
Volume 3 • Issue 1 • 1000119J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Mancas and Dicu, J Inform Tech Softw Eng 2013, 3:1
DOI: 10.4172/2165-7866.1000119

Research Article Open Access

Architecture, Design, Development, and Usage of ODBDetective 1.0
Christian Mancas1* and Alina Iuliana Dicu2

1Department of Mathematics and Computer Science, Ovidius State University, Constanta, Romania
2Department of Computers and Information Technology, Faculty of Engineering in Foreign Languages, English Stream, Polytechnic University, Bucharest, Romaina

Abstract

“ODBDetective is an Oracle database (Oracle) metadata mining tool for detecting violations of some crucial
database (db) design, implementation, usage, and optimization best practice rules (bpr). This paper presents the set
of bprs that is considered by the first full version (1.0) of ODBDetective, the db axioms from which they are derived, the
corresponding tool’s facilities, and the essentials of its actual architecture, design, development, and usage, including
the results of a case study on an Oracle production db. Moreover, even this first ODBDetective version also allows
for storing semantic decision data on desired db scheme improvements, which will prove very useful to automatic
improvement code generation in subsequent versions of this tool.”

*Corresponding author: Christian Mancas, Department of Mathematics and
Computer Science, Ovidius State University, Constanta, Romania; E-mail:
christian.mancas@gmail.com

Received June 26, 2013; Accepted August 06, 2013; Published August 13, 2013

Citation: Mancas C, Dicu AI (2013) Architecture, Design, Development, and Usage of
ODBDetective 1.0. J Inform Tech Softw Eng 3: 119. doi:10.4172/2165-7866.1000119

Copyright: © 2013 Mancas C, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Keywords: ODBDetective; Oracle; Database designing

Introduction
Too often, databases (dbs) are very poorly designed, implemented,

queried, and manipulated. As a consequence, they allow storing
implausible data, sometimes even do not accept plausible data, are very
slow when data accumulates, and need too much unneeded disk and
memory space, as well as, especially, programming and maintenance
effort.

Consequently, significant efforts were made for designing and
developing panoply of tools for investigating db issues, proposing better
solutions to be carried out by db administrators (DBA), and even for
automatic db schemes improvement. They range from those provided
by db relational management systems (RDBMS) manufacturers to
third party ones.

For example, Oracle provides Automatic Workload Repositories
(AWR) views [1], Automatic SQL Tuning [2], SQL Access Advisor
(including Partition Advisor), Real-time SQL Monitoring (the latter
three available only in Enterprise Editions), as well as other advisors.
Embarcadero Technologies includes in its DB PowerStudio for Oracle
[3] a dedicated tool called DB Optimizer. Details on them, as well as on
other theoretical and practical related work are provided in [4] and [5].

Moreover, there are also best practice rules in this field, like, for
example, Oracle’s ones [6]. From a more comprehensive one [7],
derived from experience, as well as from a set of db axioms [7], a relevant
subset [8] was the base for selecting the 28 ones that are implemented
in ODBDetective 1.0, according to 32 derived investigation types (see
section 2). Note that three Oracle’s ones (namely reduce data contention,
choose indexing techniques that are best for your application, and use
static SQL whenever possible) are included in ODBDetective too.

ODBDetective is a metadata mining tool for Oracle dbs, storing its
mining and investigation results in its own Oracle db, together with
additional semantic support decision data.

ODBDetective 1.0 was developed in Oracle 11g and MS Access
2010, as a MSc. Dissertation thesis to be publicly defended in July 3rd,
2013, at the Bucharest Polytechnic University [5].

Section 2 presents the 20 axioms, 28 considered best practice rules,
and the corresponding ODBDetective‘s 1.0 32 investigation types.
Section 3 presents ODBDetective’s architecture. Section 4 documents its
db (back-end) and application (front-end) design and implementation.
Section 5 contains essentials of ODBDetective’s usage and the results

of a case study. The paper ends with conclusion and further work,
acknowledgements, and references.

Considered db Axioms, Best Practice Rules, and
Corresponding Investigation Types

From all db axioms and best practice rules presented in [7],
only the following small subsets (see sub-sections 2.0 and 2.1) were
considered by ODBDetective 1.0. Consequently, it provides only the 32
investigation types listed in sub-section 2.2.

Database axioms

Design

A1. Data plausibility axiom: any db instance should always store
only plausible data; implausible (“garbage”) data might be stored only
temporarily, during updating transactions (that is, any time before
start and after end of such a transaction all data should be plausible).

A2. Unique objects axiom: just like, generally, for sets elements,
object sets do not allow for duplicates (that is each object for which
data is stored in a db should always be uniquely identifiable through its
corresponding data).

A3. Best possible performance axiom: db design, implementation,
and optimization should guarantee obtaining the maximum possible
performance–that is the overall best possible execution speed for
critical queries and updates, as well as the best possible average
execution speed for the non-critical ones.

A4. No constraints on redundant data axiom: no constraint should
be enforced on redundant data.

A5. Constraints discovery axiom: for any non-trivial and non-
contradictory and not implied (that is computable) restriction existing
in the modeled sub-universe, any db should enforce a corresponding
constraint.

Journal of
Information Technology & Software Engineering

Journal
of

 In
fo

rm
at

ion

 Te
chnology & Softw

are Engineering

ISSN: 2165-7866

Volume 3 • Issue 1 • 1000119J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mancas C, Dicu AI (2013) Architecture, Design, Development, and Usage of ODBDetective 1.0. J Inform Tech Softw Eng 3: 119. doi:10.4172/2165-
7866.1000119

Page 2 of 13

A6. Constraints optimality axiom: for any db scheme, no implied
constraint should be enforced and the constraint set should be
enforceable in the minimum possible time (that is there should not
exist another equivalent constraint set whose enforcement takes less
time in the given context).

Implementation

A7. Constraints enforcement axiom: for each fundamental table,
any of its constraints whose type is provided by the target RDBMS has
to be enforced through that RDBMS; all other db constraints should be
enforced by all software applications built on top that db.

A8. Rows uniqueness axiom: Any fundamental table row should
be always uniquely identifiable according to all existing uniqueness
constraints in the corresponding sub-universe and it should correspond
to a unique object from the corresponding object set.

A9. No void rows axiom: For any fundamental table, at least one
semantic fundamental column should not accept null values.

A10. Referential integrity axiom: any foreign key value should
always reference an existing value (dually, no db should ever contain
dangling pointers).

A11. Primary keys axiom: Any fundamental table should have a
surrogate integer primary key whose range cardinality should be equal
to the maximum possible cardinality of the corresponding modeled
object set; except for tables corresponding to subsets, primary keys
should store auto generated values.

A12. Foreign keys axiom: Any foreign key should be simple (that is
not concatenated), reference a surrogate integer primary key and have
as range exactly the range of the referenced primary key.

A13. Key Propagation Principle axiom: any mapping (that is many-
to-one or one-to-many relationship) between two fundamental object
sets should be implemented according to the Key Propagation Principle:
a foreign key referencing its co-domain (that is the “one” side) is added
to the table corresponding to its domain (that is the “many” side).

A14. No superkeys axiom: No superkey should ever be enforced;
generally, no other constraints than those declared in the corresponding
conceptual db scheme should ever be enforced.

Usage

A15. Relevant data and processing axiom: Any query should
consider and minimally process, in each of its steps, only relevant data.

A16. Fastest manipulation axiom: At least in production
environments, data manipulations should be done with best possible
algorithms and technologies, so that processing speed be the fastest
possible.

Optimization

A17. Reduce data contention: Intelligently use hard disks, big files,
multiple tablespaces, partitions, and segments with adequate block
sizes, separate user and system data, avoid constant updates of a same
row, etc., in order to always reduce data contention to the minimum
possible.

A18. Minimize db size: Regularly shrink tablespaces, tables, and
indexes for maintaining high processing speeds and minimal db and
backup sizes.

A19. Maximize use of RDBMS statistics: Regularly gather and
intelligently use statistics provided by RDBMS for fine-tuning dbs.

A20. Follow RDBMS advisors recommendations: Regularly monitor
and apply all recommendations of RDBMS advisors.

Best Practice Rules
Design

BPR0 (Data plausibility): All actual constraints should be enforced
in all fundamental (that is not temporary, not derived) tables, in order
to guarantee their data instances plausibility.

BPR1 (Surrogate primary keys): Each fundamental table should
have an associated primary surrogate key: an one-to-one integer
property (range restricted according to the maximum possible
corresponding instances cardinality-see BPR2 below), whose sole
meaning should be unique identification of the corresponding lines
(this being the reason to refer to them as surrogate or syntactic keys
too).

Note that very rarely, by exception, such a surrogate key might
also have a semantic meaning: for example, rabbit cages may be
labelled physically too by the corresponding surrogate key values (and,
obviously, no supplementary attribute should then be added for unique
identification, as it would redundantly duplicate the corresponding
surrogate key).

Also note that the surrogate primary key #T (or TID) of a table
T can be thought of as the x for all other columns of T (e.g. let
T=COUNTRIES, with Country (1)=‘U.S.A.’, Country (2)=‘China’,
Country (3)=‘Germany’, IntlTelPrefix (1)=‘01’, IntlTelPrefix (2)=‘02’,
IntlTelPrefix (3)=‘49’, etc.).

Such minimal primary keys favor optimal foreign keys (see BPR5
below) with least possible time for computing joins. If storage space
is a drastic concern, you might not add them to tables that are not
referenced; otherwise, it is better to always add them both for avoiding
tedious supplementary DBA tasks when they will become referenced
too, as well as for homogeneity reasons. Obviously, derived/computed
tables, be them temporary or not, may have no primary keys. Note
that, not only in the Relational Data Model (RDM) [9], but also in all
RDBMS versions, any key may be freely chosen as the primary one and
that, actually, as a consequence, unfortunately, the vast majority of
existing dbs are using concatenated and/or semantic, not only numeric,
surrogate primary keys.

BPR2 (Instances cardinalities): Surrogate keys should always
take values in integer sets whose cardinalities should reflect maximum
possible number of elements of the corresponding sets.

For example, #Cities values should be between 0 and 999 for
states/regions/departments/lands/etc. (e.g. in Oracle, NUMBER
(3)), or 99,999 (e.g. NUMBER(5)) for countries, or 99,999,999 (e.g.
NUMBER(9)) worldwide, whereas #Countries values should be
between 0 and 250 (e.g. NUMBER(3)). Note that, for example, not
specifying cardinality in Oracle (e.g. using only NUMBER), means that
the system is using its corresponding maximum (i.e. NUMBER(38),
which needs 22 bytes that not only wastes space, but is much slower,
as it cannot be processed (e.g. for joins) by CPU arithmetic/logic units,
which are the fastest ones, in only one memory cycle).

BPR3 (Semantic keys): Any fundamental (not temporary, not
derived) table corresponding to an object set that is not a subset (of
another object set) should have associated all of its corresponding
semantic (candidate, ordinary) keys: either one-to-one columns
or minimally one-to-one column products. With extremely rare
exceptions (see the rabbit cages example in BPR1 above), any such

Volume 3 • Issue 1 • 1000119J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mancas C, Dicu AI (2013) Architecture, Design, Development, and Usage of ODBDetective 1.0. J Inform Tech Softw Eng 3: 119. doi:10.4172/2165-
7866.1000119

Page 3 of 13

non-subset table should consequently have at least one semantic key:
any of its lines should differ in at least one non-primary key column
(note that there is not only one NULL value, as, for example, Oracle
and MS SQL Server erroneously assume in this context, but an infinite
number of NULLs, all of them distinct!). Only subsets and derived/
computed ones might not have semantic keys.

Note that any table may have more than one semantic key (and,
according to a theorem from [7], combining those published in [10]
and [11,12], a maximum number of keys equal to the combination
of n taken [n/2] times, where n is the total number of semantic, non-
primary key columns of the table and [x] is the integer part of x).
Obviously, in order to reject implausible instances, all of them (just
like all of the other existing constraints) should always be included in
the corresponding conceptual models, schemes, and implementations.

For example, in any context, COUNTRIES has the following two
semantic keys: CountryName (there may not be two countries having
same name) and Code (no two countries may have the same code, those
used from vehicle plates to the U.N.); STATES has three keys: State •
Country (there may not be two states of a same country having same
name), Code • Country (there may not be two states of a same country
having same code), and TelPrefix • Country (there may not be two states
of a same country having same telephone prefix). Derived set *ExtStates,
computed from STATES and COUNTRIES above (e.g. with an inner
join between them on the object identifier #Country and Country,
implemented as a foreign key in STATES referencing #Country, be it
in a temporary table or in a persistent one), extending STATES with,
say, CountryName, should not have any key (and no other constraint
either!). Subset IPS of EMPLOYEES, storing only those employees
having retention bonuses, together with their corresponding periods
and amounts, should not have any semantic key either.

Note that, for all subsets tables, all of their lines may always be
uniquely identified semantically too (through the subset surrogate
primary key, see BPR1 above) by all of the keys of the corresponding
superset table (in the above example, any important people in IPS, by
all keys of EMPLOYEES). Also note that, obviously, subset tables too
may have other semantic keys (not only their syntactical primary ones).

BPR4 (No superkeys): We should never consider superkeys (i.e.
one-to-one column products that are not minimal, that is for which
there is at least one column that can be dropped and the remaining
sub-product is also one-to-one; equivalently, superkeys are those
products that properly include keys, i.e. they include at least one
key without being equal to it), either conceptually, or, especially, for
implementations. We should always stick to keys (see BPR3 above).

For example, obviously, within the U.S., both StateCode and
StateName are and will always be unique (one-to-one, hence keys);
trivially, these two constraints should be added to any dbs including the
STATES table (obviously, only when the sub-universe is limited to the
U.S. or to any other particular country; worldwide, these two columns
are not one-to one anymore–see BPR3 above).

Even if not that trivial, you should never also add either a product
superkey with any of them (e.g. StateCode • StatePopulation) or, worse,
of both of them (StateCode • StateName): the result will not only be
an unjustified bigger db, but especially a slower one, as it will have
to enforce this superfluous constraint too for any insert or update
concerning at least one of the corresponding values. Obviously, it would
be even worse to replace such a key with, in fact, one of its superkeys:
for example, if you do not add the two single unique constraints above,
but, instead, you add the constraint that their product (StateCode •

StateName) is unique, then you allow for implausible instances (e.g.
that there may be several states having same name, but different codes,
and/or several ones having same codes, but different names).

Note that, unfortunately, not only MS Access, SQL Server, Oracle,
or MySQL do not reject superkeys!

BPR5 (Foreign keys): Any foreign key should always reference
the primary key of the corresponding table. Hence, it should be a sole
integer column: we should never use concatenated columns, neither
non-integer columns as foreign keys. Moreover, their definitions
should match exactly the ones of the corresponding referenced primary
keys (see BPR2 above).

This rule is not only about minimum db space, but mainly for
processing speed: numbers are processed by the fastest CPU sub-
processors, the arithmetic ones (and the smaller the number, the fastest
the speed: for not huge numbers, only one simple CPU instruction is
needed, for example, in comparing two such numbers for, let’s say, a
join), whereas character strings need the slowest sub-processors (and
a loop whose number of steps is directly proportional to the strings
lengths); moreover, nearly a thousand natural numbers, each of them
between 0 and nearly 4.3 billion, are read from the hard disk (the
slowest common storage device) with only one read operation (e.g.
from a typical index file), while reading a thousand strings of, let’s say,
200 ASCII characters needs 6 such read operations.

Please note that, again, unfortunately, not only RDM, but almost
all RDBMSs too allow foreign keys, be them concatenated or not, to
reference not only primary keys (see BPR1 above), but anything else,
including non-keys (provided that all of the corresponding columns
belong to a same table).

Please also note that, most unfortunately, it is a widespread practice
to declare concatenated primary keys containing concatenated foreign
keys for chains of referencing tables; consequently, even if the root of
such a chain has only a column as its primary key, the next table in the
chain should have a primary key with arity of at least two, the third
one’s arity should be of at least three, etc.

For example, in very many dbs, COUNTRIES’ primary key is
CountryName, STATES’ one is Country • SName, where Country is a
foreign key referencing CountryName, and CITIES’ one is Country •
State • City, where Country • State is a foreign key referencing Country
• SName of STATES.

BPR6 (At least one not null non primary key column per table):
Any table should have at least one not accepting nulls column, other
than its primary key: what would a line having only nulls (except for its
syntactic surrogate key value) stand for?

BPR7 (No constraints on not fundamental tables): Temporary and
derived (computed) tables should not have any constraints enforced: as
they are not fundamental, they should be read-only for users; moreover,
being computed from valid data with valid expressions, their instances
are always plausible. Consequently, adding constraints on them would
only slow down processing speed and increase db size for nothing.

BPR8 (No superfluous fundamental tables or rows): Fundamental
tables should be useful. If, for example, the instances of such a table
are always empty, then that table is superfluous. Similarly, if the set
of values (the image) of a column of a non-empty fundamental table
is always empty, that column is superfluous. A fundamental table on
which no object depends upon, except for its triggers, might also be
superfluous.

Volume 3 • Issue 1 • 1000119J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mancas C, Dicu AI (2013) Architecture, Design, Development, and Usage of ODBDetective 1.0. J Inform Tech Softw Eng 3: 119. doi:10.4172/2165-
7866.1000119

Page 4 of 13

Implementation in Oracle

BPR9 (Reduce data contention): Critical tables, (almost) static
ones, core ones (to the enterprise, being used by several applications),
very large ones, temporary ones, all of the others, and indexes of
any db should be placed in distinct tablespaces (and all of them also
distinct from the system ones) for optimal fine-tuning (e.g. caching
all frequently used small static tables in memory–see BPR10 below–,
setting adequate block sizes, etc.), and thus performance.

Whenever several hard disks are available, tablespaces should
cleverly exploit them all (e.g. storing critical tables tablespace on the
fastest one). Create associated data files with auto extension enabled,
rather than creating many small ones. Separate user data from system
dictionary data to reduce I/O contention.

As data contention can substantially hurt application performance,
reduce it by distributing data in multiple tablespaces and partitions,
avoid constant updates of a same row (e.g. to calculate balance), and
run periodic reports instead.

BPR10 (Caching small frequently used tables): Always cache
small, especially lookup static (but not only) tables that are frequently
used.

BPR11 (Use correct data types): Using incorrect data types
might decrease the efficiency of the optimizer, hurt performance, and
cause applications to perform unnecessary data conversions. Don’t
use strings to store dates, times or numbers. Ensure that conditional
expressions compare the same data types. Do not use type conversion
functions (such as TO_DATE or TO_ CHAR) on indexed columns: use
instead the functions against the values being compared to a column.

BPR12 (Not adding unnecessary indexes): Indexes should not be
added either for small instances tables or for columns containing mostly
nulls in which you do not search for NOT NULL values. Obviously,
there should not be more than one index on same columns (although
there are RDBMSs allowing it! Fortunately, Oracle does not.).

BPR13 (Concatenated indexes column order): For concatenated
indexes, the order of their columns should be given by the cardinality
of their corresponding duplicate values: the first one should have the
fewest duplicates, whereas any other one should have more duplicates
than its predecessor and fewer than its successor; columns having very
many duplicates or NULLs should then be either placed last, or even
omitted from indexes.

For example, as in a CITIES table there are much more distinct
ZipCode values (rare duplicates being possible only between countries)
than Country ones (as, generally, there are very many cities in a
country), the corresponding unique index should be defined in the
order <ZipCode, Country> (not as <Country, ZipCode>).

BPR14 (Indexes best types): Normal (B-Trees) indexes should be
used except for small range of values, when bitmap ones should be
used instead. Note, however, that bitmap indexes are greatly improving
queries, but are significantly slowing down updates and that they are
available only for Enterprise Oracle editions and not for the standard
ones too.

BPR15 (Indexes effectiveness): For improving indexes effectiveness,
DBAs should regularly gather statistics on them. (Note that on some
RDBMS–e.g. Oracle starting with 10g–this can be scheduled and
performed automatically.)

BPR16 (Avoid row chaining): If pctfree setting is too low, updates
may force Oracle to move rows (row migration). In some cases

(e.g. when row length is greater than db block size) row chaining is
inevitable. When row chaining and migration occur, each access of a
row will require accessing multiple blocks, impacting the number of
logical reads/writes required for each command. Hence, never decrease
pctfree and always use largest block sizes possible.

Querying and manipulating

BPR17 (Use parallelism). Whenever possible, be it for querying
and/or manipulating, use parallel programming!

1.	 Process several queries in parallel by declaring and opening
multiple explicit cursors, especially when corresponding data
is stored on different disks and the usage environment is a low-
concurrency one.

2.	 Create and rebuild indexes in parallel.

3.	 Use PARALLEL ENABLED functions (including pipelined
table ones), which allows them to be safely used in slave
sessions of parallel query evaluations.

BPR18 (Avoid dynamic SQL): Whenever possible, avoid dynamic
SQL and use views and/or parameterized stored procedures instead;
when it is absolutely needed, keep dynamicity to the minimum possible
(i.e. keep dynamic only what cannot be programmed otherwise and for
the rest use static SQL) and prefer the dynamic native one, introduced
as an improvement on the DBMS_SQL API, as it is easier to write and
executes faster.

Note that DBMS_SQL is still maintained because of the inability of
native dynamic SQL to perform so-called “Method 4 Dynamic SQL”,
where the name/number of SELECT columns or the name/number of
bind variables is dynamic.

Also note that native dynamic SQL cannot be used for operations
performed on a remote db. Views and stored procedures have obvious
advantages: not only they are already parsed, but they also have
associated optimized execution plans stored and ready to execute.

BPR19 (Avoid subqueries): Subqueries allow for much more
elegant and close to mathematical logic queries, but are generally
less efficient than corresponding equivalent join queries without
subqueries (except for cases when RDBMSs optimizers replace them
with equivalent subqueryless queries).

BPR20 (Use result cache queries): For significant performance
improvement of frequently run queries with same parameter values,
always use result cache queries and query fragments: as their results are
cached in memory (in the result cache, part of the shared pool), there
is no more need to re-evaluate them (trivially, except for the first time
and then only for each time when underlying data is updated).

BPR21 (Use compound triggers): Always use compound triggers
instead of ordinary ones, not only for new code, but also by replacing
existing ordinary ones, whenever possible: they improve not only
coding efficiency, but also processing speed for bulk operations.

BPR22 (Set firing sequences): Always use, whenever necessary,
setting the triggers firing sequence (clause FOLLOWS), in order to
control their execution order.

BPR23 (Use function result cache): Whenever appropriate,
use result cache functions, which enhances corresponding code
performance (e.g., according to Oracle, with at least 40% and up to
100% for most of pure Oracle PL/SQL code).

Optimization

Volume 3 • Issue 1 • 1000119J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mancas C, Dicu AI (2013) Architecture, Design, Development, and Usage of ODBDetective 1.0. J Inform Tech Softw Eng 3: 119. doi:10.4172/2165-
7866.1000119

Page 5 of 13

BPR24 (Regularly shrink tables and tablespaces): Whenever rows
are deleted from table instances, physical disk space they occupy is not
freed, as, in fact, Oracle only marks them for deletion. Not only to gain
storing space, but especially to speed up queries, you should regularly
shrink involved tables and tablespaces.

BPR25 (Regularly gather statistics on indexes): For improving
indexes effectiveness, DBAs should regularly gather statistics on them
(by invoking stored procedures DBMS_STATS.GATHER_SCHEME_
STATISTICS and DBMS_STATS.GATHER_TABLE_STATISTICS).
Note that, starting with 10g, this can be scheduled and performed
automatically by the GATHER_STATS_JOB of the Automatic
Statistics Collection tool. Moreover, you might use the COMPUTE
STATISTICS clause of the CREATE INDEX statement.

BPR26 (Use key-compressed indexes): Especially for unique
multicolumn indexes, key compression should always be used
for obtaining smaller and faster indexes: they eliminate repeated
occurrences of key column prefix values, by sharing prefix entries
among all suffix entries in index blocks. Note that the COMPRESS
clause can be specified during either index creation or rebuild.

BPR27 (Follow Oracle advisors recommendations): Oracle
advisors are almost always right, so the best thing to do is to regularly
monitor and do what they are suggesting, preferably automatically;
failed ones should especially be monitored and necessary actions
should be taken a.s.a.p.

ODBDetective 1.0 investigation types
Design

1.	 Fundamental tables having no not-null columns (except for the
primary key).

2.	 Keyless non-empty fundamental tables.

3.	 Fundamental tables (not corresponding to subsets) that don’t
have semantic keys.

4.	 Tables having concatenated primary keys.

5.	 Tables having non-numeric primary key columns.

6.	 Oversized surrogate primary keys.

7.	 Tables having superkeys.

8.	 Temporary tables constraints.

9.	 Empty fundamental tables, their associated indexes and
constraints.

10.	 Empty columns in non-empty fundamental tables, their
associated indexes, and constraints.

11.	 Tables on which no other interesting (i.e. not trigger only
referring to the corresponding table) object (e.g. view, stored
procedure, etc.) depends upon.

Implementation

12.	 User tables and/or indexes in system tablespaces.

13.	 Small (under x lines) non-cached fundamental tables.

14.	 Improperly typed foreign keys.

15.	 Concatenated foreign keys.

16.	 Foreign keys having non-numeric columns.

17.	 Over and under-sized foreign keys.

18.	 Concatenated indexes with wrong columns order.

19.	 Fundamental tables having migrated rows.

20.	 Normal (B-tree) indexes that should be of bitmap type (as their
columns have less than y% distinct values or more than z% null
ones).

21.	 Bitmap indexes that should be of normal (B-tree) type (as their
columns have more than y% distinct values and less than z%
null ones).

22.	 Tables with empty blocks.

Usage

23.	 Total number of sub-queries and each ones position in source
code.

24.	 Total number of dynamic SQL executions and each ones
position in source code.

25.	 Not parallel enabled functions and each ones position in source
code.

26.	 Not result cache functions and each ones position in source
code.

27.	 Not result cache queries and each ones position in source code.

28.	 Not compound triggers and each ones position in source code.

29.	 Triggers without firing sequences and each ones position in
source code.

Optimization

30.	 Tables to shrink.

31.	 Indexes without recent statistics gathered on them.

32.	 Indexes to be compressed (on tables having less than w lines).

ODBDetective 1.0 Architecture
The 3-tier architecture of ODBDetective is presented in Figures 1

and 2:

The light GUI, developed in MS Access 2010, provides users with
a simple, three levels menu and forms/reports for displaying/printing
mainly investigation results, but also for accepting corresponding
parameter values (e.g. the desired thresholds for caching tables or
compressing indexes), as well as managing Oracle target servers and
dbs (users) needed data (server names, connection strings, dbs names,
users accounts and passwords, IPs, etc.), and additional semantic
decision support data; it also provides radio buttons for selecting desired
detection options (e.g. full list of subsection 2.2 above or only partial
ones) and buttons for launching metadata mining, investigations, etc.

GUI-triggered events are handled by the VBA BL tier sub-layer,
which is made up of three class forms (for servers, dbs, and investigation
options respectively) and a library used by all of them. This sub-layer
contains methods for adding, updating, and deleting data on targeted
servers and dbs, deleting no more needed investigation data, adding
(and even updating catalogue metadata) for the currently selected db,
etc.

As usual, especially when extended SQL is available (PL/SQL in
this case), there is also a RDBMS engine-based BL sub-layer, which,
in this case, mainly includes detection and investigation views, but

Volume 3 • Issue 1 • 1000119J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mancas C, Dicu AI (2013) Architecture, Design, Development, and Usage of ODBDetective 1.0. J Inform Tech Softw Eng 3: 119. doi:10.4172/2165-
7866.1000119

Page 6 of 13

also triggers, sequences, stored functions and procedures, etc. Between
these two BL sub-layers, a four level middleware pack is needed to
bridge MS and Oracle, which comprises ADO (included in Access),
MS ODBC Driver Manager, Oracle ODBC Driver for Windows, and
Oracle Client 11g.

All MS Access 2010 layers of the solution are encapsulated in a
pure code (except for the table which drives the menu) concurrent
db called ODBDetective.accdb, which can be deployed on any number
of workstations having (VPN) access to an Oracle 11g server where
the ODBDetective’s SQL & PL/SQL BL sub-layer, as well as its DB
layer reside. Through db links, ODBDetective can mine and import

metacatalog data from any number of other Oracle servers’ dbs too.

ODBDetective 1.0 Design and Implementation
Database design and implementation

ODBDetective‘s db design and implementation were done according
to the algorithms presented in [7] and [13]. For investigating possible
violations of the best practice rules presented in section 2.2 above by
Oracle db schemes, ODBDetective has to mine in the corresponding
server catalog for metadata on dbs (users), tablespaces, objects, their
dependencies, tables, views, columns, constraints, indexes, their
columns, triggers, and PL/SQL stored functions and procedures code.
Fortunately, Oracle provides both DBA and user versions of views for
all such metadata, from which ODBDetective extracts only relevant
columns into its own corresponding db tables.

Besides the above corresponding object sets, ODBDetective
offers some dictionary-type ones (for decrypting Oracle internal
codifications), as well as a set of Oracle servers and one of dbs (just like,
for example, Oracle’s SQL Developer, for saving needed connections
data). Figure 3 presents the ODBDetective’s structural Entity-
Relationship (E-R) Diagram (E-RD).

Note that, for graphical reasons, canonical injections are represented
as, instead of ⊂. Also note that, again for graphical reasons, although
indexes are Oracle objects too, in Figure 3 this inclusion (INDEXES ⊂
OBJS) is not depicted.

Moreover, note that, except for the properties of SERVERS and
DBS, all other ones (except for some few properties added for future
extensions and *DB of OBJS, as well as *Tablespace of OBJS, which are
computed) are obtained through data mining, so they are read-only:
consequently, there are no restrictions on them. Note too that the
Package property of METHODS (which abstracts both stored PL/SQL
functions and procedures) is not compulsory (as they may be methods
defined outside PL/SQL packages). Perhaps the most important thing
to note is that Oracle metacatalogs are uni-server: although all of its
g versions are supporting grids of interconnected servers, there is no
centralized metacatalog: consequently, ODBDetective had to add to its
db computed property *Server of TABLESPACES.

Oracle, in fact, does not abstract PL/SQL stored function
and procedures into a same methods set (so, for ODBDetective,
METHODS=FUNCTIONS ⊕ PROCEDURES), neither differentiates
between views and tables columns (although most of the views ones

Windows 7/8

MS Access 2110

Oracle 11g

RedHat Linux 6.2

GUI (MS Access 2010 Menus, Forms & Reports)

Servers & dbs management (VBA) Investigations parameterization
Sequences, triggers, db links (SQL & PL/SQL) Views, stored procedures

DB (Oracle 11g)

BL

Figure 1: OBD Detective’s overall architecture.

ODBDetective.accdb

MS Access 2010

Menu, Forms, Reports (GUI)

Parameters, servers and dbs data
inserts/updates/deletes, GUI events

Servers, dbs, and
investigation data

Investigation forms classes
MS VBA (BL)

Servers’ management form class

DBs’ management form class

General library class

middlewares
MS ADO

MS ODBC Driver Manager
Oracle ODBC Driver for Win64

Oracle 11g Client
Workstation 1 Workstation i Workstation n

LANLAN

Oracle server 1 Oracle server mODBDetective Oracle server
Internet Internet

VPN VPN

VPN

ORACLE ODBDETECTIVE (DB & BL)
DB1. 1...
DB1.k

SQL and PL/SQL tables, views, triggers, sequences, db links, etc.
ORACLE

DBm. 1...
 DBm.p

Figure 2: OBD Detective’s detailed architecture.

INDEXES

INDX_COLS CNSTR_COLS

VIEWS_COLS

CNSTR_TYPES

CONSTRAINTS

COLUMNS *COLUMNS PACKAGES SOURCE_CODE

METHODSPCK_BODIESTRIGGERS VIEWSTABLES

TBL_TYPES DBS OBJS OBJ_TYPES

DEPENDENCIESSERVERS TABLESP ACES

*DBServer

*Server

*Tablespace

Type Package

Package MethodViewColumnTable

Type

Type

Figure 3: OBD Detective’s structural E-RD.

Volume 3 • Issue 1 • 1000119J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mancas C, Dicu AI (2013) Architecture, Design, Development, and Usage of ODBDetective 1.0. J Inform Tech Softw Eng 3: 119. doi:10.4172/2165-
7866.1000119

Page 7 of 13

are obtained from tables ones), nor, unfortunately, stores for each PL/
SQL source code line the method to whom it belongs, but only the
corresponding package body.

The associated restrictions list (RL) is the following one:

SERVERS (the set of Oracle db servers of interest)

RL1 (servers’ max. cardinality): 200

RL2 (servers’ domain ranges):

ServerName: ASCII(64)

HostIP: ASCII(16)

SID, ServiceName, Pw: ASCII(30)

Port: [1521, 1575] ⊆ NAT(4)

SMode: {‘Dedicated’, ‘Shared’}

Protocol: {‘TCP’, ‘IPC’}

*Connection String: ASCII(255), computable according to the
template:

(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROT
OCOL=Protocol)(HOST=HostIP)(PORT=Port)))(CONNECT_
DATA=(SERVER =SMode)(SERVICE_NAME=SID/ServiceName)))

RL3 (servers’ mandatory properties): ServerName, HostIP, Port,
SMode, Protocol

RL4 (servers’ uniqueness restrictions): ServerName are HostIP are
unique (there may not be two servers with either same name or same
host address); note that, generally, according to *ConnectionString
definition, HostIP is not a key (but Protocol • HostIP • Port • SMode •
SID and Protocol • HostIP • Port • SMode • ServiceName are instead),
as several connections to a same server are allowed (for example with
different protocols and/or modes); obviously, ODBDetective only needs
one per server, which is why HostIP is unique for it (and, consequently,
Protocol • HostIP • Port • SMode • SID and Protocol • HostIP • Port •
SMode • ServiceName are superkeys).

RL5 (servers’ non-existence restrictions): whenever SID is null,
ServiceName may not be null and vice-versa (i.e. whenever ServiceName
is null, SID may not be null) (that is either SID or ServiceName should
be specified, but not both of them)

DBS (the set of Oracle dbs of interest)

RL6 (dbs’ max. cardinality): 20000

RL7 (dbs’ domain ranges):

DB: {[‘A’-‘Z’], [0-9], ‘_”}(30) Prefix(DB, 4) ∉ {“SYS_”, “ORA_”}
(Oracle names may not exceed 30 characters, which should be either
capital letters, numbers, and/or underscore; moreover, their prefixes
may not be “SYS_” or “ORA_”)

Pw: ASCII(30)

*Link_Name: ASCII (128), computable according to the template:
DB & “#” & Server

RL8 (dbs’ mandatory properties): DB, Server, Pw RL9 (dbs’
uniqueness restrictions): Server and DB are unique (there may not be
two dbs with same name on a same server)

OBJ_TYPES (the quasi-static set of Oracle db object types of
interest)

RL10 (object types’ max. cardinality): 32

RL11 (object types’ domain ranges):

ObjType: {“Function”, “Index”, “Java Class”, “Package”, “Package
Body”, “Procedure”, “Synonym”, “Trigger”, “Type”, “View”}

RL12 (object types’ mandatory properties): ObjType

RL13 (object types’ uniqueness restrictions): ObjType is unique
(there may not be two Oracle object types with same name)

CNSTR_TYPES (the quasi-static set of Oracle db constraint types
of interest)

RL14 (constraint types’ max. cardinality): 16

RL15 (constraint types’ domain ranges):

CnstrCode: {‘C’, ‘F’, ‘H’, ‘O’, ‘P’, ‘R’, ‘S’, ‘U’, ‘V’}

CnstrType: {“Check”, “REF”, “Hash”, “R/O”, “Primary”,
“Referential”, “Supplemental”, “Unique”, “View”}

CnstrDescr: {“ Check constraint on a table”, “Constraint involving
a REF column”, “Hash expression”, “Read-only view”, “Primary key”,
“Referential integrity (foreign key)”, “Supplemental logging”, “Unique
constraint (non-primary superkey)”, “Check constraint on a view”}

RL16 (constraint types’ mandatory properties): CnstrCode,
CnstrType

RL17 (constraint types’ uniqueness restrictions): CnstrCode,
CnstrType, CnstrDescr are unique

(there may not be two Oracle constraint types with same code,
name, or description)

TBLS_TYPES (the quasi-static set of ODBDetective table types)

RL18 (table types’ max. cardinality): 8

RL19 (table types’ domain ranges):

Code: {‘B’, ‘C’, ‘G’, ‘N’, ‘R’, ‘U’, ‘Y’, ‘l’}

Comments: {“ To be reviewed”, “Critical table”, “Not used anymore:
to be dropped”, “Rarely used”, “Small table that can grow large”, “Used
table”, “Small table to be cached”, “System tables: null value”}

RL20 (table types’ mandatory properties): Code, Comments

RL21 (table types’ uniqueness restrictions): Code and Comments are
unique (there may not be two ODBDetective table types with same code
or comment)

Mathematical scheme

By applying the algorithms for translating E-RDs and restriction
lists into mathematical schemes (see [7], [13]) and for detecting and
designing constraints to the above E-RD and restrictions list, the
following refined mathematical scheme is obtained:

SERVERS

S# ↔ [-100, 100], total

ServerName ↔ ASCII(64), total

HostIP ↔ ASCII(16), total

SID → ASCII(30)

ServiceName → ASCII(30)

Volume 3 • Issue 1 • 1000119J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mancas C, Dicu AI (2013) Architecture, Design, Development, and Usage of ODBDetective 1.0. J Inform Tech Softw Eng 3: 119. doi:10.4172/2165-
7866.1000119

Page 8 of 13

Pw → ASCII(30)

Port → [1521, 1575] ⊆ NAT(4), total

SMode → {‘Dedicated’, ‘Shared’}, total

Protocol → {“TCP”, “IPC”}, total

*ConnectionString ↔ ASCII (255) (superkey, as HostIP is a key)

*ConnectionString (x) = “(DESCRIPTION=(ADDRESS_
LIST=(ADDRESS=”&(PROTOCOL=” & Protocol(x) & “)
(HOST=” & HostIP(x) & “)(PORT=” & Port(x) &“)))(CONNECT_
DATA=(SERVER =” & SMode(x) & “)(SERVICE_NAME=” &
iif(Isnull(SID(x)), ServiceName(x), SID(x)) & “)))”

Initial keys (according to RL4) are {S#, ServerName, HostIP}.
Results of applying the algorithm for keys detection are given in Table
1.

Consequently, SERVERS does not have any other keys than the
three initial ones.

C5 (according to RL5): (∀x∈SERVERS) (SID(x) ∈ NULLS ⇒
ServiceName(x) ∉ NULLS ∧ ServiceName(x) ∈ NULLS ⇒ SID(x) ∉
NULLS)

DBS

D# ↔ [-10000, 10000], total

DB → {[‘A’-‘Z’], [0-9], ‘_”}(30), total

Pw → ASCII(30), total

*Link_Name → ASCII(128)

*Link_Name(x) = DB(x) & “#” & Server(x)

Server: DBS → SERVERS, total

C7 (according to RL7): (∀x∈DBS) (Prefix(DB(x), 4) ∉ {“SYS_”,
“ORA_”})

Initial keys (according to RL9) are {D#, DB • Server}.

Results of applying the algorithm for keys detection are given in
Table 2.

Consequently, DBS does not have any other keys than the initial
one.

OBJ_TYPES

OT# ↔ [1, 32] ⊂ NAT(2), total

ObjType ↔ {“Function”, “Index”, “Java Class”, “Package”,

“Package Body”, “Procedure”, “Synonym”, “Trigger”, “Type”, “View”}
⊂ ASCII(16), total

CNSTR_TYPES

CT# ↔ [1, 16] ⊂ NAT(2), total

CnstrCode ↔ {‘C’, ‘F’, ‘H’, ‘O’, ‘P’, ‘R’, ‘S’, ‘U’, ‘V’} ⊂ ASCII(1), total

CnstrType: {“Check”, “REF”, “Hash”, “R/O”, “Primary”,
“Referential”, “Supplemental”, “Unique”, “View”} ⊂ ASCII(16), total

CnstrDescr ↔ {“ Check constraint on a table”, “Constraint involving
a REF column”, “Hash expression”, “Read-only view”, “Primary key”,
“Referential integrity (foreign key)”, “Supplemental logging”, “Unique
constraint (non-primary superkey)”, “Check constraint on a view”} ⊂
ASCII(64), total

TBLS_TYPES

TT# ↔ [1, 8] ⊂ NAT(1), total

Code ↔{‘B’, ‘C’, ‘G’, ‘N’, ‘R’, ‘U’, ‘Y’, ‘l’} ⊂ ASCII(1), total

Comment ↔ {“ To be reviewed”, “Critical table”, “Not used
anymore: to bedropped”, “Rarely used”, “Small table that can grow
large”, “Used table”, “Small table to be cached”, “System tables: null
value”} ⊂ ASCII(32), total Applying the E-RD cycles detection and
analysis algorithm, the following cycles exist in Figure 3:

•	 The cycle having nodes DEPENDENCIES and OBJS is of
commutative type, but with length = two, corresponding to the
binary homogeneous relation DEPENDENCIES, which should
obviously be acyclic (as no Oracle object may depend either
directly or indirectly on itself); as this constraint is enforced by
Oracle, no other explicit constraint needs to be added to the
math scheme;

•	 The cycle having nodes OBJS, DBS, TABLESPACES, SERVERS
is of commutative type, should commute, and commutes by
the definition of computed mappings *Server, *Tablespace, *DB
(Server ° *DB = *Server ° *Tablespace, as any Oracle db object
belonging to a db should reside in a tablespace belonging to
the same Oracle db server as the corresponding db): no other
explicit constraint needs to be added to the math scheme;

•	 The cycle having nodes TRIGGERS, COLUMNS, TABLES,
OBJS is of commutative type, but should not commute, as,
trivially, any trigger attached to a table column is a different
object than that table: no other explicit constraint needs to be
added to the math scheme;

Candidate Key? Prime? Proof
SID No No There may be any number of servers having same SID; SID Cannot take part in any SERVERS key.
ServiceName No No There may be any number of servers having same ServiceName; ServiceName cannot take part in any SERVERS key.
Pw No No There may be any number of servers having same Pw; Pw cannot take part in any SERVERS key.
SMode No No There may be any number of servers having same SMode; SMode cannot take part in any SERVERS key.
Protocol No No There may be any number of servers having same Protocol; Protocol cannot take part in any SERVERS key.

Table 1: Applying the algorithm for keys detection according to RL4.

Table 2: Applying the algorithm for keys detection according to RL9.

Candidate Key? Prime? Proof
DB No Yes There may be any number of dbs having same names (on different servers); according to RL9, DB takes part in the Server DB key.
Pw No No There may be any number of dbs having same Pw (even on a same server); Pw cannot take part in any DBS key.
Server No No There may be any number of dbs on a same server; according to RL9, Server takes part in the Server DB key.
DB Server Yes According to RL9, there may not be two dbs having a same name on a same server.

Volume 3 • Issue 1 • 1000119J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mancas C, Dicu AI (2013) Architecture, Design, Development, and Usage of ODBDetective 1.0. J Inform Tech Softw Eng 3: 119. doi:10.4172/2165-
7866.1000119

Page 9 of 13

•	 The cycle having nodes TRIGGERS, COLUMNS, VIEWS_
COLS, *COLUMNS, VIEWS, OBJS is of commutative type, but
should not commute, as, trivially, any trigger attached to a table
column is a different object than any view whose columns are
based on that table column: no other explicit constraint needs
to be added to the math scheme;

•	 The cycle having nodes TABLES, COLUMNS, VIEWS_COLS,
*COLUMNS, VIEWS, OBJS is of commutative type, but should
not commute, as, trivially, any table is a different object than
any view whose columns are based on that table columns: no
other explicit constraint needs to be added to the math scheme;

•	 The cycle having nodes INDEXES, INDX_COLS, COLUMNS,
TABLES, OBJS (not depicted, but existing)

•	 is of commutative type, but should not commute, as, trivially,
any index (built on a table’s columns) is a different object than
any view whose columns are based on that table’s columns: no
other explicit constraint needs to be added to the math scheme;

•	 The cycle having nodes INDEXES, INDX_COLS, COLUMNS,
TRIGGERS, OBJS (not depicted, but existing)

•	 is of commutative type, but should not commute, as, trivially,
any index (built on a table’s columns) is a different object
than any trigger attached to a column of that table: no other
explicit constraint needs to be added to the math scheme. The
corresponding relational scheme is presented in [4] and [5]; its
associated non-relational constraints list is the following:

C5 (according to RL5): (∀x∈SERVERS) (SID(x) ∈ NULLS ⇒
ServiceName(x) ∉ NULLS ∧ ServiceName(x) ∈ NULLS ⇒ SID(x) ∉
NULLS)

C7 (according to RL7): (∀x∈DBS) (Prefix(DB(x), 4) ∉ {“SYS_”,
“ORA_”}).

These non-relational constraints are implemented in ODBDetective
in VBA, which can provide users with context sensitive and immediate
error messages (whilst Oracle is returning only context independent
error messages, which are not immediate, at cell level, but always
delayed at the row one).

All ODBDetective’s tables, constraints, sequences, triggers, db
links, stored procedures, and views were implemented according to
the algorithm [7,13] for translating relational schemes and associated
non-relational constraint lists into Oracle 11g dbs, by using Oracle
SQL Developer. Using Oracle’s db links, DBA and user views, as well
as parameterized stored procedures (the parameters being db links),
ODBDetective is filling its db with all needed metadata for investigation,
thus impacting very few (only in read-only mode, only from the
metacatalogs, only once) on the customers’ investigated Oracle remote
servers, dbs, and network bandwidth

(typically, the size of the ODBDetective‘s db is only some 200MB).
Mined metadata is investigated by ODBDetective with the aid of
(hierarchies of) views, built upon its db.

Note that, unfortunately, for tables SERVERS and DBS whose
instances are managed by the ODBDetective MS Access application,
their constraints had to be also implemented in VBA: in order to avoid
getting the Oracle context-insensitive corresponding error messages,
VBA is enforcing all these constraints too.

Also note that if you declare NOT NULL constraints in Oracle,
when users are trying to leave such a column cell null, unfortunately,

corresponding VBA BeforeUpdate trigger-type methods are not
invoked, as ADO is first passing nulls to Oracle, which is rejecting
them. Consequently, the only way to give users context sensitive error
messages in such cases (and, moreover, to help them by undoing
accidentally emptied cells) is not to enforce NOT NULL constraints
in Oracle, but only in VBA. This is why ODBDetective’s NOT NULL
constraints are not enforced in Oracle.

Dually, but for the same reason of displaying context sensitive error
messages and undoing implausible data updates, as well as because
of the fact that Oracle, ODBC, and ADO error trapping in VBA is
problematic, the rest of the ODBDeetective’s relational type constraints
are enforced both in Oracle and VBA.

For example, there are times when Oracle or ODBC errors are not
triggering ADO and/or Access corresponding errors; much worse,
there are even contexts (e.g. connecting to an Oracle db) when, dually,
although there is no Oracle, ODBC, or Access error, ADO is however
reporting an error!

Application design and implementation

ODBDetective’s application design was done according to the
principles and methodologies presented in [13-17].

It was decided that the best software life cycle that suits
ODBDetective’s needs is the Prototype Software Development one,
as there is only one developer, so that Incremental Prototyping
methodology was used.

The only human actor that will interact with the ODBDetective
application is the User, who analyzes db schemes for detecting
anomalies of their design, implementation, and usage, and provides
statistics and decision support data, for improving dbs performance by
correcting their schemes in order to eliminate best practices violations.
Figure 4 presents the ODBDetective system’s use cases:

ODBDetective’s menu is a very simple one, consisting only of three
levels, with a main menu page, a sub-menu one, and over 60 forms
(some of them used as sub-forms on other three hierarchical levels of
embedding), implemented by using MS Access standard Switchboard
Manager. Most of the forms (over 40) are read-only, as they only

Add Server
Connection

Edit Server
ConnectionAdd Database

Link

Edit Database
Link

Mine Target
Db Metadata

Set Db to
Investigate

See Mined
MetadataSee Oracle

Advisor Log

User

See Oracle Advisor
Recommendations

Investigate Target
Db Issues

Delete
Database Link

Delete Server
Connection

uc

Figure 4: OBD Detective’s use cases.

Volume 3 • Issue 1 • 1000119J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mancas C, Dicu AI (2013) Architecture, Design, Development, and Usage of ODBDetective 1.0. J Inform Tech Softw Eng 3: 119. doi:10.4172/2165-
7866.1000119

Page 10 of 13

display mining and investigation data. The rest of them also allow for
writing additional semantics and decision support data, so they also
have associated VBA classes for enforcing corresponding constraints.

In order to avoid hard-codding and re-definitions, all commonly
used constants and methods are grouped in a General VBA library.

Please note that, generally, VBA programming for ODBC-
connected back-ends is more demanding than for MS Jet or ACME,
or even SQL Server ones: for example, re-querying and even refreshing
are not automatic (but need explicit programming), ADO, so Oracle
too, are taking precedents in the events chain over VBA trigger-like
methods (which, normally, is not the same).

Oracle table schemes default values are not automatically copied
into Access forms, VBA object properties like NewRecord and
OldValue are not available, etc.; moreover, as Oracle does not provide
auto-numbering, you should first define corresponding Oracle
sequences and triggers and then you should carefully program in VBA
all corresponding methods, as these Oracle trigger generated surrogate
key values are only generated just before inserting new rows in Oracle
tables (and are null before), whereas Access auto-numbering generates
them before saving any new data in virtual memory, long before saving
it to disk, in dbs.

Odbdetective 1.0 Usage and Case Study
Installing ODBDetective 1.0 is very easy, as it only needs executing

a SQL script for creating and initializing its Oracle 11g db and copying
the ODBDetective.accdb MS Access 2007-2013 file in any folder of a
pc running Windows 7/8. Configuring Access to remotely link to the
Oracle db needs installing the Oracle 11g client (freely downloadable
from the Oracle website), which also includes the corresponding
Oracle ODBC driver for Windows (32 or 64bit, depending on your
actual platform).

Figure 5 presents ODBDetective 1.0 main menu and Figure 6 its
submenu. Figure 7 shows the Manage known servers and users window,
with which users may add, update, and/or delete both Oracle db servers
connection and db links data. Figure 8 displays the Investigations
window. Figure 9 presents the Global Statistics window, which displays
totals on both mined data and investigation results. Figure 10 shows
the Table details form, which displays essential mined table, columns,

triggers, constraints, and indexes data. Other similar forms display
metadata on tablespaces, objects and dependencies between them,
views, sequences, and PL/SQL source code lines, as well as Oracle’s
advisors log and recommendations for the investigated db. Figure 11
displays an example of detailed investigation result (tables violating Figure 5: OBD Detective’s application main switchboard menu window.

Figure 6: OBD Detective’s application Mined metadata submenu.

Figure 7: OBD Detective’s application Manage known servers and users window.

Figure 8: OBD Detective’s application investigations window.

Volume 3 • Issue 1 • 1000119J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mancas C, Dicu AI (2013) Architecture, Design, Development, and Usage of ODBDetective 1.0. J Inform Tech Softw Eng 3: 119. doi:10.4172/2165-
7866.1000119

Page 11 of 13

Figure 9: OBD Detective’s application Global Statistics window.

Figure 10: OBD Detective’s application Table details window.

Figure 11: OBD Detective’s application example of investigation results.

one best practice rule).

Note that, for example, form Table details, between others, also
allows for storing decision support data. Also note that, unfortunately,
the only Oracle recommendation type is, in this case too, to perform
shrinking: a useful, but not at all an enough one [4] also presents
in detail the results of a ODBDetective’s case study: investigating a
production Oracle db consisting of 3,860 user objects (and 5,649
dependencies between them)–with only 116 being temporary and
191 automatically generated indexes ones–, out of which 586 tables
(totaling 8,621 columns and 129,956,314 rows) interconnected by 415
foreign keys, with 66 temporary ones, and 2,842 indexes (out of which
2,651 are explicitly defined); their instances’ plausibility is enforced by
3,860 constraints, out of which 278 are unique ones, with 229 primary
and 49 semantic keys, 3,167 are check constraints, the remaining 415
being referential integrities; there are also one view, 151 sequences, 19
triggers, 127 packages (containing 1,647 procedures and 467 functions)
totaling 129,730 PL/SQL lines.

Running all of the 32 ODBDetective 1.0 options, discovered were
the following:

99 180 empty non-temporary tables, on which there were defined
211 indexes and 243 constraints;

99 89 fundamental not empty tables on which no interesting
object (table, PL/SQL code, etc.) depends on;

99 no cached table, although there were 168 such candidates for
x=1,000 and 58 for x=100;

99 268 constraints on temporary tables (257 check, 10 primary,
and one semantic keys);

99 2 tables having migrated rows;

99 311 empty columns, out of which 161 were not VARCHAR (1
BLOB, 2 CLOB, 3 CHAR, 49 DATE, and 106 NUMBER), and
on which defined were 24 constraints (1 check, 1 unique, and
22 foreign keys) and 21 indexes;

99 292 keyless non-empty fundamental tables;

99 40 tables having concatenated primary keys (3 quaternary, 8
ternary, and 29 double);

99 15 not numeric primary keys (11 VARCHAR2, 1 CHAR, and
3 DATE);

Volume 3 • Issue 1 • 1000119J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mancas C, Dicu AI (2013) Architecture, Design, Development, and Usage of ODBDetective 1.0. J Inform Tech Softw Eng 3: 119. doi:10.4172/2165-
7866.1000119

Page 12 of 13

99 all 239 surrogate primary keys were oversized (and, what is
worse, to the maximum possible NUMBER(38) value!);

99 8 concatenated foreign keys (4 ternary and 4 double);

99 63 foreign keys having non-numeric columns; all 415 foreign
keys were oversized (again, at the maximum possible:
NUMBER (38)!);

99 273 improperly typed foreign keys;

99 576 normal indexes that should have been bitmap instead (for
y=10 and z=90);

99 56 indexes to be compressed for w=100 and other 37 for
w=1,000;

99 24 concatenated indexes (out of which 14 were unique ones—
with 6 for primary keys!) totalizing 80 columns on non-empty
tables having wrong columns order;

99 740 subqueries;

99 317,542 dynamic SQL statements;

99 unfortunately too, there were no statistics gathered on indexes,
no parallel enabled functions, no result cache queries or
functions, no compound triggers, and no triggers with firing
sequences either;

99 fortunately, there were no tables or indexes in system
tablespaces, no table having no not-null columns, no table to
shrink, no superkeys, and no bitmap indexes that should have
been normal (as there were no bitmap indexes at all).

According to this data (that you may see in the Global Statistics
form, see 6.5.1 above), the customer decided to apply, in a first step, the
following changes to its db scheme:

•	 downsizing primary keys to corresponding tables’ double of
maximum cardinals

•	 replacing concatenated primary keys with simple surrogate
ones

•	 replacing concatenated foreign keys with single ones

•	 replacing all non-numeric primary keys with surrogate ones

•	 replacing all non-numeric foreign keys with corresponding
numeric ones

•	 eliminating migrating rows

•	 shrinking all tables

•	 regularly gathering statistics on indexes.

Consequently, performance of its application improved by more
than 2.5 times, out of which, shrinking, the only Oracle advisors
recommendation, brought only some 5%.

Conclusion and Further Work
Unfortunately, most of the existing dbs are poorly designed,

implemented, fine-tuned, and used. For asserting and, especially,
improving their quality, several sets of best practice rules were proposed
in this field. Considering a kernel crucial subset of the ones introduced
in [7,8], we have architectured, designed, developed, tested, used, and
documented ODBDetective 1.0, a metadata mining tool for detecting
violations by Oracle dbs of corresponding dbs design, implementation,
and usage best practice rules. Implementation (hence documentation,

testing, and usage) was done in Oracle 11 g and MS Access 2010,
under RedHat Linux 6.2 and 64-bit Windows 7/8 (on Dell servers and
notebooks).

A few of the ODBDetective features are also provided by Oracle
tools, but only available for it’s very ex pensive Enterprise Editions.
ODBDetective is somewhat similar, for example, to DB Optimizer [3],
but has very many powerful additional features.

Automatic violations detection can obviously be based only on
syntactic criteria. In order to make correct decisions for db schemes
enhancements, its users should analyze ODBDetective‘s output and,
based on semantic knowledge, decide whether or not to correct each of
the syntactically discovered possible violations (e.g. analyzed current
instance may be a non-typical one, empty tables may be legitimately be
empty as they actually are temporary ones, some tables instances might
grow much larger in certain contexts, etc.).

ODBDetective already allows for users to store some data on
decisions they took after analyzing its findings, thus greatly simplifying
the task to correct corresponding detected violations.

Further improvements will include:

99 adding supplementary best practice rules [7,8]

99 allow for more decision data to be stored

99 backup and restore investigation and decision data

99 automatically generate as much SQL scripts as possible for
improving Oracle dbs performances based on investigation
and decision data

99 extensions to other RDBMSs than Oracle.

Acknowledgements

This work has been partly sponsored by Asentinel Intl. srl Bucharest,
a subsidiary of Asentinel LLC, Memphis, TN, who owns the copyright of
ODBDetective.

References

1.	 Immanuel C (2008) Oracle Database Performance Tuning Guide 11g Release
1 (11.1).

2.	 Peter B, Sergey K, Jack R (2007) DBA’s New Best Friend: Advanced SQL
Tuning Features of Oracle Database 11g.

3.	 Embarcadero Technologies Inc. (2012) DB PowerStudio for Oracle.

4.	 Mancas C, Dicu AI (2013) ODBDetective–a metadata mining tool for detecting
violations of some Oracle database design, implementation, querying, and
manipulating best practice rules, Ovidius State University, Constanta, Romania.

5.	 Dicu AI (2013) ODBDetective–a metadata mining tool for detecting violations of
some crucial Oracle database design, implementation, usage, and optimization
best practice rules, Polytechnic University, Bucharest, Romania.

6.	 Oracle Corp. (2010) Guide for Developing High-Performance Database
Applications.

7.	 Mancas C (2013) Conceptual Data Modelling and Database Design: Analysis,
Implementation and Optimization. A Fully Algorithm Approach, Apple Academic
Press, NJ, USA.

8.	 Mancas C (2013) Best practice rules. Technical Report TR0-2013. Asentinel
Intl srl, Bucharest, Romania.

9.	 Codd EF (1970) A Relational Model of Data for Large Shared Data Banks.
CACM 13: 377-387.

10.	Mancas C, Dragomir S (2003) An Optimal Algorithm for Structural Keys Design,
Marina del Rey, CA, USA.

11.	Mancas C, Crasovschi L (2003) An Optimal Algorithm for Computer-Aided
Design of Key Type Constraints, Aristotle Macedonian University, Thessaloniki,
Greece.

http://docs.oracle.com/cd/B28359_01/server.111/b28274.pdf
http://docs.oracle.com/cd/B28359_01/server.111/b28274.pdf
http://www.oracle.com/technetwork/database/manageability/sqltune-presentation-ow07-130395.pdf
http://www.oracle.com/technetwork/database/manageability/sqltune-presentation-ow07-130395.pdf
http://www.embarcadero.com/products/db-powerstudio-for-oracle
http://www.oracle.com/technetwork/database/performance/perf-guide-wp-final-133229.pdf
http://www.oracle.com/technetwork/database/performance/perf-guide-wp-final-133229.pdf
http://www.informatik.uni-trier.de/~ley/db/journals/cacm/Codd70.html
http://www.informatik.uni-trier.de/~ley/db/journals/cacm/Codd70.html
http://www.actapress.com/PaperInfo.aspx?PaperID=14532&reason=500
http://www.actapress.com/PaperInfo.aspx?PaperID=14532&reason=500

Volume 3 • Issue 1 • 1000119J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Mancas C, Dicu AI (2013) Architecture, Design, Development, and Usage of ODBDetective 1.0. J Inform Tech Softw Eng 3: 119. doi:10.4172/2165-
7866.1000119

Page 13 of 13

12.	Mancas C (2002) On Knowledge Representation Using an Elementary
Mathematical Data Model. University of the US Virgin Islands, St. Thomas,
USA.

13.	Mancas C (2012) Advanced Database Systems. Polytechnic University,
Bucharest, Romania.

14.	Goga N (2012) Software Engineering. Polytechnic University, Bucharest,
Romania.

15.	Serbanati DL (2012) Programming Paradigms. Polytechnic University,
Bucharest, Romania.

16.	Dimo P (2012) Human Computer Interaction. Polytechnic University, Bucharest,
Romania.

17.	Mancas C (2012) Architecture, Design, and Development of Database Software
Applications. Ovidius University, Constanta, Romania.

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Considered db Axioms, Best Practice Rules, and Corresponding Investigation Types
	Database axioms

	Best Practice Rules
	Design
	Implementation in Oracle
	Querying and manipulating
	Optimization

	ODBDetective 1.0 investigation types
	Design
	Implementation
	Usage
	Optimization

	ODBDetective 1.0 Architecture
	ODBDetective 1.0 Design and Implementation
	Database design and implementation
	Mathematical scheme
	Application design and implementation

	Odbdetective 1.0 Usage and Case Study
	Conclusion and Further Work
	Acknowledgements
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Table 1
	Table 2
	References

