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Abstract

Adoptive transfer of antigen specific T-cells can lead to eradication of cancer and viral infections. The broad
application of this approach has further been hampered by the limited availability of adequate numbers of T-cells for
treatment in a timely manner. This has led to efforts for the development of efficient methods to generate large
numbers of T-cells with specificity for tumor or viral antigens that can be harnessed for use in cancer therapy.
Recent studies have demonstrated that during encounter with tumor antigen, the signals delivered to T-cells by
professional antigen-presenting cells can affect T-cell programming and their subsequent therapeutic efficacy. This
has stimulated efforts to develop artificial antigen-presenting cells that allow optimal control over the signals
provided to T-cells. In this review, we will discuss the cellular artificial antigen-presenting cell systems and their use
in T-cell adoptive immunotherapy for cancer and infections.
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Adoptive T-cell Therapy
Targeted eradication of cancers and viral infections can be achieved

with adoptive immunotherapy involving the infusion of T-cells
directed against viral or tumor antigens (Figure 1). Recent clinical
trials have shown that adoptive transfer of transplant donor derived
virus specific T-cells have the capacity to provide protection against,
and successfully eradicate EBV and CMV infections developing in
recipients of hematopoietic stem cell transplants [1-5]. More recently,
third party donor derived virus specific T-cells have also demonstrated
effective eradication of CMV, EBV and adenoviral infections in
recipients of hematopoietic stem cell transplants [6-8] and EBV
infections in solid organ transplants [6].

In the treatment of cancers, immunotherapy confers higher tumor
specific targeting than that afforded by conventional chemotherapy,
while avoiding the off-target toxicities. Both passive and active
immunity have been invoked to target and kill cancer cells. Passive
immunotherapy using monoclonal antibodies targeted to specific
cancer antigen overexpressed on tumor cells has demonstrated
beneficial effects in several malignancies. The classic examples include
anti-CD20 for lymphomas [9], and anti her-2 for breast cancer among
others [10]. Similarly, transmission of active immunity by adoptive
transfer of T-cells directed against specific antigens differentially
expressed by tumor cells (tumor associated antigens-TAA), has
emerged as an extremely promising alternative approach to the
treatment of several chemotherapy resistant malignancies.

Figure 1: Adoptive Immunotherapy – Schematic Representation.
This therapy involves the passive transfer of cellular immunity by
infusion of T-cells. The T-cells for infusion can be derived from a
healthy volunteer donor or from the patient themselves. In either
case, the T-cells are isolated either from peripheral blood or from
surgically removed tumor specimens containing infiltrating
lymphocytes (TILs), and then expanded in-vitro to enrich for T-
cells directed against specific antigens; viral or tumor antigens. In
certain protocols, T-cells isolated from peripheral blood can be
genetically modified to express chimeric antigen receptors which
redirect the T-cells to target specific antigens expressed on tumor
cells.

In its most primitive form, successful eradication of disease was
demonstrated with infusion of transplant donor derived unselected
lymphocytes in CML patients with relapsed disease after bone marrow
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transplant [11].Since then, this approach has been further exploited to
efficiently generate cytotoxic T-cells directed against specific tumor or
viral antigens for eradication of cancer and infections respectively.
Substantial efforts from several groups led to the development of
techniques for in-vitro stimulation and expansion of antigen-specific
cytotoxic T-cells, either derived from the patient or volunteer donors.
Initial studies, In infusion of in-vitro expanded autologous tumor
infiltrating lymphocytes (TILs) induced regressions of disease in
patients with melanoma, renal cell carcinoma and other tumors [12].
Subsequent studies demonstrated successful in-vitro expansion of T-
cells responsive to specific peptide determinants of tumor or viral
antigens using APCs loaded with peptides or cell lysates. Adoptive
transfer of T-cells sensitized against specific TAA such as gp100 and
MART-1 and NY-ESO-1 demonstrated clinically significant responses
in the treatment of melanoma and synovial sarcoma in selected
patients [13-16].

Despite its clinical successes, T-cell therapy has had its limitations in
the availability and generation of therapeutic T-cells for a larger group
of patients. in-vitro expansion of each of these types of T-cells on a

clinical scale providing adequate doses for effective treatment requires
the use of specific conditions and cytokines permitting such expansion.
Approaches aimed at reproducibly achieving such large scale
expansions have been developed in recent years. This review will focus
on cell based artificial antigen presenting systems (AAPC).

Fundamentals of T-cell Activation: The T-cell –APC
Interaction and Co-Stimulation

T-cells require several signals to become activated and perform their
function. The first signal imparted is when the T-cell receptor interacts
with the corresponding MHC on an APC. The next required signal is
that of co-stimulation, provided upon binding of the

TCR with the MHC-peptide complex, wherein molecules such as
CD80 or anti-CD28 expressed on the APCs bind to their ligands
expressed on T-cells (Figure 2). The last signal is conferred by
cytokines released by the T-cell and the APC that allow for growth and
expansion of the desired T-cells. These signals are typically provided by
antigen presenting cells such as a dendritic cell (DC).

Figure 2: The T-cell APC Interface. T-cells receive sequential signals to become functionally active. The engagement of the T-cell receptor with
the targeT-cell expressing the appropriate MHC-peptide complex serves as a priming signal for T-cells. Following this the T-cells require
specific signals at the T-cell APC interface to become functionally active and either lyse targeT-cells or serve as regulatory T-cells. The
molecules involved in these interactions; either co-stimulatory or inhibitory, are depicted in this figure.

Dendritic cells (DC) are professional antigen-presenting cells (APC)
that have an extraordinary capacity to stimulate naive T-cells and
initiate primary immune responses to pathogens. They are
continuously generated in the bone marrow and are widely distributed
as immature DC to both lymphoid and non-lymphoid tissues [17]. The
DC have not been assigned a definitive hematopoietic “lineage” since
there are no defining lineage-specific markers (likeTCR rearrangement
for T-cells). These cells uniquely arise through “convergent”

hematopoiesis, from progenitors at various stages of differentiation
ranging from the CD34+ hematopoietic progenitor cells (HPC)
[18,19], to terminally differentiated monocytes [20]. The definition of
DC therefore relies on a constellation of phenotypic and functional
characteristics including morphology, expression of surface markers,
cytokine/chemokines and transcription factors (e.g., RelB), and their
function. The signaling pathways contributing to DC differentiation
include PKC, MAP kinase, NFkB and relb. in-vitro, DC have been
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successfully derived using a combination of cytokines typically
including IL-3, SCF, Flt3L, IL-6, GMCSF, TNF-α, IL-4, and IL-1β.

DC can secrete specific cytokines, which endows them with the
ability to stimulate Th1, Th2 or Treg subtypes of T-cells upon TCR
engagement depending upon the cytokine conditions (Figure 3).

Figure 3: Subtypes of Dendritic Cells Affecting T- cell function.
Cytokine signals are critical in the generation and maturation of
DCs, which are the professional antigen presenting cells. Mature
DCs are endowed with optimal surface expression of MHC as well
as T-cell co-stimulatory molecules, and offer an optimal
environment to cytotoxic and helper Th1 type T-cell signaling and
expansion. DCs that are in a so-called ‘immature’ state, are unable
to stimulate T-cells due to the lack the requisite accessory signals for
T-cell activation, such as CD40, CD54 and CD86. These DCs play a
central role in the development of a T-cell repertoire that is
tolerized to self-antigens. This occurs in the thymus (central
tolerance) by deletion of developing T-cells, and in lymphoid organs
(peripheral tolerance) probably by the induction of anergy or
deletion of mature T-cells. DC function can also be modulated in
the presence of specific cytokines such as IL-10, TGFβ, and by
inhibition of NFkB signaling, again leading to induction of
tolerance. Therefore, the DC system that initiates immunity to
foreign antigens also appears to tolerize T-cells to self-antigens.

Limitations of DC for Clinical Application of Adoptive
T-cell therapy: Role for Artificial Presenting Cells
The limited availability of cells constitutes a serious obstacle to the

use of DC for vaccine therapies or for generating T-cells for adoptive

immunotherapy. DC generated for clinical use are derived from the
peripheral blood monocytes of patients or transplant donors. This
requires a large amount of blood or leukapheresis to be collected,
which is both expensive and time-consuming. In tumor bearing
patients, additional constraints with this approach are presented due to
the effects of chemotherapy leading to a decreased number of DCs in
the peripheral blood, as well as the suppressive cytokines released in
the tumor mileu which impair the function of the host DC [21]. The
differentiation and maturation of DC is inhibited by the soluble
immunosuppressive factors secreted by the tumors such as IL-10,
TGFβ, PGE2, and VEGF. These immature DC have abnormally low
expression of MHC-II and low or undetectable levels of costimulatory
molecules, rendering them incapable of processing and presenting
antigens, and therefore, unable to induce an effective immune response
against the tumor [22]. Certain tumors may further induce the
patients’ own APC to express other costimulatory molecules, like
B7.H1, that preferentially stimulate regulatory T-cells to suppress
immune responses [23].

To overcome these limitations, induced pluripotent stem (iPS) cells
have been explored as a source to derive DC (iPSDC). Tseng et al. and
Silk et al. demonstrated successful generation of fully human DC
derived from human iPS [24,25]. These iPSDC were also shown by Silk
et al. to efficiently cross present the TAA, Melan A to naïve CD8+ T-
cells when loaded exogenously with recombinant protein in-vitro,
stimulating a primary Melan A-specific immune response that could
be tracked using tetramer technology [24]. Although this approach
offers significant promise for tumor immunotherapy using vaccines, it
also necessitates the generation of iPSDC potentially for individual
patients. For adoptive immunotherapy applications, this again poses a
time constraint towards generating antigen specific T-cells.

An alternative and more practicable approach that has been
developed as a resource for antigen presentation are cells that are
genetically modified to express the desired T-cell co-stimulatory
molecules, human HLA alleles and /or cytokines. Such artificial
antigen presenting cells (AAPC) are able to provide the requirements
for adequate T-cell engagement, co-stimulation, as well as sustained
release of cytokines that allow for controlled T-cell expansion [26].
These cells are not subject to the constraints of time and limited
availability and can be stored in small aliquots for subsequent use in
generating T-cell lines from different donors, thus representing an off
the shelf reagent for immunotherapy applications (Table 1). Expression
of potent co-stimulatory signals on these AAPC endows this system
with higher efficiency lending to increased efficacy of adoptive
immunotherapy. Furthermore, AAPC can be engineered to express
genes directing release of specific cytokines to facilitate the preferential
expansion of desirable T-cell subsets for adoptive transfer; such as long
lived memory T-cells.

AAPCs APCs

Generation time consuming, once

engineered, can be used

or frozen for later use

Generation labor intensive requiring 12 days to several weeks
to generate

No variability Liable to variability

QC issue with

each regeneration
QA/QC can be performed on large lots of stored cells
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Can select either dominant or subdominant T-cells based on desired HLA restriction
T-cell response to antigen

presented is subject to in-vivo immuno-dominance

Can be engineered to deliver specific co-stimulatory signals and cytokines directing expansion of
specific cell lineages.

IL-15 For memory NK and memory T-cell expansion

IL-21 For priming of naive cells and expansion of memory T-cells

Expess specific set of

co-stimulatory molecules

and release specific cytokines

based on

maturation

Table 1: Characteristics of artificial antigen presenting cells and professional APCs.

Optimal Therapeutic Features of T-cells for Adoptive
Immunotherapy

T-cells are broadly classified as naïve or antigen experienced based
on their encounter with antigen and differentiation status. Antigen
specific T-cells are further classified based on their differentiation
status into central memory (TCM), effector memory (TEM), and
terminally differentiated effector cells (TE) [27]. Recent emerging data
describes a population of T-cells with stem cell like properties (TSCM)
that would have the potential for prolonged persistence and further
replication in-vivo [28-30]. In earlier clinical trials, adoptively
transferred anti-tumor T-cells clones, even when infused in large
numbers, demonstrated only limited clinical efficacy, which was
primarily attributed to the lack of persistence of the T-cells infused
[13,14]. Subsequent studies evaluated the potential of different T-cell
subsets with respect to in-vivo activity and persistence. In both animal
models and humans, recent studies have shown that adoptively
transferred TCM phenotype T-cells, with high expression of L-selectin
(CD62L), CCR7 and CD44 provide durable immunity against
infections such as CMV [31-33]. Berger et al. [31] demonstrated that
TCM derived T-cells when adoptively transferred into macaques
persisted for prolonged periods in-vivo and re-acquired the phenotypic
markers of TCM cells, and subsequently Wang et. al. [34] showed
prolonged engraftment of TCM derived cells in an immunodeficient
mouse model. In TCR transgenic mouse models, Restifo et al. have
demonstrated that antigen specific naïve and TCM cells are more
effective than TE cells in eradicating large established tumors, and
paradoxically, differentiated T-cells displaying high functional activity
in-vitro were less effective in eradicating tumors in-vivo [35]. In recent
clinical trials, persistence of adoptively transferred T-cells has been
correlated with regression of disease [36]. Therefore, such TCM cells
are a desirable T- cell population for adoptive immunotherapy because
they have the potential to provide durable protection against disease by
virtue of their lymphoid homing properties in-vivo [27], lending to
their prolonged survival after infusion.

Artificial Antigen Presenting Cells: Potential
Applications for Immunotherapies

AAPC are a developing technology for use in adoptive
immunotherapy. AAPC use the kinetics known about antigen
presentation, but adapt a platform in which an APC provides specific
signals delivered using a designed template to stimulate T-cell
expansion. The use of these artificial platforms allow for expression of
specific molecules on these cells providing a more controlled
stimulation of T-cells, therefore permitting the propagation of T-cells
with specific phenotype and activity. AAPCs can be derived from cell
lines using viral transduction of genes encoding specific co-stimulatory

molecules and/or HLA molecules, or from synthetic materials such as
polystyrene coated with specific cytokines and/or co-stimulatory
molecules [26,37].

The cell lines that have been used for the synthesis of AAPC are
derived from insects (drosophila melanogaster), human (K562), mouse
(NIH3T3). In 1996, Sun et al. described this approach using MHC-
class-I transfected insect cells as antigen-presenting cells [38]. This
work was based on the finding by Jackson et al. that Drosophila
melanogaster cells could be successfully transfected with MHC genes,
which could then be stably integrated into the genome and could be
expressed on the surface of insect cells [39]. They also established that
these MHC molecules were empty, and could therefore be stabilized by
complexing with β2 microglobulin and exogenous peptides.

Thereafter, Schonberger et al. developed an artificial APC using a
mouse embryonic cell line engineered to express the H-2Db-restricted
CTL epitope of the human Ad5 EIA protein as well as costimulatory
molecules B7.1 or ICAM1 [40]. The choice of costimulatory molecules
for engineering these cells was based on concurrent emerging data on
the molecules constituting this pathway and their functions. Co-
stimulation is the second critical signal provided during activation of
T-cells after engagement of the TCR with a cognate peptide–MHC
complex (Figure 2). The best known co-stimulatory ligands are
members of the B7-family, B7-1 (CD80) or B7-2 (CD86), that are
expressed on professional antigen-presenting cells (APCs) such as
dendritic cells and bind to CD28 molecule expressed on T-cells
[41,42]. CD28 amplifies the signal received through TCR engagement
thereby lowering the threshold for T-cell activation, while
simultaneously enhancing T-cell survival by upregulating anti-
apoptotic proteins such as Bcl-xL and c-FLIPshort, to prevent
activation induced cell death [43,44]. Signaling through CD28
supports naïve T-cell activation, proliferation and survival [45-47]. As
evidenced in CD28 deficient mice, primary CD8+ T-cell responses to
pathogens are not developed in the absence of this signal, which
underscores the obligate requirement of CD28 co-stimulation for T-
cell priming and activation [48-52]. Stimulation of T-cells using the
AAPC developed by Shonberger et al. further validated the critical role
of B7.1 co-stimulation for in-vitro T-cell stimulation and expansion as
well as the advantage of antigen density on the APC for stimulating
robust antigen specific T-cell responses.

The subsequently developed cell based AAPC systems were
designed to stimulate either non-specific expansion of T-cells or
expansion of epitope specific T-cells responsive to determinants within
viral or tumor antigens presented by specific HLA alleles.
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AAPC for Non-Specific Expansion of T-cells
Systems for non-specific expansion of T-cells were initiated using

magnetic beads coated with anti-CD3 and anti-CD28 antibodies.
Initial studies with this artificial non-cell based system demonstrated
preferential long-term expansion of CD4+ T-cells [53], however, this
AAPC system did not support the long-term growth of purified CD8+
T- cells [54]. Maus et al. attempted to overcome this limitation by
engineering a cell based AAPC using additional co-stimulation. The
human erythroleukemia cell line K562 was used, which does not
express HLA class-I or class-II, but expresses adhesion molecules
ICAM-1 and LFA-3. These K562 cells were engineered to stably express
the human low-affinity Fcγ receptor, CD32 (K32), and the co-
stimulatory molecule human (h) 4-1BB ligand (K32/4-1BBL). The
K32/4-1BBL coated with anti-CD3 and anti-CD28 antibodies were
then used as AAPCs [55].

Upon TCR engagement, the activated T-cell is poised to respond to
the next stimulatory signal via CD28 –B7.1 co-stimulation, which sets
the stage for the delivery of further co-stimulatory signals, which
occurs by upregulation of additional receptor- ligand pairs on the T-
cell and APCs (Figure 3). These receptor/ligands may be involved in
sustaining, diversifying, and/or amplifying the immune response. In
particular, members of the TNFR/TNF ligand family, including 4-1BB/
4-1BB ligand (4-1BBL), CD27/CD70, and OX40/OX40 ligand (OX40L)
appear to be important in enhancing T-cell responses after initial
activation [56-59]. 4-1BB is expressed on activated CD4 and CD8 T-
cells and is absent on resting T lymphocytes [56,60], and its ligand,
4-1BBL is expressed on activated APC including B cells, macrophages,
and dendritic cells [61-63]. Co-stimulation via 4-1BB facilitates
responses at lower levels of signaling through the TCR–CD3 complex
and CD28, and promotes TH1 differentiation in CD4+ cells [64,65].
4-1BB signals also increase the duration and magnitude of immune
responses, and the size of subsequent immune memory compartments
[48,66]. These effects of 4-1BBL stimulation on T-cells appear highly
desirable in the context of cancer immunotherapy. Indeed, stimulation
of this pathway in mice was shown to eliminate large, established,
poorly immunogenic tumors [67-69]. In fact, immune stimulation via
4-1BB was shown to induce tumor eradication when CD80 was
ineffective [70]; wherein 4-1BBL could synergize with either CD80 or
IL12, or an antigenic peptide to effect tumor regression [69,71,72].

The K32/4-1BBL AAPC described by Maus et al. induced long-term
expansion of human polyclonal CD8+ T-cells. The CD8+ T-cell
cultures remained in exponential growth even after a third stimulation
eliciting a 410-fold higher increase in the total number of T-cells than
that in cultures stimulated with CD3/28 beads. Several modifications
have since been made on this platform permitting expansions of
specific T-cell populations. Accordingly, the K32 cells have been
engineered to express a wide array of costimulatory molecules,
including CD40, CD64, CD40L, CD70 [73], CD80, CD83, CD86,
CD137L [74], ICOSL, GITRL, CD134L, to facilitate proliferation of
specific immune cell types including T and NK cells [75-78] (Table 2).
This K-32 system has been developed under cGMP conditions and
implemented for clinical use (Table 2).

The K32 cells have also been widely used as a platform for the large
scale expansion of CAR modified T-cells. Cooper et al. [79] introduced
the truncated CD19 gene in K32 -41-BBL AAPC to foster the
preferential expansion of CD19 CAR+ T-cells for clinical use. The
K32/4-1BBL AAPC have also been modified to secrete specific
cytokines, and IL-21 and IL-15 genes transduced to express membrane
bound IL-15 and IL-21 aimed to yield higher overall T-cell expansions

as well as preferential expansion of long-lived TCM phenotype CAR
CD19 modified T-cells [79-81]. More recent studies have focused on
developing a universal AAPC for the expansion of all CAR modified T-
cells. In this effort, Cooper et al. developed a K562 based AAPC
engineered to express a ScFv antibody directed against human IgG4
based on the hypothesis that this mAb would be able to cross-link to
the CAR gene transduced and activate CAR gene modified T- cells for
sustained proliferation. Accordingly, K562 cells were transduced to
express the scFv of 2D3 (designated CARL). The 2D3-derived scFv on
AAPC was evaluated for ability to propagate not just CD19-specific T-
cells, but CAR+ T-cells of alternative specificities. AAPC expressing
CARL were compared to AAPC expressing truncated TAA for directed
expansion of specific CAR modified T-cells such as GD2G4CAR,
19G4CAR. The CARL expressing AAPC demonstrated efficient
expansion of CAR modified T-cells bearing ScFv against a variety of
tumor antigens, thus offering a resource for clinical grade expansions
of CAR modified T-cells bearing any antigenic specificity [82].

AAPC for Stimulation and Expansion of Antigen
Specific CD8+ T-cells
The expansion and enrichment of antigen specific T-cells from a

starting population of polyclonal CD3+ T-cells containing minimal
concentrations of the desired T-cells has remained challenging. Two
main cell based AAPC systems have thus far been developed and
evaluated for this purpose, and for potential application for adoptive
immunotherapy. Latouche et al. first described the generation of
mouse fibroblast NIH 3T3 cell based AAPC transduced to express a
single human MHC class-I allele (HLA A0201) and critical T-cell co-
stimulatory molecules as a platform for in-vitro expansion of epitope
specific T-cells restricted by a single HLA allele [83]. In engineering
these AAPC, the choice of co-stimulatory molecules was further
improvised in an effort to maximize the effects of signal 1 and 2 for T-
cell activation. This AAPC was accordingly transduced to express the
co-stimulatory molecule B7.1 and the adhesion molecules LFA-3 and
ICAM-1. In addition, these 3T3 AAPC expressing HLA A0201 were
also transduced to co-express peptide epitopes of influenza and
MART-1 proteins to stimulate the expansion of antigen specific T-cells
responding to specific peptide-MHC complexes. Successful generation
of epitope specific CD8+ T-cells bearing an effector memory
phenotype was achieved using 3T3 AAPC that were directed against
both viral and tumor antigens, and were cytotoxic against tumor cell
targets as well as peptide loaded targets in-vitro. A higher efficiency of
T-cell expansion was attained using 3T3 AAPC compared to
autologous peptide loaded DC; AAPC yielding 2 fold higher T-cell
expansions with a cytolytic activity that was 1.6 to 4-fold higher.
Importantly, T-cells generated using these AAPC did not demonstrate
activity against targets lacking HLA A0201 or HLA A0201 expressing
targets lacking the appropriate antigen, thus establishing the ability of
this AAPC system to foster the generation of HLA restricted epitope
specific T-cells.

The 3T3 HLA A0201 AAPC system was further validated for
expansion of T-cells against other antigens including CMVpp65 [84] as
well as telomerase tumor antigen [85]. These cells were further
developed into a panel of AAPC, each expressing a single HLA class-I
allele as a platform for the expansion of antigen specific T-cells
restricted by a desired HLA allele [86]. This panel of AAPC permitted
the generation of antigen specific T-cells responding to specific
epitopes of CMVpp65 that were restricted by the HLA allele expressed
by the sensitizing AAPC. The use of a grid of peptide pools consisting
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of a defined set of overlapping pentadecapeptides permitted mapping
of epitopes eliciting T-cell responses [87,88]. The epitopes eliciting
responses in these studies were all previously reported to be presented
by the same HLA alleles in man. These studies established that this
panel of AAPC can be used to generate T-cells responding to both
immunodominant and subdominant epitopes presented by a variety of
HLA class I alleles. The T-cells responding to subdominant epitopes
demonstrated adequate functional activity in-vitro. The in-vivo
functional activity of T-cells responding to subdominant epitopes in
comparison to the activity of T-cells responding to immunodominant
epitopes is currently being explored to determine the clinical
applicability of this approach for treatment of a broader group of
patients. This panel of AAPC, each expressing HLA 0101, A0201,
A2402, A1101, B0702, B0801 and C0401 will cover over 95% of a
racially diverse patient population. Such a panel of AAPC, therefore
represents an off the shelf resource for the generation of antigen
specific T-cells of desired HLA restriction for adoptive immunotherapy
of patients of any ethnicity inheriting diverse HLA alleles.

The K-562 cell line is another cell based AAPC system developed for
stimulating antigen specific T-cell expansion in-vitro. K562 cells were
transduced to co-express HLA A0201 as well as the T-cell co-
stimulatory molecules CD80 and CD83 [89]. These cells when loaded
with different viral or tumor antigens, were shown to support the
priming and prolonged in-vitro expansion of antigen specific T-cells
displaying a central/effector memory phenotype, with specific
cytotoxic activity, and that could be maintained in culture for periods
of up to 1 year [90]. A concern with the use of K562 cells is that the
expression of HLA may be upregulated on these cells in the presence of
peptides, thus providing conditions stimulating the generation of
alloreactive T-cells that carry the risk of GvHD upon infusion [91]. An
additional concern arises due to the expression of human MHC class I
chain-related genes MICA and MICB on K562 cells, which, on the one
hand, can be a significant alloantigen [92-94], and, on the other, can
release soluble MICA and MICB, which can interfere with CD8 + T-
cell effector functions by down-regulating T-cell surface expression of
NKG2D [95].

AAPC for Stimulation and Expansion of Antigen
Specific CD4+ T-cells

In order to achieve durable T-cell immunity, CD4+ T-cell help is
critical. Indeed, in patients receiving adoptively transferred
cytomegalovirus specific CD8+ T-cells, the infused CD8+ T-cells were
only shown to have long term in-vivo persistence in the presence of
CMV specific CD4+ T-cells [96]. Yee et al. have subsequently
demonstrated complete regression of metastatic melanoma upon
infusion of cloned CD4+ T-cells directed against NY-ESO-1,
suggesting that CD4+ T-cells can potentially mediate direct effector
function in addition to providing help to effector CD8+ T-cells [15].
Therefore, approaches for the generation of CD4+ T-cells are critical to
enhance the success of adoptive immunotherapy. Nadler et al. first
reported the development of an AAPC system for the generation Th1
type CD4 + T-cells. In this report, the previously described K562 cells
expressing CD80 and CD83 [89] were used as the backbone, and were

successively transduced to co-express HLA class –II alleles DRB1 0101
and DRB1 0701 as well as CD64, the common Fc γ receptor, the
invariant chain (li) and the α and β chain of HLA DM. These cells were
then used for the generation of AAPC expressing HLA class-II alleles,
DRB1 0101 and DRB1 0701 [97]. These studies demonstrated
successful expansion of DR1 and DR7 specific T-cells responding to
CMVpp65 as well as MART1, bearing a Th1 cytokine profile in
response to specific antigenic stimulation in-vitro.

We have developed a panel of NIH3T3 based AAPC expressing a
panel of HLA class II alleles: HLA DRB1 0301, 0401, 0701, 1101 and
1501 [98]. Sensitization of T-cells from CMV seropositive donors
permitted the generation of HLA class-II restricted CMV specific T-
cells of Th1 phenotype that were responsive to CMV pp65 epitopes
previously reported to be presented by HLA class-II alleles.
Importantly these studies have allowed us to identify novel epitopes
presented by HLA class-II alleles, which could serve as a useful
resource to map epitopes for development of refined immunotherapy
and vaccine approaches.

Future Directions
Recent studies have led to the identification of T-cell subsets with

the capacity for longer in-vivo persistence and the cytokines regulating
the propagation of such T-cells. This knowledge has launched the
development of a new generation of AAPC specifically engineered to
deliver cytokine cocktails facilitating the expansion of TCM and
TSCM cells for adoptive immunotherapy. Interleukin-15 is a γ chain
cytokine that is critical for the survival and homeostatic proliferation
of NK cells and memory phenotype CD8 T-cells [99-101]; and in the
presence of antigen, it specifically induces the proliferation of TCM
phenotype antigen specific CD8+ T-cells [102-104]. IL-15 mediates its
functional activity by binding with its unique high affinity receptor
subunit IL-15Rα forming an IL-15Rα /IL-15 complex (15Rα/15) which
then shuttles to the cell surface to bind with the β (CD122) and
common γ chain subunits to initiate signaling in receptive
lymphocytes [105-107]. We generated HLA A0201+ NIH 3T3 based
AAPC that were also transduced to co-express IL15Rα and IL-15
genes. T-cell stimulation using IL15Rα/IL-15 expressing AAPC
fostered the preferential expansion of antigen specific T-cells bearing a
TCM phenotype [108]. We and others have shown that IL-15 can
prolong the in-vivo persistence of antigen specific T-cells [34],
specifically when administered in complex with its high affinity
receptor IL-15Ra/IL-15 [109]. AAPC systems expressing and secreting
such IL-15Ra/IL-15 complexes may be a useful technique for the
efficient generation of TCM cells for clinical applications. IL-21 is
another such cytokine that can be developed within this approach.
More efficient systems for the consistent expansion of TH1 type CD4+
T-cells need to be developed for clinical use and to further study: (1)
for defining epitopes of tumor and viral antigens presented by class-II
alleles that would enhance the effect of CD8+ T-cells (2) the functional
activity and CD8+ cell help afforded by co-infusion of CD4 and CD8
T-cells in-vivo (Table 2).

Clinical

Artificial APC
Backbone Co-stimulatory Molecules Cytokine secretion Antigen- specific/ non-

specific
TargeT-cell for
Expansion Reference
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K562 A2
HLA class I

CD80, CD83
nil MART1 CD3 (CD4, CD8)

Butler et al.

[90]

K562 CD64, 4-1BBL nil Non specific expansion CD3 (CD4, CD8) Suhoski, et al, Mol Ther [75]

K562

CD32, CD80

CD83, CD86

4-1BBL

nil
EBV specific T-cells
expanded (K562 used for
Co-stimulation)

CD3 (CD4, CD8) Butler, and Hirano, 2013

K562

CD64, CD86

4-1BBL

Truncated CD19, membrane
bound IL-15

IL-15 CD19 CAR modified T-
cells

CD4, CD8

NK cells
Kebriaei, P. et al. [81]

K562
4-1BBL

membrane bound IL-15
IL-15 Non specific expansion NK cells Lapteva, et al. [110]

K562
CD64, CD86,

Truncated CD19 membrane
bound IL-21

IL-21 CD19 CAR modified T-
cells CD8 and CD4 Singh, et al., [79,80]

K562
CD3/CD28

CD86, CD64
nil Non-specific Tregs Hippen, et al, [111]

Non clinical

K562 CD86, 4-1BB nil Nonspecific
Predominant

CD8, Low CD4
Gong, et al. [77]

K562
mOKT3,

CD80, CD83
nil Non-specific CD3 Butler, et al. [78]

NIH 3T3 fibroblast
HLA A0201 + β2
microglobulin, B7.1, ICAM-1,
LFA-3

nil Antigen specific hTERT,
CMVpp65, MART1, flu CD8 T-cells

Latouche et al. [83],
Papanicolaou et al.,
[84],Dupont et al. [85]

NIH 3T3 fibroblast
HLA A0201, A2402, B0702,
B0801, C0401 + β2M,

B7.1, ICAM-1, LFA-3
nil CMVpp65 Specific, HLA

class-I restricted T-cells Predominant CD8
Hasan, et al.

[86]

K562 CD80, CD70, 4-1BB nil MART-126-35, gp100
and Cyp1B1 CD8 Zeng et al. [73]

K562 CD64, CD86, CD137L memb
bound IL-15 nil TILs (melanoma) Higher CD8, CD4 Forget, et al. [74]

K562

HLA class-II (DRB1 0101 and
DRB1 0701), li, HLA DMα,
DMβ, CD32, CD64, CD80,
CD83

nil MART-1 and CMVpp65 CD4 Butler, et al. [97]

NIH 3T3 fibroblast
HLA Class-II (DRB1 0301,
0401, 0701, 1101, 1501), li,
B7.1, ICAM-1, LFA-3

nil CMVpp65 CD4 Hasan, et al. [98]

K562 CD1d, CD80, CD83 nil α-galactosyl ceramide iNKT-cells Imataki, et al. Blood

K562 CD19, CD64, CD86, CD137L,
IL-15 nil OKT3 CAR modified T-cells Singh, et al., [79]

Table 2: Summary of artificial antigen presenting systems and applications.
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