determined according to both the next event 
time stamp to be processed and state transition times. For next event 
scheduling, optimistic and conservative approaches are applicable for 
local executions and distributed simulation. For parallel/distributed 
simulation, time warp implementation is shown here (Figure 7) for roll 
back mechanism [23] as an implementation of optimistic approach. 
Rollback mechanism, as seen in Figure 7, is given below:

·	 Check event to be processed and choice the event with the 
closest time stamp to the simulation clock (Fsa_TimeAdvance “Check 
Next Event” state),

·	 Is the event time is earlier than the simulation clock (Activat
e:In:Guard(SimulationClock>EventTimeLabel)?

·	 If yes, then roll back the simulation to an earlier time point 
than the event time (∆e) (Fsa_RollBack), 

·	 If no, Check internal transition time (∆int) (Fsa_
StateTransitionTime) and temporal relation time (∆tr) (Fsa_
TemporalRelationTime),

·	 Find minimum time min={∆int, ∆e, ∆tr}, 

·	 Grant minimum time (State “Next Time”),

·	 If the current simulation time is equal to the event time, then 
consume event,

·	 Save simulation state vector,

·	 Go to the first step.

It is possible to design a behavioral model of more other time 
wrap algorithms such as Null message passing, centralized barrier, tree 
barrier, butterfly barrier [23], etc. It is contended giving an example to 
show how a time warp algorithm is modeled as state diagram and how 
it is ensured it manages simulation execution. 

Figure 6: State time advance.

Figure 7: Roll back mechanism.

Business concerns

At business layer, depending on simulation conceptual mission 
model, simulation entities categorize their behaviors depending 
on requirements and they activate or deactivate according to the 
constraints attached to each. Activation and deactivation constraints 
are determined based on environment conditions and state of entities. 
Business layer concerns are placed at the top layer of the simulation 
concerns and the behavior categories and behaviors they consist of are 
executed after behaviors and behavior lists that of simulation concerns 
because of their low precedency level comparing with simulation 
concerns. Examples for business layer aspect definition are given in 
Section 7.1. 

Application Categories for Simulation
Simulation applications are categorized under two main headlines 

as analysis and training. In analysis-purposed simulation application, 
modelers rarely need real-time and user-interactive operations. The 
main expectations are having as fast as possible execution and having 
logging operations. Access to the highest possible speed, taking 
simulation logs at desired level of detail, and under the required 
conditions/time are a significant requirement set for analysis-purposed 
simulations.

In training-purposed simulation applications, being real-time, 
graphical user interface, and user-interaction are often encountered 
as more important requirements. Although, engineering calculations 
performed basically are the same way, varying requirements necessitate 
different functions for both categories. Solution in training-purposed 
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simulations, active behavior lists, categorically, consists of interface 
control utilities, and execution speed control whereas in analysis-
purposed simulations, high resolution logging behaviors and the 
behaviors related control of the highest possible execution speed 
are gathered in active behavior lists. Besides that, behaviors which 
are common to both cases and including engineering calculation 
algorithms are kept actively as a common behavior list.

Case studies

In this section, two illustrative example are given to show how 
different aspects are defined and implemented for an entity and how a 
relation to be used to change aspects. 

Radar simulation example: The application is related to searching 
and tracking behaviors in a radar simulation model. Instead of 
developing two radar models as search radar and a track radar separately, 
one radar model, which is capable of performing two different modes 
named as search and tracking, is developed. Essential functions such 
as detection calculation, rotational movement in a given angle and 
direction are used at both operating modes. That means the difference 
between two radar modes is realized in behavior design which manages 
the functions. In tracking mode, a radar rotation behavior designed 
to follow a specific target has taken place in the tracking behavior list, 
while in search mod; the behavior is overridden in the search behavior 
list as a consistently rotational movement behavior.

In Figure 8a, for two radar behaviors, the behaviors of being active 
and analysis are root model behaviors. The rotational movements make 
two radar types different from each other as seen in Figure 8b. In two 
behavior lists, shown in the figure have presented the logging operation 
in behavior form as a state definition of behaviors with alternative 
design. In both modes, the radar processes the event detection and 
gives detected or not detected decision (Figure 8a) because the behavior 
is common. Search radar behavior is seen in Figure 8b. It makes angular 
rotation in defined time steps with ComputeDuration time calculator. 
The search behavior is carried out the rotation between defined angles 
and any time the limits are exceeded, the turn direction is changed by 
the function ChangeDirection. In track radar behavior, the rotation is 
triggered by the event turn. The event gives a direction to turn and it 
searches consistently in a given interval keeping the direction given at 
the center. The turn duration is calculated by the function StateDuration. 
Besides, logging process is being proceeded as a behavior triggered 
by the tracking behavior. As seen in the example, logging operation 
as a cross cutting function is achieved by both distributing a state 
surrounding the function into behaviors and activating as a separate 
behavior that consists of the function. 

Command and control example: A Command and Control 
(C2) model send weapon target pairs to tactical picture model. 
The commander is put under command of another commander by 
constituting a relation between two commanders. It is named as 
“Commands” relation and it can be used between two commanders. 
“Commands” relation is designed between two commanders. The first 
commander is a commander being under command and the other 
commands. Being under command reports detections that it receives 
from his/her sensors and the commander that commands collects all 
the detection coming from the commanders that he/she commands, 
makes a decision, and gives orders to the commanders or one of the 
commanders what to do. Reporting detection and waiting for an 
order is defined as a specific behavior category and it is activated by 
the commander being under command that is located on right side of 
the relation (Commander-R-0 and Commander-R-1). The behaviors 
consisting of whole commander roles such as engagement, target 

evaluation are undertaken by the commander that commands and it is 
located on left side of the relation Commands. While the commander 
being commanded to make its behavior list shorten as enough as to send 
detection and to implement what the order wants it to do deactivates 
rest of the behavior lists. The commanding commander undertakes all 
behaviors necessary to manage a set of sub-commanders and to achieve 
whole requirements of a commander. 

From this point of view, in a scenario, different instances of the same 
entity may have different behavior categories, in other words, different 
behavioral semantics. In Figure 9, a C2 structure is established between 
three commander entities. Commander-C commands Commander-R-0 
and Commander-R-1. The relation Commands is defined for this 
purpose and the commander that commands is located on left side of 
the relation and also a relation between Commander-C and Tactical 
Picture entity is established named as “Sends Information”. Using the 
relation, commander sends detection collected from the sensors to 
tactical picture entity to make them depicted on a map (Figure 9).

As seen in Figure 10, Commander-C entity activates the behavior 
list named as “DepictDetectionsOnMap” to send detection information 
to the tactical picture model entity to depict them on a map. The 
behavior list consists of a set of behaviors for this purpose. Similar 
way, a commander that has a relation named as “Commands” and it is 
located on left side of the relation, activates the behavior list named as 
“CentralC2” that consists of behaviors that are in charge of command 
and control functions. When the relation is broken, the behavior 
list named as “CommandeFsaList” is activated and the function Af_
SetReportAddress is executed. Any time establishing and breaking the 
relation activates related behavior lists and executes related functions.

Notice that the relations, behaviors, and functions are defined by 
modelers they are not build-in structures. The usage allows modelers 
to manage dynamically a set of behaviors and functions satisfying 
dynamically arisen requirements and to handle changing roles in run 
time.

Conclusion
Combining AdSiF aspect-oriented programming with Model 

Driven Architecture (MDA)/Model Driven Development (MDD) 
gives a quite powerful and flexible modeling platform. Aspect-oriented 
programming approach provides a flexible solution by using behaviors 
and behavior lists of AdSiF as a design pattern to meet scattered and 
tangled requirements. With the help of this approach, it is possible 
to improve simulation and agent modeling whose maintenance and 
development are quite hard by preventing scattered code of atomic 
functions which cannot establish any semantic link between each 
other. AdSiF can be seen as a flexible and user friendly solution based 
on AOP in terms of providing scattered requirement (cross cutting 
requirements) with scripting programming language, allocating state 

Figure 8: Behavior hierarchy. (a) Root model behavior; (b) Search and track 
behaviors
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Figure 9: Relations between entities.

Figure 10: Behavior management by relations.

definitions which covers requirement function to behaviors and using 
independent behavior forms in behavior lists. Functional extensions 
includes activation/deactivation run time of a behavior list and software 
plugin run time provide a considerable flexibility in which aspect 
programming solution which is transformed design to simulation run 
time.

The solution gives more than one alternative solution to develop 
an aspect. These are distributing a state or a behavior that satisfies a 
scattered requirement or a set of requirement to behaviors and behavior 
lists, respectively and activating a scattered behavior by temporal 
relations, phase conditioned, or function conditioned. Indirect behavior 
activation (more generally behavior phase transition) because of its 
indirect invocation method, the solution does not intervene function 
source code and behaviors of simulation entities and/or agents, this 
support orthogonality criteria in software engineering. Any change on 
behaviors does not require changing source code or other behaviors. 

Introducing relation concept into agent and simulation world 
makes dynamically change behavioral aspect of the entity in run time 
possible. Any time a relation established and broken a set of functions 
and a set of behavior lists (consisting of different aspect properties) are 
activated and deactivated, respectively. An entity may establish and 
break many relations many times.

For distributed simulation, some of the time synchronization 
algorithms are modeled as behaviors. The behaviors are script 
declarations and they are interested by simulation/agent core engine. 
The layering and separating entity behaviors and allowing their 
execution depending on their priorities allow modelers to design their 
own simulation time management algorithm as a behavior set without 
making any change on interpreter core.
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