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ABSTRACT
Objectives: We aimed to create an artefact-tolerant and fully automated segmentation method intended to reduce the 

workload of medical experts who segment head computed tomography images of intracranial haemorrhage patients. 

Methods: We developed a segmentation algorithm that combines 2D and 3D intensity thresholding, morphological 

operations, and entropy filtering. We tested the algorithm’s performance against gold standard segmentations on 

preoperative and postoperative/posttreatment head computed tomography images of 145 patients with intracranial 

bleeding. We compared the fully automated algorithm against a simpler thresholded method.

Results: The fully automated algorithm correctly segmented blood in 98.62% of patients, in 2277 out of 2449 

positive slices (92.97%), and in 54.12% of positive voxels. It incorrectly segmented blood in 0.63% of patients’ 

negative voxels. The Dice coefficient at voxel level was 0.20.

Conclusion: The open-sourced algorithm may facilitate the segmentation of a wide quality range of preoperative or 

postoperative/posttreatment head computed tomography scans with intracranial haemorrhage.

Keywords: Segmentation; Head computed tomography; Non-contrast; Subarachnoid haemorrhage; Intracranial 

haemorrhage

Abbreviations: ICH: Intracerebral Haemorrhage; CT: Head Computed Tomography; AVM: Arteriovenous 

Malformations; SAH: Subarachnoid Haemorrhage; EDH: Epidural Haemorrhage; SDH: Subdural Haemorrhage; 

HU: Hounsfield Unit; NCCT: Non Contrast CT; FOV: Field of View; PVE: Partial Volume Effects; 

PACS: Picture Archiving and Communication System; MPR: Multi Planar Reformat.

INTRODUCTION
Non-traumatic intracerebral haemorrhage, also known as 
spontaneous Intracerebral Haemorrhage (ICH), is a severe form 
of stroke accompanied by acute and life-threatening bleeding 
within the cranium. Brain aneurysms, Arteriovenous 
Malformations (AVM), and hypertension are among the most 
important underlying aetiologies of ICH. ICH is associated with 
high mortality and disability rates and extensive health care costs 
[1, 2]. The bleeding can break into the subarachnoid space (a 
condition known as Subarachnoid Haemorrhage or SAH),

ventricular space (Intraventricular Haemorrhage or IVH), the 
space between the inner table of the skull and the dura mater 
(Epidural Haemorrhage or EDH), and the space between the 
meningeal layer of the dura and the arachnoid membrane 
(Subdural Haemorrhage or SDH).

Head Computed Tomography (CT) is the cornerstone of 
diagnostics, allowing rapid and accurate detection of ICH.

The time needed for interpretation of radiological results is 
dictated by the medical urgency, the patient’s status as inpatient 
or outpatient, and the available radiology workforce and can vary
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were used for patient group retrieval. The category code I60 
translates to subarachnoid haemorrhage diagnosis, while 
accompanying digits describe the cause of bleed in more detail.

The control group was retrieved by searching for subjects imaged 
(head CT scan) due to headache and who had no findings of 
acute intracranial haemorrhages. The codes R51 and G44.2 were 
used for control group retrieval. The R51 category translates to 
headache and G44.2 to a tension-type headache.

Image data

The image data collected from 2011 to 2018 consisted of 
reconstructed non-source Multi-Planar Reformat (MPR) 
volumes. The Digital Imaging and Communications in 
Medicine (DICOM) images were converted to the Neuroimaging 
Informatics Technology Initiative format (NIFTI-1) using the 
dcm2niix utility. The patient group consisted of 145 MPR 
volumes, with the number of unique patients being 142; one 
patient had two and another patient one follow-up scans. The 
control group consisted of 150 MPR volumes that were 
randomly picked from a larger control cohort, with the number 
of unique patients equaling 150. The clinical findings of the 
patients are shown in Table 1.

Metadata Frequency [%]

Clinical Status Preoperative 40 [27.59]

Postoperative 64 [44.14]

Posttreatment (endovascular) 34 [23.45]

Ventriculostomy 7 [4.83]

Bleeding Type Subarachnoid 127 [87.59]

Intraventricular 103 [71.03]

Intracerebral 43 [29.66]

Epidural 2 [1.38]

Subdural 30 [20.69]

Perimesenchephalic 4 [2.76]

Secondary Injuries Ischaemia/
Oedema

69 [47.56]

Pneumocephalus 60 [41.38]

Mass effect 50 [34.48]

Hygroma 21 [14.48]

Segmentation Types 37

Manual

Interactive 108

Table 1: Clinical characteristics of study patients.
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markedly [3]. The steady increase in the demand for radiological 
imaging [4] combined with the shortage of radiologists in the UK 
[5], Europe and Japan [6] (less in the US [7]) highlights the need 
for measures to reduce the workload of the current workforce. 
Software solutions that will assist diagnosis or facilitate and 
reduce the time needed for a specialist to interpret radiological 
images have become necessary. In fact, machine learning as well 
as more classical (non-machine learning) image processing 
techniques have been employed to address this particular 
problem. In either case, material that has been segmented by 
experts is required to train and validate such methods. However, 
segmentation of the regions of interest by medical professionals 
has become one of the major hindrances in a large-scale 
development of clinically useful algorithms. The segmentation 
task requires locating the exact spot of the lesion at voxel level, 
and, under the gold standard methodology, experts need to draw 
every voxel of the area that the lesion occupies, to which an 
algorithm’s performance is then compared [8, 9]. For example, 
segmenting diffuse SAH is a time-consuming task since the 
blood can be present in any part of the subarachnoid space and 
the surface covered can be very extensive compared to other 
intracranial haemorrhages.

In CT imaging, the Hounsfield Unit (HU) scale is used to 
express the attenuation of the X-ray beams while passing through 
the patient to reach the detectors. Assuming that the intensity 
values of acute blood in a Non-Contrast CT (NCCT) are 
relatively fixed in the range of 50 ~ 60 HU, with some variations 
due to different tube voltage and temperature, detecting blood 
from an NCCT should be straightforward. However, the type of 
reconstruction filter, the size of the scanned Field of View 
(FOV), the location of the FOV, Partial Volume Effects (PVE), 
and noise can lead to an image with observed blood HU values 
being quite different from the usual ones. Moreover, in a clinical 
setting NCCTs exhibit high variability, emerging from different 
causes, which in turn increases the complexity of a correct 
interpretation. Co-existence of many medical conditions in 
NCCTs, such as brain tumors [10], contribute to this complexity. 
Similarly, normal anatomy, such as the brain sinuses, thickened 
tentorium, calcifications [11-13], and even physiological brain 
ageing, can create challenges in segmentation and even lead to a 
misperception of blood. Therefore, better segmentation 
approaches are needed to reduce the labour-intensive task of 
creating correctly segmented datasets necessary for the training 
and testing of machine learning and neural network methods. 
The purpose of this work is: 1) to present solutions to the 
challenges faced in the task of the intracranial haemorrhage 
segmentation when using the highly variable hospital datasets, 
and 2) to propose a fully automated segmentation algorithm that 
will assist in the segmentation process of noisy images.

MATERIALS AND METHODS

Patient and control group selection

The search criteria used to collect patient and control data from 
the Picture Archiving and Communication System (PACS) were 
encoded with the International Statistical Classification of 
Diseases and Related Health Problems (ICD-10) medical 
classification list. Code I60 along with all of its sub-codes I60.xx 
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Metric Count/Mean (std)

Total Size

Voxels 27079.73 (45550.07)

<min max> <116 361419>

Total surface extent (voxels)

In Plane X 203.73 (76.99)

<min max> <13 333>

In Plane Y 221.92 (85.27)

<min max> <13 371>

Off Plane Z 18.59 (8.97)

<min max> <2 56>

Clusters 88.66 (114.90)

<min max> <1 729>

Largest cluster size (voxels) 19722.93 (42096.56)

<min max> <68 356939 >

Largest cluster size (mm3) 12182.25 (20518.52)

<min max> <34.30 140055.90>

Table 2: Haemorrhage characteristics of study patients.

Fully automated segmentation algorithm

The algorithm is a combination of a 2D and 3D 
intensity thresholding, morphological operations, region 
growing, and 2D entropy, which results in five segmented 
classes: brain, Cerebrospinal Fluid (CSF), blood, calcifications, 
and background.

The background class also includes noise emanating from 
surgical or endovascular materials (coils, clips, titanium plates, 
etc.). The class representing blood is the only class that is further 
filtered with a 2D entropy kernel. It is a fully automated 
software, which we have open-sourced, with its flowchart 
depicted in Figure 1. Briefly, it begins with the removal of 
irrelevant voxels outside the scalp and is followed by a brain 
extraction, where the skull and scalp are discarded.

Segmentation of the different classes inside the brain tissue is 
then achieved in two consecutive steps, with the blood class 
being further post-processed with the 2D entropy filter to 
produce the final blood segmentation result.

Thanellas AK, et al.

Manual and semi-automatic segmentation

A manual segmentation, in the present context, is the process 
where the users demarcate the areas of interest without any 
software assistance that will permit task completion at a faster 
pace. Instead, the users rely solely on the very fundamental tools 
of a segmentation software, which is typically a pen or a 
paintbrush that allows drawing upon the areas of interest. In a 
semi-automatic segmentation, smart brushes or other algorithms 
ease the segmentation process, enabling users to minimize their 
drawing input, which it turn reduces the time needed to 
complete the task. In contrast, in a fully automated segmentation 
method, the user lets the algorithm complete the segmentation 
task independently and corrects, when needed, the end results.

NCCTs with spontaneous ICH were segmented both manually 
and in a semi-automatic/interactive fashion. The open-source 
software ITKsnap was used to manually segment 37 volumes 
using the paintbrush mode and a round brush shape. The open-
source software 3DSlicer was used to create semi-automated 
segmentations of 108 volumes. These segmentations were used 
as the gold standard to evaluate the paper’s proposed algorithm.

The reference segmentations were generated by a single trained 
medical image analyst (AT) and later reviewed and corrected by a 
study neurosurgeon (MK) with 17 years’ experience. Both raters 
were present during the review process, and all corrections to the 
segmentations were done after mutual agreement on the 
radiological findings. Each segmentation consisted of a binary 
volume mask with the same dimensions and coordinate system 
as the NCCT. Two discrete values, one and zero, of the binary 
volume mask represented the voxels classified as blood and 
background, respectively. The segmentation strategy, which was 
agreed beforehand, is summarized as follows: 1) Segmentations 
were conservative and only areas that the raters considered 
certain were marked as representing blood. Ambiguous areas 
with moderate or high uncertainty of being blood were 
considered as background (zero value); 2) The blood was only 
drawn onto the axial plane since the off-plane resolution was 
often low and therefore not informative; 3) A blood cluster had 
to be present in at least two consecutive slices in order to be 
marked as such in the segmentation process. An exception to 
this rule could occur only if the presence of blood on a patch of 
a given slice was certain. Metrics of the segmentations are 
depicted in Table 2.
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which effectively combines morphological opening with taking 
the largest connected component, with the order of the 
operations maximizing the separability of the structures. The 
resulting brain mask Mbrain,1 was then subtracted from the 
original brain mask Mbrain,0 established above in order to find 
the structures that were removed in this operation. Then, the 
smallest (max 25% of the largest component) connected 
components of these removed structures Mbrain,0 \ Mbrain,1 
were restored to Mbrain,1. Next, a second morphological 
opening combined with an intermediate largest connected 
component thresholding was performed using a smaller disk-
shaped structure element (radius 1.5 mm). Any cavities smaller 
than 1 ml were then filled in the axial planes.

To finish, a slight morphological erosion using a disk-shaped 
structure element with a radius of 3 pixels was performed, and 
the result was taken as the brain extraction mask.

Initial brain matter segmentation is a process where the brain 
matter is segmented into different classes by using the created 
brain mask (see “Brain extraction” above). The minimum and 
maximum HU values in each axial slice were determined, while 
the HU cut-off thresholds were determined by sorting the slice-
wise HU limits in ascending order and taking the lower cut-off 
threshold at 30% of the sorted minimum values and the higher 
cut-off threshold at 50% of the sorted maximum values. These 
HU cut-off thresholds were used in the histogram of the brain 
tissue (3D volume of all axial slices). The zero crossings of the 
histogram’s first derivative were calculated to detect the local 
maxima, while the zero crossings of the histogram’s second 
derivative were used to detect the minima of the absolute value 
of the first derivative. Both the first and second derivatives were 
approximated using finite differences (step length 2). The highest 
local maximum was taken to represent the brain matter peak. If a 
secondary local maximum was detected before the brain matter 
peak, this represented CSF. Otherwise, the shallowest saddle 
point on the rising edge of the brain matter peak was assigned to 
CSF. Then, the shallowest saddle point on the falling edge of the 
brain matter peak was identified, and this HU value represented 
potential blood. If no local maxima and saddle points were 
detected around the brain matter peak, a constant HU offset of 
25 was used as a threshold for probable CSF and blood. For 
differentiating CSF from the brain matter threshold, the local 
histogram minima were similarly found between the brain 
matter peak and the probable CSF peak that may or may not 
have been visible as a local histogram maximum. Of these 
potential minima, the one corresponding to the smallest 
histogram counts was treated as the threshold. When tried to 
differentiate the brain matter from the probable blood, no 
intermediate minima were typically detected, and a simple 
weighted average of the tentative peak HU values was used as a 
HU threshold, with 40% weight given to the brain matter peak 
and 60% weight to the peak for the probable blood. The selected 
HU thresholds were then used for an initial segmentation of the 
brain mask into CSF, brain matter, and potential blood.

Refined brain matter segmentation means the initial brain 
segmentation was next refined by varying the CSF-to-brain 
matter and the brain-matter-to-probable-blood thresholds. These 
variations were done using the HU windows [HUcutoff, min,
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The detailed algorithm steps are described as follows:

Head extraction, which in the present context means removal of 
irrelevant voxels outside the scalp (e.g. headrest), is based on the 
logarithmic histogram of the CT image. An HU bin range of 
[-1024, HUmax] was used, where HUmax was the maximum HU 
value of the image, and a bin width of 3 was used. Any HU 
values smaller than -1024 were clamped to this value. The local 
minima of the logarithmic histogram in the HU window [-750, 
-150] were then detected by finding the corresponding zero 
crossings of its first derivative approximated by finite differences 
with a step length of 3. If several minima were found, the one 
with the smallest bin counts was taken. If no minima were 
detected, the minimum bin count in the HU window was found 
and this bin was taken as the local minimum. The established 
local minimum was used as the HU threshold for separating the 
tissue, and a binary mask was created by simple thresholding. 
Using a 6-connected neighbourhood, the largest connected 
component in the head mask was found to represent the head. A 
morphological dilation using a disk-shaped structure element 
with a radius of 2 pixels was performed to compensate for the 
hard thresholding, and any cavities (holes) were filled in the axial 
slices of the 3D mask.

Brain extraction, which in the present context means the 
removal of the skull and scalp, used the extracted head mask as a 
starting point. Another logarithmic histogram was computed of 
the head-masked portion of the image using the same parameters 
as for the entire image, and the global maximum of the 
histogram was taken to represent the brain matter peak. An HU 
window of ± 60 units was placed symmetrically around the peak, 
and a crude brain mask was established by simple thresholding 
with the window limits. Again, the largest 6-connected 
component was taken, and the corresponding mask was stored as 
the initial brain extraction mask Mbrain,0.

To separate the brain from the skull and scalp, a coarse 
morphological erosion was first performed using a disk-shaped 
structure element with a radius of 7.5 mm. Then, the largest 
remaining 6-connected component was taken, and this 
component was dilated back using the same structure element,

J Biomed Eng & Med Dev, Vol.7 Iss.8 No:1000231

Figure 1: Algorithm flowchart of brain extraction.



to detect the blood. The HU range that created the most 
accurate blood segmentations (with respect to the gold standard 
ones) was then chosen to be compared with the fully automated 
algorithm. This approach is illustrated as a flowchart in Figure 2.

Three types of similarity measures were used to assess the quality 
of the blood segmentation created by the algorithm: one that 
measures the blood volume (target-reference pair) (as depicted in 
Figure 3) segmentation, a second one that measures the 
volumetric overlap of the blood clusters (target-reference pair) (as 
depicted in Figure 4), and a third one that measures the surface 
extent occupied by blood pixels (as depicted in Figure 5). Such 
measures are well established in the literature [9]. More thorough 
quality metrics are available for both the patient and control 
groups in the supplementary material.

Figure 3: Volumetry of blood.
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Figure 2: Algorithm evaluation flowchart.
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HUBM-20] for CSF and [HUBM, HUcutoff, max-15] for the 
probable blood, with the cut-off limits reported above. Using 
each threshold, the corresponding mean values and standard 
deviations of the connected CSF and probable blood component 
volumes were computed. For CSF, the threshold values used were 
either the minimum of the mean volume of the connected 
components or their standard deviations. This approach was 
used to result in a segmentation that should consist of connected 
components, which vary minimally in size but at the same time 
are not too large. The one corresponding to a smaller HU value 
was then considered the refined CSF-to-brain-matter threshold. A 
similar approach was used for the brain-matter-to-probable-blood 
threshold. As the next step, a simple bias compensation was 
performed to compensate for any partial volume effect (typically 
near the vertex, i.e. top of the skull) or CT reconstruction 
artefacts. The histograms of the axial slices were computed and 
the highest local maximum found. For each slice, the highest 
local maximum was assumed to correspond to the brain matter, 
and the peak shift with respect to the 3D brain matter peak 
represented the HU bias. The allowed peak shift was, however, 
limited to 5 HU values of the brain HU cut-off thresholds. 
Finally, an iterative refinement based on a region growing and a 
simple Gaussian fit was performed for the segmentation classes. 
Prior to the iteration, the intra-class mean HU values and 
standard deviations were computed, and the final HU cut-off 
limits were defined as µHU ± C•σHU. First, the brain matter 
class was grown using C=2.75. In each iteration, the class mask 
was dilated with a disk-shaped structure element, and any voxels 
falling outside the HU cut-off range were excluded. Then, the 
change in the relative class volume was computed and the 
iteration discontinued when the change between consecutive 
iterations fell below 5 × 10-6. Second, the CSF class was dilated 
using C=1.5. Third, any values falling outside the high HU cut-
off threshold (typically calcifications or metal objects) were 
dilated using C=0.25, and, finally, the probable blood was 
dilated using C=1.5. The tissue that had been classified as blood 
passed through an entropy filtering (slice-wise) using a disk 
structural element (size 2) and low thresholding of 1 to reduce 
the number of false-positive voxels. The sensitivity of the final 
segmentation in terms of false negatives versus false positives was 
ultimately determined by the magnitudes of C for the different 
tissue classes. For a manual refinement of the resulting 
segmentation, it was typically faster to erase unwanted regions, 
and larger values for C (more false positives) may have become 
favoured.

An optional post-processing step for the removal of the brain 
mask’s outline could be used to reduce the false-positives in the 
brain’s periphery. This outline was created with a morphological 
gradient using a 2D square 3 × 3 voxel kernel.

Algorithm evaluation

The fully automated algorithm was evaluated against the gold 
standard segmentations. Another much simpler method was also 
employed, and it used the brain-extracted tissue of the 
automated algorithm and thresholded it at different HU ranges 
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Figure 4: Volumetric overlap of the blood cluster.

conducted using Python’s statistical module stats of 
the SciPy library.

RESULTS

Segmentation times

The mean time required to complete a manual segmentation 
(using ITKsnap) of one head CT scan with intracranial 
haemorrhage (88% were SAH cases) was 144.4 min (standard 
deviation 134.1 min). The mean time required for the review 
and corrections by the second rater was 10.6 min per manually 
segmented case. On average, every patient’s head CT scan 
(volume) consisted of 38.8 reconstructed (MPR) axial slices.

The mean time required to complete an interactive 
segmentation (using 3DSlicer) of one head CT scan with 
intracranial haemorrhage was 24.7 min (standard deviation 24.7 
min). The average time required for the review and corrections 
by the second rater was 8 min per interactively segmented case. 
On average, every patient’s head CT scan (volume) consisted of 
36.4 reconstructed (MPR) axial slices.

Performance of algorithms

Threshold algorithm: Of all threshold sets, the one with 
intensity range of (50,60) provided the best results. The set 
(45,65) provided very similar results to the set (50,60) (pvalue= 
0.1, Wilcoxon test). The set (50,60) was chosen (Jaccard 
(mean,std)=(0.08,0.08)) because of the slightly smaller standard 
deviation than with (45,65) (Jaccard (mean,std) = (0.08,0.09)).

Fully automated algorithm-patient cases: The ICH 
segmentation results of the quality assessment of the fully 
automated segmentation algorithm are presented in Table 3. The 
performance of the fully automated algorithm was evaluated 
using the ICH patient group images, which had been both 
manually and interactively segmented as described above. In the 
volumetric analyses, the signed relative voxel difference with 
respect to the gold standard was 2461.2, which was similar to the 
value of 2513 for the simple thresholding method. Both the fully 
automated and the simple thresholding method oversegmented 
blood in a similar way (pvalue=0.37, Wilcoxon signed-rank). 
However, this oversegmentation was less scattered in the case of 
the fully automated method, and the simple thresholding 
method resulted in a much larger number (pvalue << 0.05) of 
small-sized clusters. The smaller size of the clusters can be 
deducted from the total number of detected voxels-to-clusters 
ratio, which was 70.81 (voxels/clusters) for the fully automated 
algorithm and 17.80 for the simple thresholding method (at 
HU(50 60)). In the overlap analysis, the Jaccard ((pvalue << 0.05)) 
and Dice (pvalue << 0.05) were higher for the fully automated 
algorithm, suggesting a better overall performance. The fully 
automated algorithm segmented more true-positive voxels than 
the simple thresholding method (pvalue << 0.05), whereas such a 
difference was not evident for the false positives (pvalue=0.16). A 
typical performance (Dice=0.20) of the fully automated 
algorithm is illustrated in Figure 6. A performance well above the 
average (Dice=0.59) is shown in a supplementary file. Sixty-
three (43%) of the 145 ICH cases had a Dice coefficient of less 
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Patient and control groups: The fully automated algorithm’s 
performance was compared with that of the simple intensity 
thresholding at typical HU ranges of blood. More specifically, 
the brain-extracted tissue was thresholded at different HU 
intensity ranges: (50,60), (45,65), (40,70), (40,75), (40,80), and 
(40,85). The same metrics that were used to evaluate the fully 
automated algorithm were also used to select the best HU range 
of the simpler thresholding approach. For the patient group 
(with intracranial haemorrhage), Jaccard and Dice metrics were 
calculated (since gold standard segmentations existed). For the 
control group, only the False Positives (FPs) were calculated (gold 
standard segmentations are not possible to do for healthy 
subjects).

The best simple intensity thresholding set (out of (50,60),(45,65), 
(40,70), (40,75), (40,80), and (40,85)) was selected to be 
compared with the fully automated algorithm. The best set 
was the one producing the best Jaccard coefficient. All different 
pairs were compared (i.e. Jaccardset1 vs. Jaccardset2) and 
their differences were examined using a Wilcoxon signed-
rank test since their distribution was not normal (the 
Shapiro test was used to evaluate normality). Comparisons with 
the algorithm were done for every metric pair (i.e. 
Jaccardalgorithm vs. Jaccardthr50-60, Dicealgorithm vs. 
Dicethr50-60, TPsalgorithm vs. TPsthr50-60 and so on).

The statistical difference between the pairs was examined using a 
Wilcoxon signed-rank test since the paired samples did not 
follow a normal distribution. All statistical analyses were conducted

J Biomed Eng & Med Dev, Vol.7 Iss.8 No:1000231

Figure 5: Surface metrics of blood pixels.



Metric Count/Mean (std)

Total Size

Voxels 76070.61(48084.62)

<min max> <9510 242860>

Volume (mm3) 52629.01(30888.87)

<min max> <7641.04 167191.71>

Clusters 1074.26(429.16)

<min max> <219 2967>

Largest cluster size (voxels) 37715.05(39809.65)

<min max> <1999 180329 >

Largest cluster size (mm3) 25583.63(25308.33)

<min max> <1551.07 117773.08>

Signed relative voxel difference 2461.23(5055.83)

<min max> <-88.30 36904.31>

Total surface extent (voxels)

In Plane X 291.02(18.71)

<min max> <240 384>

In Plane Y 370.50(20.78)

<min max> <307 426>

Off Plane Z 33.07(6.87)

<min max> <17 65>

Dice 0.20(0.20)

<min max> <0 0.73>

Jaccard 0.12(0.14)

<min max> <0 0.57>

True positives 14656.67(25510.00)

<min max> <0 155921>

False positives 61413.94(40453.15)

<min max> <779 214077>

Table 3: Quality assessment of the fully automated segmentation 
algorithm.

Fully automated algorithm - control cases: The results are 
depicted in Table 4. The algorithm’s performance was compared 
with the simple intensity thresholding method (HU (50,60) 
provided the smallest number of false positives). The results of 
the simple thresholding method on the control images are 
summarized in the supplementary files. A more detailed 
description of the performance is reported also in 
supplementary files. In the volumetric analyses, the false positive 
voxels detected by the fully automated algorithm were fewer 
(pvalue << 0.05) than those detected by the simple thresholding. 
The total number of detected voxels-to-clusters ratio was 32.81 
(voxels/clusters) for the fully automated algorithm, indicating 
that the false positives were aggregated in fewer clusters of larger 
sizes than when using the simple thresholding method (voxels/
clusters ratio of 9.68). One out of the 150 control cases could 
not be processed. An average performance of the fully 
automated algorithm (which led to the average amount of false
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than 0.1, while 56 (38.6%) had values above 0.2. Out of 
the 145 ICH patients’ head CT scans (volumes), the fully 
automated algorithm did not detect a single true-positive voxel 
in two cases and detected only one voxel in another case. 
Therefore, at patient level the fully automated method 
missed 2 out of 145 patients, while the simple 
thresholding missed none. At slice level, the fully automated 
method segmented correctly (at least one correct voxel per slice) 
92.98% of the positive slices (2277 out of 2449 positive slices). 
At voxel level, the fully automated method segmented correctly 
(true-positive rate) 54.12% and incorrectly (false-positive rate) 
0.63% of the positive voxels. Similarly, the simple thresholding 
method segmented correctly 96% of the slices (2351 out of 
2449), while at voxel level it segmented correctly (true-positive 
rate) 31.75% and incorrectly (false-positive rate) 0.62% of the 
positive voxels.
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Figure 6: Average performance of the algorithm on an axial 
postoperative NCCT of a patient with SAH, SDH, IVH, 
and ICH.



Metric Count/Mean (std)

Total size

Voxels (False Positives) 48637.91(27990.37)

<min max> <15584 182469>

Volume (mm3) 39480.89(20087.41)

<min max> <13512.27 129232.86>

Clusters 1482.17(686.95)

<min max> <485 4723>

Largest cluster size (voxels) 18910.40(21671.83)

<min max> <1318 138320 >

Largest cluster size (mm3) 15141.21(16457.88)

<min max> <1263.66 109409.18>

Total surface extent (voxels)

In Plane X 286.62(13.51)

<min max> <245 330>

In Plane Y 359.99(19.50)

<min max> <315 418>

Off Plane Z 32.15(5.95)

<min max> <23 70>

Table 4: Quality assessment of the fully automated 
segmentation algorithm.

DISCUSSION
This paper presents the challenges encountered when 
segmenting NCCT images, and we open-source a fully 
automated segmentation algorithm that is likely to assist experts 
in segmenting intracranial bleedings, particularly on images with 
high noise content.

The fully automated algorithm was developed using a hybrid 
method that combines histogram information, region growing, 
morphological operations, and entropy. The algorithm correctly 
segmented blood in 143 out of 145 patients. Its average 
performance using the Dice coefficient metric was 0.20, which 
we consider a moderate value. The performance of published 
algorithms using the Dice metric ranged from 0.6 to 0.92, but, 
as discussed later, it reflects the segmentation quality of carefully 
selected artefact-free images. The Dice coefficient is among the 
most common metrics used to assess segmentation quality. Dice 
punishes more a mismatch of small clusters than a mismatch of 
larger clusters. This means that in SAH images the blood is 
often widely distributed and present in relatively small voxel 
clusters, and therefore, Dice coefficients for the mismatch (with 
respect to the gold standard) are significantly lower than for 
other types of haemorrhages (such as ICH, EDH, and SDH, 
which are more contained and larger in volume). This 
phenomenon is further exaggerated in cases of diffuse SAHs, 
where multiple very small clusters of blood are widely dispersed 
throughout the subarchnoid space. In fact, this can be observed 
in the work of Boers et al. [14], which presents a Dice coefficient 
of 0.64 ± 0.20 (inter-rater variability across two experts) for 
segmenting SAH blood in head CT scans. Our algorithm failed 
to segment any blood in three SAH cases. These three cases 
contained not only major image artefacts but also represented 
very challenging SAH cases (very small cluster remnants of 
blood in subarachnoid spaces and ventricles). We believe that if 
our algorithm, which is not meant for diagnostics, misses 
around 2% of SAH cases with a very small amount of blood, the 
effect on the overall segmentation time of tens or hundreds of 
SAH cases is insignificant. In other words, these few cases can
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positives in the whole control group) is shown in Figure 7. Cases 
in which the algorithm produced the minimum and maximum 
amount of false positives are presented in supplementary files. 

The fully automated algorithm as well as the simple thresholding 
segmented false positives in all control cases without acute 
bleedings (patient level).

At slice level, the fully automated method correctly recognized 
7.57% of the negative slices (392 out of 5178) and incorrectly 
segmented blood in 4786 slices (out of 5178).

The simple thresholding method correctly recognized 7.33% of 
the negative slices (380 out of 5178) and incorrectly segmented 
blood in 4798 slices (out of 5178).
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Figure 7: Average performance of the fully automated 
algorithm in segmenting a control case.



segmentation may be undersegmented, and the “false positives” 
segmented by the fully automated algorithm may, in many cases, 
be true positives. Therefore, our pixel-level results are likely 
better than reported. Finally, the use of the images’ intensity 
distribution (histogram) to segment structures has inherent 
limitations. Such an approach uses only the intensity content of 
the image, while the spatial content remains unutilized. In 
summary, considering the highly heterogeneous images in this 
study, we believe it is not perhaps appropriate or relevant to 
expect a high segmentation accuracy at voxel level. The algorithm 
performs better with artefact-free images; out of the 10% of 
patients whose Dice coefficient was larger than 0.5, about 60% 
had preoperative images. Overall, the algorithm segmented 
54.12% of the gold standard voxels correctly (true-positive rate), 
but falsely (some of these may have been true positives, as 
explained above), and 0.63% of the negative voxels in the gold 
standard images (false-positive rate). We also assessed the 
performance of the fully automated algorithm in other than the 
intended context, i.e. in segmenting control cases without acute 
bleedings. Expectedly, the fully automated algorithm segmented 
false positives in all control cases, indicating that the algorithm is 
not suitable for clinical diagnostics but for segmenting 
challenging head CT images with acute bleeding. We consider 
this rate of false positive segmenting as a safety measure against a 
non-intended use.

A high-throughput segmentation process of medical images is 
one of the most important steps for a successful training of 
diagnostic machine learning models. When creating a dataset for 
training, image variability is believed to increase the likelihood of 
a successful training of a clinically applicable algorithm. For a 
clinical expert needed to segment such a training material, a fully 
automated segmentation method that will assist in completing 
the task faster is probably helpful. The requirements for an 
assistive fully automated segmentation algorithm are significantly 
different than for a diagnostic algorithm, as the main objective 
for the former is robustness on a wide variety of images and for 
the latter utmost segmentation accuracy. The created 
segmentation algorithm is intended to be helpful not only for a 
diverse quality of preoperative images, but also for postoperative 
images with multiple artefacts since such images are surely useful 
in training diagnostic algorithms for clinical use.

These image processing steps were chosen because, regardless of 
their limitations, they are less likely to lead to failure in 
segmenting images that exhibit high variability and increased 
artefact content.

Classical (non-machine learning) image processing approaches, 
like the one presented here, have the advantage of being fast and 
relatively simple. Moreover, the presented algorithm can be used 
in everyone’s laptop or desktop computer and does not require 
high computing power. In addition, to our knowledge, such a 
detailed description of the challenges that should be tackled for a 
successful segmentation of intracranial bleedings has not been 
reported before.

The study also has some shortcomings. The datasets used 
cannot reflect the vast variability that exists in medical centres 
globally. However, the image variability is still rather extensive.
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perhaps be manually segmented, especially since a manual 
segmentation of small bleeds is not an overly cumbersome task. 
Removing a thin layer of the brain’s cortex will improve the 
results, especially when other bleeding types, such as SDH and 
EDH, are not present. The average segmentation time for a 
single NCCT with intracranial blood was about 3 min on a 
standard laptop. Furthermore, as the algorithm performed 
relatively well even when it was used for segmenting images with 
major artefacts, we believe that this segmentation tool, which 
functions in a simple laptop, assists this crucial step in 
developing computer vision algorithms for clinical use.

Many of the previous algorithms published have been built and 
validated using highly selected datasets. Such image selection 
does not necessarily represent the high variability of the images 
encountered in a clinical setting. In contrast to these algorithms, 
we did not develop the fully automated algorithm to detect 
blood in highly selected images, but to assist in creating new 
clinical algorithms based on highly variable and artefact-rich 
datasets. We did not exclude any images based on their quality 
or on the medical interventions that the study patients had 
undergone. Moreover, we used both preoperative and early 
postoperative images in order to increase the complexity and 
variability of the dataset. Overall, 72% of the cases were acquired 
after medical interventions, and therefore, the images may have 
included, for example, air, aneurysm clips, aneurysm coils, Onyx 
embolization material, ventriculostomies, and multiple subtypes 
of bleedings. Since we are not aware of any similar studies using 
postoperative or posttreatment images in the development of 
segmentation or computer vision algorithms, true performance 
comparisons are challenging to conduct. In general, algorithms 
built to fulfil the same objectives can be compared, upon the 
same benchmark data, using segmentation metrics like Dice and 
others.

Because comparisons with other complex datasets or algorithms 
were impossible to conduct, multiple metrics were computed for 
the fully automated algorithm in an effort to shed light on 
various aspects of segmentation quality. For the same reason, we 
opted to create a second, much simpler approach, namely a 
thresholding. This approach was used to form a simple baseline 
during the algorithm’s development process. If the algorithm 
had performed similarly to the best possible thresholding, it 
would have been a clear indication of a useless result. The 
moderate performance of the algorithm (Dice coefficient 0.20) 
can be attributed to the following reasons. First, most (87%) of 
the patients had SAH, which will be more penalized, as 
explained above. Second, most (72%) of the patients had 
undergone an intervention (open surgery or endovascular 
treatment), which had introduced major artefacts and image 
distortions. Such artefacts and distortions introduce false 
positives, while also prohibiting the use of powerful techniques, 
such as brain atlas priors, which have the potential to increase 
segmentation quality. Third, our method of creating the gold 
standard segmentations may have led to undersegmentation of 
blood. In other words, when a cluster of blood was not visible in 
at least two consecutive slices or when there was an ambiguity 
about the borders of the blood clusters, we did not segment the 
corresponding voxels as blood. Therefore, the gold standard 
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Moreover, we decided to open-source the 145 patient cases along 
with their gold standard segmentations in order to establish a 
publicly open complex dataset, which can be widely used to 
standardize reporting of algorithm performances. In fact, our 
dataset enables performance reporting not only at patient level, 
but also at slice and voxel levels. To our knowledge, this is the 
first such open-sourced dataset. Another shortcoming is that the 
developed segmentation algorithm does not produce very high 
segmentation accuracy. If the accuracy were to be very high, the 
algorithm would not serve as a segmentation algorithm, but 
rather as a diagnostic algorithm. Nevertheless, it will be able to 
perform fairly well in segmenting very challenging images, which 
are needed to create truly clinically useful diagnostic algorithms.

CONCLUSION
The developed fully automated segmentation algorithm can 
assist clinical and even non-clinical experts in creating training 
material for machine learning algorithms that can detect SAH in 
head CT scans. In order to transparently and openly advance 
brain haemorrhage-related algorithm development, the 
computed python algorithm is available in GitHub. Moreover, in 
an attempt to help standardize the assessments of algorithm 
performances, we have openly shared the segmented dataset of 
preoperative and postoperative images. We believe that the 
shared algorithm and dataset can serve as benchmark material 
for similar studies.
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