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Introduction
Diabetes mellitus (DM) is associated to the abnormal metabolism 

of the glucose and is always characterized by long-term complications, 
such as neuropathy, nephropathy, cataracts, retinopathy [1]. In recent 
decades, DM is the major threat to human health all over the world 
and the situation is getting worse rapidly, as over 171 million people 
worldwide were suffering with this disease in 2000 and this figure is 
considered to grow more than twice and reach to 366 million by 2030 
[2]. In fact, diabetic patients in China have reached 92 million in 2007, 
and even rocketed to 114 million in 2010 [3,4]. Furthermore, people 
with any kind of diabetes of sufficient duration, including both type 
1 and type 2 diabetes mellitus, are vulnerable to these complications, 
which are the major distress for the diabetic patients. Increasing 
evidence demonstrated that aldose reductase (ALR2, EC, 1.1.1.21) 
plays a pivotal role in development of chronic diabetic complications, 
as this enzyme accompanied with sorbitol dehydrogenase forms the 
polyol pathway of glucose metabolism, which supposed to be the main 
pathogenesis of diabetic complications. In the pathway (Figure 1), the 
glucose is firstly reduced to sorbitol by ALR2 catalysis with NADPH 
as coenzyme, and then sorbitol dehydrogenase converts sorbitol into 
fructose with reduction of NAD+ [5-7]. (Figure1)

Normally, ALR2 has a low activity and only a small amount of 
the glucose is metabolized through this pathway. In hyperglycemia, 
however, ALR2 is activated and one third of the total metabolic glucose 
turns to the alternative polyol pathway, which leads to the accumulation 
of sorbitol in tissues possessing insulin-independent uptake of glucose, 
such as kidney, lens, retina, peripheral nerves [1,5]. Sorbitol is hardly 
excreted across cell membranes due to strong polarity, and therefore 
its intracellular accumulation would lead to osmotic imbalance, cell 
swelling, and changes of membrane permeability, mainly in lens. 
Also, the abnormal level of NADPH and NAD+ caused by the polyol 
pathway would induce modification in cellular redox potentials, and 
unconventionally activated enzymes such as nitric oxide synthase 
(NOS) and glutathione reductase would give rise to the cellular oxidative 
stress. As a consequence, the imbalance between increased production 
of radical oxygen species (ROS) and reduced intracellular antioxidant 

defense occurs [5]. Furthermore, the increased accumulation of 
advanced glycation-end products (AGEs) aroused by the enhanced 
level of glycating agents would cause other pathological alteration in the 
functions of intracellular proteins and result in further accumulation 
of ROS [8]. All these stress responses evoked by the activated ALR2 
in down-stream of the polyol pathway have also been proposed to 
form pathogenic mechanisms of the multiple diabetic complications. 
Therefore, suppression of the ALR2 activity and further oxidative stress, 
particularly ALR2 inhibitors (ARIs) having antioxidant property, could 
be an efficient strategy to prevent or delay the progression of diabetic 
complications.

In the recent few years, the aromatic heterbiocyclic structures 
including benzothiadiazine, pyridythiadiazine, benzothiazine, and 
quinoxalinone have been found to be excellent framework for the ARI 
drug design, which led to a number of novel and potent series 1-7 
(Figure 2) [2,8-16] as promising drug candidates for the treatment of 
diabetic complications. (Figure 2)

Table 1 shows the specific structure and inhibitory activity data of 
representative samples of each heterocyclic scaffold. Obviously, potent 
ARIs have been obtained in each of the core structure indicating these 
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Abstract
Aldose reductase (ALR2) plays a pivotal role in the development of diabetic complications. ALR2 inhibitors 

(ARIs) have proven efficient to prevent and delay the chronic diseases, and thus attracted significant research 
interest. This article reviews a series of aromatic heterobicyclics-based ARIs developed over recent years, and 
discusses about their structure-activity relationships as well as their multifunctionalities such as antioxidant property.
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Figure 1: Polyol pathway of glucose metabolism.
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Figure 2: The core structures of aldose reductase inhibitors.
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scaffolds are in favor of designing ARIs that could intensively interacted 
with ALR2. Particularly, the samples 1h, 2b, 3b, and 5c (IC50=32, 44, 
110, and 6.4 nM, respectively) are the most active compounds to the 
relevant core. Comparison of the scaffolds to each other indicates 
that the quinoxalinone may be the core promising for further ARI 
developments when 5b (IC50=10 nM) in the quinoxalinone series 
is found to have the ALR2 inhibition greater than its counterparts 
1c (IC50=41 nM) and 2b (IC50=44 nM) in benzothiadiazine and 
pyridythiadiazine series, respectively (Table 1).

For ARIs based on the present scaffolds, the aromatic side chains 
including benzyl and phenoxyl groups are the other crucial factor 
besides the typical carboxylate side chain, which has long been the 
most important group [17]. Benzyl groups as the side chains in the case 
of quinoxalinone series seem to have more impact on the inhibitory 
activity against ALR2 than phenoxyl groups as comparing the 
compounds 5c (IC50=6.4 nM) and 6b (IC50=23 nM) as shown in Table 1, 
but this effect is depending on substituents both at aromatic rings of the 
side chain and scaffold. Moreover, longer length of carbon chain spacer 
of the side chain leads to increase in the potency of quinoxalinone ARIs 
[8,13].

At the aromatic ring of side chains in all series in this review, 

groups of 2-F,4-Br, 2,4,5-F3, or 4-Br proved to be preferred substituents 
whereas the bulky groups of trifluoromethyl and methoxyl had negative 
substitution effect as comparing 2b (IC50=44 nM) with 2g (IC50=1010 
nM) and 2h (IC50=6540 nM). At the aromatic ring of the scaffold, 
halogens including chloro and bromo are always better substituents 
than methyl group. However, bulky hydrophobic substituents were 
found to be favorable for enhancing the ARI activity, and the flexible 
amide group as one of the substituents could significantly enhance the 
activity but also selectivity [18].

In the benzothiazine series including compounds 3-4, the orientation 
of the carboxylic acid head is likely to have a strong influence on the 
interaction between the ALR2 and inhibitors. Z-isomers of 3 is more 
active than E-isomers, [11] while R-(−)-enantiomers of 4 (IC50=500 M) 
than S-(+)-enantiomers (IC50=4150 nM) [10,19] (Table 2).

In order to obtain multifunctional ARIs having antioxidant 
property, phenolic hydroxyl groups have been introduced to the 
aromatic ring of the side chain in the quinoxalinone series as shown 
in Table 2. Hydroxyl substituted phenoxyl side chains integrated good 
antioxidant activity to ARIs. However, more success resulted from the 
key strategy by the use of vinyl group as the spacer in combination with 
the phenolic hydroxyl in the side chain because the products may be 
more potent in the ALR2 inhibition and antioxidation. These efforts led 
to achievement of a number of ARIs showing significant antioxidant 
activity by testing their DPPH radical scavenging rate. Of them, 6g and 
7c are excellent both in the ALR2 inhibition and antioxidant activity. 
Particularly, the antioxidant activity of 7c was also confirmed by testing 
its inhibition of lipid peroxidation in vivo using animal models [8,9].

In summary, the aromatic heterobicyclics of benzothiadiazine, 
quinoxalinone, and their analogues have been proved effective scaffolds 
for the design of ARIs, and in particular quinoxalinone is excellent for 
the construction of multifunctional ARIs having antioxidant property. 
However, all these designed inhibitors are in the carboxylate ARI class, 
which has a shortcoming of poor tissue penetration resulting in poor 
distribution from blood to the tissues and then in pharmacokinetic 
drawbacks and even low in vivo efficacies [20]. Therefore, new design 
of non-carboxylate series of ARIs based on these frameworks may be 
expected.

Compd.
Substituent

IC50 (nM)a for ALR2	 R1	 R2

1a [2] H 2-F,4-Br 125
1b [2] F 2-F,4-Br 90
1c [2] Cl 2-F,4-Br 41
1d [2] Br 2-F,4-Br 71
1f [2] H 2,4,5-F3 111
1g [2] F 2,4,5-F3 66
1h [2] Cl 2,4,5-F3 32
1i [2] Br 2,4,5-F3 52
1j [2] F 4-CF3 931
1k [2] Cl 4-CF3 595

2a [16] CH3 2-F,4-Br 127
2b [16] Cl 2-F,4-Br 44
2c [16] Br 2-F,4-Br 69

2d [16] CH3 2,4,5-F3 84

2e [16] Cl 2,4,5-F3 38
2f [16] Br 2,4,5-F3 69
2g [16] Cl 4-CF3 1010
2h [16] Cl 4-OCH3 6540
3a [15] H 2,4,5-F3 590
3b [15] H 2-F,4-Br 110
4a [15] H 2,4,5-F3 340
5a [13] H 2-F,4-Br 35
5b [13] 7-Cl 2-F,4-Br 10
5c [13] 7-F 2-F,4-Br 6.4
5d [13] 6-Cl 2-F,4-Br 59
5e [13] 7-Cl 4-Br 23
6a [14] H 2-F,4-Br 45
6b [14] 7-F 2-F,4-Br 23
6c [14] H 4-Br 27
6d [14] 7-F 4-Br 11

a IC50 values represent the concentration required to produce 50% enzyme 
inhibition

Table 1: The biological activity of ARIs.
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Compd.
Substituent

IC50(nM)ALR2
a

 DPPH sca. %
R1 R2 X 100μM 50μM

6e [9] 6-F 4-OH O 20 23.7 b
6f [9] 7-Cl 4-OH O 179 84.8 47.3
6g [9] 7-Cl 3,5-(OH)2 O 566 91.3 83.7
7a [8] H 4-OH CH2=CH2 182 71.8 55.8
7b [8] 7-F 4-OH CH2=CH2 153 67.2 45.7
7c [8] H 3-OCH3,4-OH CH2=CH2 419 95.4 68.8

epalrestat 91 b b

Trolox b 98.2 90.2
a IC50 values represent the concentration required to produce 50% enzyme 
inhibition.
b Not determined.

Table 2: Biological activity of multifunctional ARIs based on quinoxalinones.
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